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ABSTRACT 

Eight designs are proposed for the computation of an N
element Fourier transform. The largest of the designs requires 
O(N2log N) units of silicon area and operates in O(log N) time. 
The smallest designs occupy only O(N log N) area, but take 
O(N log N) time to perform their calculations. 

The designs exhibit an area-time tradeoff: the smaller ones 
are slower, for two reasons. First, they may have fewer functional 
units and thus less parallelism. Second, their functional units may 
be interconnected in a pattern that is less etncient but more com
pact. 

The optimality of several of the designs is immediate, since 
they achieve the lirnii.ting area*time 2 performance of O(N2log2N). 

Key word:; and ph:ra.ses: parallel algorithms, area-time complexity, 
VLSI, Fourier transform. FFT, shufl'le-exchange network. mesh
connected computers. 





1. Introduction 

Fourier Transforms in Vl.Sl~ 

C. D. Thompson 

Division of Computer Science 
U. C. Berkeley 

Berkeley, CA 94-720 

One of the difficulties of VLSI design is the magnitude of the task. It is not 
easy to lay out one hundred thousand transistors. let alone ten million of them. 
Yet there is a sense in which the scale of VLSI is advantageous. The complexity 
of a VLSI chip is so great that asymptotic approximations can give insight into 
performance evaluation and design. 

This paper shows how asymptotic analysis can aid in the design of Fourier 
transform circuits in VLSJ. Approaching chip design in this way has three advan
tages. First of all, the analysis is simple: the calculations are easy to perform 
and thus easy to believe. Second, the analysis points out the bottlenecks in a 
design, indicating the portions that should be optimized. It is impossible to 
"miss the forest for the trees" when one is thinking of asymptotic performance. 

A third advantage of the analytic approach is that it provides a simple 
framework for the evaluation and explanation of various designs. In the case of 
the N-element Fourier transform, it is known that no circuit can have a better 
area*tirne2 performance than O(N2log2N) [13]t. Similar performance limits 
have been proved for the problems of sorting, matrix multiplication and integer 
multiplication [1,3, 9, 13]. 

The fact that there is a theoretical limit to area'~'tirne 2 performance sug
gests that designs be evaluated in terms of how closely they approach this limit. 
Any design. that achieves this limit must be optimal in some sense and thus 
deserves careful study. This paper presents a number of nearly-optimal designs, 
corresponding to different tradeof.fs of area for time. For example, Section 3's 
"Ii'FT network" takes only O(log N) time but quadrati.c area to perform its 
Fourier transform. Thus it is a faster but larger circuit than, say, the "Mesh 
implernentationu which solves anN-element problem in approxi.!"Tl.ately ~ time 

• This WQrk was supported in par-<:. by t.":le U.S. Army ::tesearch Office under Grant OAAG29-78-G-
0167. 

t The omega notation means "g::ows at :east as fe.s:. as": as N increases, t:~e product of area 
with the square of the solution time for t...1.ese c:?cuits is bounded from below by some constant times 
N 2log,Z JV. 'Y.ie more farniliar "big-0" :Jotat:ion :s used for upper bounds. A circu..."t occupies area 
A= 0 \N) ii there is so1r:e conSi.ant c for ·'fhic:C A~c N for ail but a. finite number of problem sizes 
1V. Finally, all loga.--it.'ur"' in :.lis ;:a)e: ~::-•o · .. :.:;e ':.wo. 



- 2 -

and linear area. 

Section 2 of this paper develops a simple model for VLSI. laying the ground
work for the implementations and the analyses. The model is based on a small 
number of assumptions that are valid for any currently envisioned transistor
based technology. Thus the results apply equally well to the D.eld-effect transis
tors of the MOS technologies (CMOS, R.\fOS, V1viOS, ... ), to the bipolar transistors 
of I2L, and to any GaAs process. 

Section 3 describes eight implementations of Fourier transform-solving cir
cuits in VLSI. Most of these circuits are highly parallel in nature. 

