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ABSTRACT 

This report discusses a VLSI implementation of a 
record-sorting stack. Records are represented on the stack 
as (key, record-pointer) pairs, and the operations supported 
ere PUSH, POP, and CLEAR When records are POPped, they 
ere returned in smallest-first order. The implementation 
allows the sorting of n records in O(n) time, and the design 
is cascadable so that the capacity of a single VLSI chip does 
not limit the amount of data which may be sorted. 

This report describes a paper design and evaluation, 
and thus serves two purposes: lt describes one particular 
VLSI sorting circuit, and it also serves as a case study in 
VLSI design methodology. The algorithm is described, the 
overall chip organization and data ti.ow are presented, and 
detailed circuits, layouts, and timing analyses are given. 

1. Introduction. 
This report describes RESST, a VLSI REcord. Sorting S'l'ack. The 

chip operates in a stack-like manner, allowing (key, record-pointer) pair 
representations of records to be pushed and popped. Each key is an B­
bit integer, and each record-pointer is an B-bit pointer value. When a 
(Irey, record-pointer) pair is popped from the RESST chip, the pair with 
the smallest key value is returned. Hence, RESS'!' may be used to sort a 
group of records by pushing them and then popping them. We envision 
RESST chips being utilized as a form of hardware support for database 
systems, perhaps as disk bufl'er storage for providing automatic sorting 
of secondary indices for multi-relation 'luery processing in a relational 
database system [UllBO ]. 
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The algorithm chosen for the VLSI RESST implementation, a parallel 
version of the classic bubblesort algorithm, is quite similar to other 
recent work in the area of hardware sorting devices. Armstrong and 
Rem [ArrnB2], Chung, Luccio, and Wong [ChuBO], Leiserson [Lei79], 
Miranker, Tang, and Wong [Mir82], and Mukhopadhyay and Ichikawa 
[Muk72, MukB1] have all published papers on similar O(n) time 
hardware sorting algorithms. The particular algorithm chosen for the 
RESST implementation is basically the Weavesort algorithm of Mukho­
padhyay [MukBl], though it was independently developed when RESST 
was designed. 

In the remainder of this report, we will describe the hardware sort­
ing algorithm and a 32 data item VI..'31 implementation. The algorithm 
and the overall chip organization will be presented in section 2. Circuit 
schematics and cell layouts will be presented in section 3. Performance 
estimates for RESST, based on simple SPICE models for timing and 
power consumption, will be discussed in section 4. Section 5 contains a 
discussion of some possible enhancements for RESST. Finally, section 6 
contains a summary of the main things that we have learned from our 
RESST experience. 

2. High-Level Design Description 
This section of our report discusses the high-level design issues 

involved in the RESST project. The RESST sorting algorithm is 
presented, and the overall structure and data flow of the RESST chip are 
described. 

2.1. A Hardware Sorting Algorithm 
The algorithm that we chose to use in the design of RESST is a 

parallel bubblesort algorithm. Let n be the number of items to be 
sorted, where each item has a fixed-length key (that is, key length is 
independent of n ). Let N be the number of items that lhe chip can 
hold. This algorithm allows n items to be sorted in O(n) time using 
O(N) chip area. We chose this algorithm from the many possible VI..'31 
sorting algorithms [Tho82] for several reasons, including simplicity. 
regularity, and extensibility. 

The parallel bubblesort algorithm is two-phase in nature. That is, 
each step of the sorting process consists of two substeps. Let key[i]<j > 
and rec.Pb-[i]<j>. where i = 0,1, ... , 31 and j = 0,1, ... , 7, denote the 
jth bit of the ith word of the RESST key and record storage, respec­
tively. {For the ith element, key[i]<O> and recPtr[i]<O> represent the 
least significant bits.) Let key[-1] and rec.Pb-[-1] represent the values 
presented to/from the I/O pins of the chip. The two phases of the algo­
rithm are given in terms of this notation in Figure 2.1. 