Section 4 concludes the paper with a summary of the perorrnance figures of 
the designs. 

2. The Model 

Briefiy, a VLSI circuit is modeled as a collection of nodes and wires. A node 
represents a wire junction, a transistor, or a gate. A "\1/ire represents the con
ductor that carries signals form. one node to another. 

In keeping wi.th the planar nature of VLSI, nodes are laid out in a non
overlapping fashion. Only a constant number of wires (say 2 or 4) can cross over 
any point in the plane. 

The unit of time in the model is equal to the response time of a simple cir
cuit. In particular, a wire can carry one bit of information in one unit of time. 
'fhis bit is typically used to cha..'l.ge the state of the transistor at the other end of 
the wire. 

The unit oi area in the model is determined by the "minimum feature 
width" of the processing technology. Wires have unit width and nodes occupy 
0(1) area, that is, a node is some constant number of wire-widths on a side. The 
area of a node also includes an allowance for power and clock \.'/ires, which are 
not represented explicitly in the model. 

The problem of long-distance communication recei"ves special attention. 
Most nodes can drive only short -rffies. A specialized "driver node" of O(k) area 
is required to send a signal down a wire of length k. A driver has O(log k) stages 
of amplification, the last stage of wr.Jch has gate (or junction) area proportional 
to lc. This structure is consistent with the assumption that the load presented 
by a long "Wire is capacitive in nature and proportional to its length [7]. The 
amplifier stages are individUc-:illy clocked, so that a driver has O(log k) delay but 
unit bandwidth. 

The notion of "self-timed regions" [ 10] is incorporated into the model to 
accolmt for the difficulty of obtaining chip-wide synchronization. The nodes in a 
self-timed region are in synchrony: all signal transiti.ons occur at the same 
phase of a common clock. Signals originating outside the region are synchron
ized with tbis local cLock by means of "receiver nodes." 
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The model is summarized in the list of assumpti.ons below. A fuller explana
tion and defense of the model is contained in the author's thesis [ 13]. 

Assumption 1: Embedding. 

a. Wires are one uni~ wide. 

b. Two wires may cross over each other at right angles. 

c. A logic node occupies 0(1) area. It has 0( 1) input wires and 0( 1) 
output wires, none of which are more than 0( i) units long. 

d. Each logic node belongs to a sell-timed .region. All wires connecting 
to a logic node lie entirely within its self-timed region. 

e. A self-timed region is at most O(log N) units -wide or long. 

f. A driver node of 0 (k) area has an output 1-vire that is k units long. 
This output 'Nire may pass through any number of self-timed regions 
before it connects to the input of a receiver node. 

g. A receiver node occupies 0( 1) area. Its output wire ls 0( 1) units 
long. 

Assumption 2: Total area.. 

The total area of a collection of nodes and wires is the number of unit 
squares in the smallest enclosing rectangle 

Assumption 3: Timing. 

a. Wires have unit bandwidth. They carry at most one bit of informa
tion in a unit of time. 

b. Logic nodes and eceiver nodes have 0~ 1) delay. 

c. The driver node for a wire of length k has O(log k) delay. 

AsS"U.mption 4: Transmission f'u:nc tions. 

a. The signals appearing on the output wires of a node are some fixed 
function of its current "state." 

b. The state of a node is changed every time unit, according to some 
fixed function of the signals on its input 1-vir<:!s. 

c. Logic nodes and receiver nodes are limited to 0( 1) bits of state. 

d. Driver nodes have O(log k) bits of state, one bit for each stage in 
their amplification chain. 

e. The states of the nodes in an "input rc:,gister" are set to arbitrary 
values whenever a computation is initiatrod (see Assumption 6). i-Jo 
attempt is made to model oft-chip T/0. 

Assumption 5: Problem. dgfinition. 

a. Each of N input variables takes on one of M different values with 
equal likelihood. 
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b. N is an integral power of 2. 

c. log M = ®(log N): a word length of flogU] = c (log2 N) bits is neces
sary and sufficient to describe the value of an input variable. 

d. The output variables g are related to the input variables 2 by the 
equation y =AX. The (i ,j )-th entry of A has the value c.;(Ci-l) -(J-I))_ 

where c.> is a principal N-th root of unity in the ring of multiplication 
and addition mod U. (This assumption defines a number-theoretic 
transform; results for the more common Fourier transform over the 
field of complex numbers are analogous.) 

Assumption 6: Input registers. 

a Each of the N input variables is associated with one input register 
formed of a chain of flog.M1 logic nodes. 

b. A computation is initiated at time T0 if the value of each input vari
able is encoded in the nodes of its input register. No other node has 
any information about this value. 

Assumption 7: Output registers. 

a Each of the N output variables is associated with one output regis
ter formed of a chain of flog}J1 logic nodes. 

b. A computation is complete at time Tc if the correct value of each 
output variable is determined by the current state of the nod.es in its 
output register. 

Assumption 8: Solution time. 

A collection of nodes and wires operates in "pipelined time T" if it can 
complete a computation every T time units. 

3. The Implementations 

A basic building block for all of the designs is the multiply-add cell. This 
cell has three bit-serial inputs r..;lc, x 0 and x 1• It produces two bit-serial outputs 
Yo= xo + CJ.e x 1 and y 1 = x 0 - ifx 1. The inputs and the outputs are all flog M] bit 
integers. 

A multiply-add cell can be built from O(log N) logic gates [13]. The multi
plication is performed by O(log N) steps of ad.dition in a carry-save adder. The 
subsequ.ent addition and subtraction can also be done in O(log N) time. Thus a 
complete multiply-add. c amputation can be done in O(log Jl/) time and O(log N) 
area. 

Another basic building block is the shift register. A k-bit shift register is 
built of O(lc) logic nodes in O(k:) area. It is used to store constants, successive 
bits of which are available during each unit of time. 

The aspect ratios of the multiply-add ceLl and shift register may be adjusted 
at will. They should be desigr:eG. as a rectangl'2 of 0(1) width that can be folded 
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into any rectangular shape. 

3.1. The M:M Design 

Perhaps the most obvious implementation of the Fourier transform is by 
direct computation of the matrix-vector product of Assumption 5d. The "sys
tolic array' of Kung and Leiserson provides an efficient means of calculating this 
product [7, p. 277]. 

The MM or Matrix Multiplication design consists of (2N -1) 2 multiply-add 
cells connected in a hexagonal mesh. These occupy a total of O(N2log N) area. 

As indicated in Figure 1, the input vector :i is shiited into the upper-left
band edge of the mesh, the constant matrix A is shifted into the upper-right
band edge, and the result tJ = AX emerges on the top e9ge. Figure 1 does not 
show the position and time that individual elements enter and leave the mesh. 
The interested reader is r-eferred to [?, p. 277] for complete details of the 
matrix multiplication process. 

- --- ~ ~ -• --~- ,. __________ ... •r..;.r __ .,. ________ ..... 

y 

----~--_,.--- ----- --- --

Figure 1: The MM design for N=2. 

Shilt registers must be provided on the chip for v~ariable and constant 
storage. 1f the chip is laid out according to Figure 1. N input registers should be 
located in the upper left corner of t.h.e chip to hold the vector x. Similarly, N 
output registers are needed at the top of the chip to collect the result vector g. 
The matrix A can be stored in N shift registers of O(N log N) bits each. It is 
easy to see that the entire cn:mstruction can fit in a rectangle of O(N2log N) 
area. 

Each multiply-add step takes O(log N) time; N steps are performed during 
the computation of a single Fourier transform. However, N computations may 
proceed simultaneously if each .is separated from the next by one multiply-add 
cell. The ~!:::\{ cl.esign thus operates in pipelinec time 0 (log N). 
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The MtV. design h.as nearly the best possible time performance for a design 
of its size, since its combined area *time2 performance is O(N2log3 N). As noted 
in the Introduction, no circuit can do better than O(N2log2N). The O(log N) 
discrepancy between these figures is due to the use of a rather slow multiply
add cell. A better asymptotic performance could be obtained through the use of 
larger and more complicated multiply-add. cells; however, such a design would 
be infeasible since the "constant factors" associated with the M1I design are 
rather large already (see Section 4). 

3.2. The MY Design 

The previous implementation calculated N Fourier transforms at a time. Jf 
such a large throughput is unnecessary, the MY or Matrix-Vector design can be 
used. 

The MV design of Figure 2 coi'..sists of a row of N multiply-add cells con
nected in a linear fashion. This structure can perform a matrix-vector multipli
cation in N (parallel) multiply-add steps: For the computation of a Fourier 
transform 1] = AX, the vector x is shifted into the left-most multiply-add cell, 
one element at a time. After N multiply-add times have elapsed, elements of 
the vector y emerge from the left-most cell. Each cell uses a different element 
of the matrix A for each multiply-add step: this may be visualized as vertical 
motion of the matrix A past the horizontal row of multiply-add cells. (For a 
more detailed description of this process, consult [7, p. 287].) 

. ·----- -

~ 
..... 

~ 

~. ~ ~ 
, 

~ ~ 
.,._ .; k-

Figure 2: The MY des:gn (2N cells). 

The time performance of the '31N implementation is O(N log N), since iit 
takes O(N) multiply-add steps to cc.mpute a single Fourier transform. If the 
array A were stared explicitly, the f,.I\i" design would require O(N2log N) area- in 
other words, it would be just as large as the M:'f design. even though it operates M!-1 
N times more slowly. Fortunately, it is fairly simple to calculate the elements of 
A "on the fly" in the manner described by Kung and Leiserson [7, p. 290]. (The 
calculation is performed on a second row of N multiply-add cells positioned just 
above the original row. Each of tbese cells computes the valt::.e of d required in 
the next step of the matrix multiplication y =AX. This computation may be 
completely overlappec with the matrix multipLication, so that there is no time 
overhead and onlj O(Y ;og ~v~ ::c··::a o-:;-erhesd associated with the matrix A.) 
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The total area of the MV design is thus O(N log N), for it has 2N multiply
add ceLls of O(log N) area each. Its combined area "'tirne2 performance is 
O(N3log3N). This is a surprisingly poor result in view of the fact that the related 
MM design has a nearly optimal Ay2 figure. The reason that the MV design does 
so poorly ill that an implementation •,vi.th 1/ N of the area of the MM design 
should only be slower by a factor of N 11 2: a linear trade off of time for are a is not 
optimal. (It is possible to make a circuit with approximately linear area that has 
near-optimal performance, as will be demonstrated by the Mesh implementation 
below.) 

3.3. The FFT Network 

Another straightforward implementation of the Fourier transform takes 
advantage of the Fast Fourier Transform algorithm (the FFT). This algorithm is 
most naturally expressed as a computation on (N I 2) ~(log N) multiply-add 
cells, arranged in log N rows of N I 2 cells each. The interconnections between 
rows can be in the form of a "perfect shuffle" [12] or a "butterfly" [4], depending 
upon how the cells are indexed. The butterfiy arrangement is described below 
since it seems to give a better area bound, if only by a constant factor. 

_ A computation in the FFT network may be visualized as flowing from top to 
bottom. The inputs are presented in pairs (x2i ,z2i+L) to the· top row of cells. 
These cells perform a multiply-ad.d step, passing the results down to the next 
row of cells. The computation is complete when the data has fiowed through all 
log N rows. 

The best embedding of the FF'T network is based on the butterfiy organiza
tion. Please refer to Figure 3 for· a sample layout. If the cells are numbered 
from 0 to 3 in each row, cell i in the top row is connected to cells i and 
(i + N I 4) mod N I 2 in the second row. The latter connection must be laid out 
carefully: you can probably convince yourself tbat N I 2 horizontal channels of 
wiring are required between the :first and second rows, one for each lateral con
nection. If the multiply-add cells are O(log N) units tall and 0(1) units wide, the 
first two rows occupy a region O(N) units tall and O(N) units wide. This layout 
allows room for the length-N wires. It also allows plenty of area to store the sin
gle w}t; value ( O(log N) bits) required by each cell. 

The connections between the second and third rows occupy just half as 
much Poom as the ones between the first two rows. In this case, cell i in the 
first half of the second row (D:::;'i <N /4) connects to cell i and to cell 
((i+NIB) TTUJd N/4:) in the first half of the third row. The cells in the second 
halves of these rows have analogous connections. Horizontal channels may be 
shared by corresponding cells in each half-side, so that N I 4: channels are 
sufficient. 

Similarly, the connections beween the third and fourth rows occupy just 
half as much r-oom as the connec~ic.c-.:.s 'oe~'Neen. the previous pair of rows. In this 
case, the 1VI 2 cells in each ro,.r a:e 'xoken into four groups. Cells within each 
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lJ 'i l 1 l 1~ J D f~ ~ 

0 I 2 3 

L 

' v ' J ~ J, ~ 

0 I 2 3 

' r, ~ r ~ ~ 

0 I 2 3 

~ ~ ~ ~ ~ ~ ~ ~ 

Figure 3: The FFT network for N=8. 

group communicate solely with the cells in the group immediately beneath 

them. 

The total area of the FFT network is O(ly2), the sum of a geometrically 
decreasing sequence whose first term is O(N2). 

fhe pipelined time of this implementation is O(log N), since log N computa
tions may proceed simultaneously. Each computation must be separated from 
the next by at least one multiply-add cell, or by O(log N) time. 

Note that the long wires between the rows do not change the asymptotic 
performance of the network. The drivers for these wires contribute a delay of 
O(log N) to each multiply-add step, but they do not affect the rate at which data 
can be shifted into and out of the multiply-add cells. 

3.4. The SE Network 

A shuffle-exchange (SE) network with N I 2 multiply-add cells can perform 
an FFT in log N steps of computation [12]. Each cell uses a different c.>.l: value 
for each step. T'nese values are obta_tn.ed from an O(log2N)-bit shlft register 

associated with every cell. 



Figure 4: TheSE network for N=8. 

Figure 4 shows a 4-cell shuffle-exchange network capable of performing an 
8-element transform. This layout is a condensed version of Stone's [ 12]. Only 
the shuffle connections are visible here; the exchange connections are internal 
to the cells. 

The shu.ffie-exchange connections occupy much more room than the cells 
themselves: 0(1V'2 I log N) area in the best embedding known [ 6]. This result 

applies only if N is of the form 22n. Jn the general case of N = zn. the best 
embedding is O(N2/ vlog N) [13]. (An O(_fi[Z; log2N)-area embedding is the best 
possible result. Anything smaller would. contradict the lower bound of 
O(N~og2N) for area•time2 performance: the SE network operates in O(log2N) 
time, as shown below. 

Each stage of computation on the SE network consists of a multiply-add 
step followed by a routing step. In a routing step, one word of data is sent along 
each intercelluLar connection. These connections are O(N2/ log N) in length, so 
that the drivers contribute O(log N) delay to t.he O(log N) time of a multiply
add step -an insignificant amount. The pipelined time of theSE network is thus 
O(log2N), since there are log N stages of computation. 

3. 5. The CCC Network 

The cube-connected-cycles (CCC) interconnection for N cells is capable of 
performing an N-element FFT in O(log N) multiply-add steps [8]. Using the 
multiply-add cell of th.e previous constructions, the complete FFT takes 
O(log2N) time. 

The CCC network i.s very closely related to the FYT network. In fact, a CCC 
network is just an FFT network with ''end-around" connections between the first 
and last rows. For this reason, CCC networks do not exist for all N, only for 
those N of the form (K I 2}~.-(log K) f.or some integer K. Figure 5 illustrates the 
CCC network for N=B. It is derived from th2 ?-element FFT network with "split 
cells": each cell handles one element of the input vector x. instead of two as in 
the FIT network of Figure 3. (1.he reader is inv"ited to redraw Figure 5, combin
ing the ceUs that are linked by horizoQ.tcl data paths:. The resulting graph 
should be an end-around connected "butterf.y. ") 

The CCC network is some>ih...at smaller :.~12.n the FIT netv•roTk, since it uses 
only N c:::Us to solve a.:1 N-e>;ment pr-::lble~ '_-:si:.ead ·=·f "::C.e ~N/2) "'(log N) cells 
used in th-e FFT network. Its inlercoon.ecti::c·· _ cox_..,_ o'3 8mbedd.ed. in O(N2; log2N) 
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Figure 5: The CCC network for N=8. 
area [8]. This is an optimal embedding, for the combined area~time2 perfor
mance is within a constant factor of the limit, D{N2log2N). 

It is rather d.i.fficult to describe the data routing pattern during the compu
tation of a Fourier transform on a CCC, although the basic approach is similar to 
that taken. on the SE network. Each of the l.og N multiply-add steps is preceded 
and followed by a routing step. These routing steps take O(log N) time each, 
for they move 0( 1) words over each intercellular connection. Thus the total 
time spent in routing data does not dominate the time spent on multiply-add 
computations. 

3.6. The Mesh lmplernentation 

The Mesh implementation is the first example of a "small design." It 
requires only O(N log2N) area, which is to say that its area grows about linearly 
with pr-oblem size. The other designs have had nearly quadratic growth func
tions. 

A square Mesh of N cells can do anN -element FFT in log N steps of compu-,., 
tation by "simulating" the FFT network [11,13]. The action of each ceil in the 
FFT network is implemented by one of the cells in. the N3esh. Since there are N 
cells in the Mesh but only N I 2 cells in each row of the fFT network, half of the 
Mesh cells are idle during each stage of the comptJ.tation. 

It turns out that a very good way to organize the computation is to put the 
i-th input and output registers in the i-th cell of the Mesh. (Mesh ceUs aare 
indexed in the natural, row-major ordering.) Th.en, following the "butterfly" form 
of the FFT network [ 4], the first multiply-add step combines the data in cell i 

with the data in cell ( i + N I 2) mad N. This is ace omplished by routing all of the 
data in. the bottom half of the v~esh "upwards" by VN /2 rows, performing a 
multiply-add steps, then st-.Jfting the y 1 values back "dmvnwards" by VN I 2 

rows. 



The connections between the second and third rows of the F'F'T network can 
be simulated in a. similar fashion, by global shifts upwards and downwards of 
VN /4 rows. The third butterfly is simulated by shifts of ..JJi1 I 8 rows, ... , and 
the ( 1/2 log N)-th butterfly corresponds to a shift by a single row. Then a series 
of column shiits begins, first by -vN I 2, then by YN I 4, .... until the final com
putation of the FFT is performed with the aid of a single column shift. 

Define a "unit-distance route" as a global shift of one word form each cell to 
its (right-, left-, up-, or do"?tn-) adjacent neighbor. There are 4(-..JN -1) unit
distance routes in the FFT implementation described above. 

D 
.... 
.. . ... . 

... 

Fi.gure 6: The lviesh of N multiply-add cells. 

. . . 

Parallel data paths should be provided in the Mesh design to make the rout
ing steps as fast as possible. These patillJ are shown in F'igure 6. The paths are 
one word wide; the complete Mesh of N cells occupies a square region 
0(-..JN log N) on a side. The total area of the Mesh is thus O~N log2 N). 

The cells in the Mesh implementation are more complicated than those in 
any of the previous approaches. A different distance and/or direction is used fr 

for each routing step. It is perhaps simplest to generate all. routing and control 
signals in a local fashion, with O(log N) microinstructions of O(log N) bits each 
[13]. A shift register can be provid.ed at each cell to store its microinstructions 
without any increase in its area, fer the word-para!.lel data paths of the previous 
paragraph imply that each cell is O(log N) units on a side. This approach also 
allows plenty of room for the log N different c./C values required by each cell. 

A serial-to-parallel converter is used at the interface b<etween the bit-serial 
multiply-add cell I/0 and the word-parallel data paths. Each routing operation 
consists of O(log N) time periods to load tbis converter .. some number of unit
distance routt.=s, then another O(log N) time to get the data into the cells. Since 
the cells are O(log N) apart. drivers of O(log N) area and O(loglog N) delay are 
used on each routing path. 

Total time for the F':T or-, the 3L::.sh ts tt1u.s 0(-../lV log;log N). The 0(-.JJY) 
unit-distance routes take the mhjorii:c cf thf': time; the O(log !'i) multiply-add 
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steps are asymptotically insignificant. 

3. 7. The Cascade Implementation 

It is possible to do an N -element FFT with many fewer multiply-add cells 
than used in the previous implementations. The Cascade is an approach that 
uses only log N cells, one cell for each row of the FFT network [5]. See Figure 7. 

Figure 7: The Cascade implementation of the 8-elernent FF'T. 

The cell corresponding to the j -th row of the FFT network ( 1.:::;; j ~log N) 
buffers its data in a shift register of N I 21 words. The data streams through the 

cascade in a serial fashion: the first cell is able to combine z; with xi.+N;zl by 

buffering z; in its s.bJlt register. A similar process occurs at the other cells. 

The total area of the Cascade is O(N log N), due mostly to the shift regis
ters. The area o! the multiply-add cells is unimportant in an asymptotic sense. 

Each cell uses N /2 dirrerent if values of O(log N) bits each. These would 
occupy O(N log2N) area if stored explicitly. Thus they should be computed "on 
the fiy" by each cell, in much the same way as in the MV implementation. Each 

cell can compute a new value in a single multiplication time, obtaining c.;i"N!V 

for its i-th multiply-add step from the product of c.;N 
121 with the value it used in 

its (i-1)-st multiply-add step, c.;(i-1)W;zi. 

The time performance of the Cascade is O(N log N). A second computation 
may be started as soon as the first one has cleared the first cell, which takes 
time O(N log N). 

3. 8. The CPU Implementation 

As its n.ame suggests, this approach mimics the actions of a conventional 
CPU or uniprocessor as it runs an FY'T. The input and output registers are real
ized by a random-access memory of O(N log N) bits and O(N log N) area [7, p. 
321]. 

The CPU portion of the design is il glari.tied multiply-add celt that does a 
step of computation in O(log N) time. This is just sufficient time to fetch a word 
that might be as much as 0(-../ N log N) units distant. 'There is thus no asymp
totic incentive to build a super-fast multiplication unit. 

The (N /2) .. (log Jv) multiplication steps in an ITT take a total of O(N log2 N) 
time, making this th-3 sLowest design of this paper. Total area is O(N log N), due 
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mostly to variable storage. The c.f values must be generated "on the fly" to 
obtain this area bound. 

4. Conclusion 

The area and time performance of the eight implementations is summar
ized by Table 1. Note that all the designs are nearly optimal in an area*time2 

sense except for the MY, the Cascade and the CPU. (Remember that 
AT2 = O(N2log 2N) for the solution of the N-element Fourier transform.) The 
problem with these nonoptimal designs is that they are processor-poor: the 
number of multiply-add cells does not gro•N quickly enough with problem size. 

Design Area ! Time Area•Time2 

MM N 2log N log N N2loa 3N 
"' 

ITT JV2 log N N21oo~N 
0 -

SE N2/log N log2N N21og3N 
CCC N2/log2N log2N N2log2N 

MESH N 1og2 N ...Jlif loglog N N2log·~ Nlogl og2 N 

MY N log N N log N N3log3N 
Cascade N log N N log N N51oa:JN 

0 

CPU N Log N N log2N N51og5N 

Table 1: Area-time performance of the Fourier transform-solving circuits. 

The Mesh is the only design that i.s nearly optimal under any AF metric for 
~~1. Here the limiting performance is Arz:: = O(JVl+;log2z N) [13]. None of 

the other designs with O(N) or fewer multiply-add cells is fa.st enough, while the 

other designs are much too large. 

Of course, asymptotic figures can hide signltlcant differences among 
designs due to "constant factors." The model used Ln this paper penalizes 
designs with simple control structures and those with a high ratio of memory to 
logic, since these d~signs will have much smaller constant factors than the oth
ers. The 1--IM, the M:V, the FFT, the SE and the Cascade are especially simple 
implementations because they have no complicated routing steps. They thu.s 
deserve a more detailed examination. 

As indicated in Table 1, the NLvi is nearly optL'!lal in its area *time2 perfor
mance. However, it is by far the largest design considered in t.bis paper since it 
u.ses N2 multiply-add cells. (The others u.se O(N log N) or fewer cells.) Using 
current technology. one might place 10 multipLy-add ceUs on a chip [ 13]; about 
105 chips would be needed for a thousand-eLement FFT! Thus the M.M design can
not be considered feasible until tE:-chnology improves to the point that 100 or 
1000 cells can be formed on ;;_ single wafer. Even then. the interconnections 
between chips will pose "'YiP :-";Cf[· -·~t--.e:=:, :or Lr:.ere are 4D cells on the "edge" of a 

100 cell chip. 
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The MY is an attractive design at present, despite its non-optimal 
area *time2 performance. Jt uses only 2N cells in a linear array, so that a 
thousand-element Fourier transform can be implemented with only 102 chips of 
10 multiply-add cells each. 'This design is of course much slower than the MM, 
since it produces only one element of a transform at a time rather than an 
entire transform. 

The FFT network is also fairly attractive at present, for its (N I 8) .,.(log N) 
cells can be formed on about the same number of chips as the MV, yet its perfor
mance is equal to the MM. The drawback of the FFT design is that the wiring on 
and between the chips is very area-consuming. This design requires O(N2) area 
since its time performance is so fast; there is no hope of finding a clever parti
tion of the design to reduce this value. The FFT thus has inherently long wires, 
whereas the IDI and :NN use only nearest-neighbor connections. If inter-chip wir
ing carries an extremely high cost, then the FFT is not a good choice. 

The constant factor considerations of the SE design are very similar to 
those of the FIT network discussed above. The SE uses a factor of log N fewer 
cells than the FFT, so it is a bit smaller and slower. It suffers from the same 
problem of long inter-chip wires and poor partitionability. 

The Cascade is another non-optimal design, like the t-IN, that deserves con
sideration because of its good "constant factors." It uses only log N multiply-add 
cells and N words of shift-register memory. These are arranged in a simple 
linear fashion. The Cascade achieves the same performance as the MY, produc
ing one element of a Fourier transform during each multiply-add time. It is 
superior to the !VN in that it uses many fewer multiply-add cells. 

It is interesting to speculate whether the Cascade is the best way of produc
ing one element of a Fourier transform at a time. A new metric and method of 
analysis is needed to answer this question, for such designs are non-optimal by 
definition. (If O(N) time is required to complete an entire transform, there is 
only O(log2N) area remaining before AF = O(N2log2N) bound is reached. This is 
not even enough room to store the problem.) 

Another inter-esting open problem is that of partitioning the SE n.e twork. If 
100 or 1000 multiply-add cells can be placed on a single chip, what sort of otT
chip connections should be provided so that these chips can be composed into a 
large SE design? 
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