The first substep of the algorithm {phase 1) involves shifting data in 
or out. clearing the chip's storage cells. or refreshing the chip's storage 
cells. The PUSH, POP, and REFRESH operations have the obvious mean­
ings, while the CLEAR operation is somewhat more subtle. Associated 
with each B-bit key is a 9th, hidden bit. This bit serves to distinguish 
real key values from empty ce)l~, with a one in this most significant bit 
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Phase 1: ( l/0 Phase I 

case operation of 
PUSH: 

POP: 

fonill i in 0 .. 31 ~ 
key[i] :=key[i-1]; . 
recPtr[i] := rec.Ptr[t-1]; 

od; 

fonill i in 0 .. 31 pardo 
key[i-1] := key[i ]; . 
rec.Ptr[i-1] := rec.Ptr[i]; 

od; 
CLEAR: 

fonill i in 0 .. 31 pmdo 
key[i]<B> := 1; 

od; 
REFRESH: 

fonill i in 0 .. 31 pardo 
key[i] :=key[i]; . 
recPtr[i] :=recPtr[t]; 

od; 
end; 

Phase 2: ( Compare/Exchange Phase ~ 

forall i in 0 .. 31by2 pardo 
if key[i] > key[i+1] the~ 

Exchange(key[i], key[t+l]);. 
Exchange(rec.Ptr[i ]. rec.Ptr [t+l]); 

fl; 
od; 

Figure 2.1: Hardware Sorting Algorilhrn. 
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position representing an empty cell. This way, nrmempty cells are 
always kept towards the left {I/O) side of the chip. 

The second substep of the algorithm_ (phase 2) dt1t!11 the actual sort­
. and involves comparing and conditmnally exc:tinnging the (key, 
~ord-pointer) pairs associated with keys 0 and 1, ;! nnd 3, and so on, 
up to N-2 and N -1. .As denoted by ~he forall. .. J>llrdo ... ad notation, 
these pairwise compa:iso~ take_ plac~ m parallel. /\n example of the 
operation of this algorithm is depi.cted m Figur.e 2.2. 

The advantages of this algorithm for VLSI implenirintation should be. 
immediately obvious. Because data only moves b,,tween adjacent 
storage cells, and because compaz:isons take place r)nly between every 
other pair of adjacent cells, there is no i:eed for gl?IHtl communication. 
As a result. the cell layout can be orgaruzed as a l!LOJf>le linear array of 
storage cells with a compare/exchange cell between rrvr:iry other pair of 
adjacent storage cells. Also, it i: quite easy l~ accommodate the sorting 
of more than N items by mak1~g RESS! chips crusr:11dable. Providing 
cascadability just involves buflenng the nght-hand orJt.puts and inputs of 
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Figure 2.2. Example of Parallel Bubblesort Operation. 

the last storage cell in the array and providing off-chip connections for 
them. 

2.2. Chip Structure and Data HOY 

The actual structure and data fiow for RESST follow naturally from 
the preceding discussion of the algorithm and its advantages. As 
described in the discussion, the algorithm. is two-phase, so our design 
utilizes a two-phase clocking scheme. The chip is organized as a linear 
array of storage and compare/exchange cells. In our physical design, 
we chose to group each pair of storage cells and their associated 
compare/exchange unit into a single cell. called a COL cell The overall 
RESST structure, shown in terms of this type of cell, is shol'fll in Figure 
2.3. As shown, data tlows horizontally between adjacent COL cells. 

Each COL cell contains a pair of 8-bit keys, a pair of 8-bit record­
pointers, and logic for comparing keys and exchanging (key,. record­
pointer) pairs. There are 16 COL cells in our RESST implementation, so 

DATA 

1/0 

BtJ11'ERS 
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2 

COL 
15 

F"igure 2.3. RESST Chip Structure. 
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the kth COL cell. Jc = 0,1, ... , 15, contains Jcey[2k ]<0:8>. 
key[2k + 1]<0:8>. rec.PtT[2k ]<0:7>. and recPtr[2k +1]<0:7>. 

Five types of cells are used for building a COL cell: a CE cell. ~hich 
contains storage and compare/exchange logic for.': pair of key bits. a 
TOPCE cell, which is a CE cell with preset capability (to support t~e 
CLEAR function), an RP cell, which contains storage and ~xchange logic 
for a pair of record-pointer bits, a CBUF cell, wh1c~ butiers a 
Manchester-type carry chain used for word-parall~l comparisons, and a 
PHI2SIG cell. which generates clocked exchange signals from th~ end of 
the carry chain for controlling the CE and RP cell exchan~e log~c. ~e 
structure of a COL cell in terms of these five subcell types lS depicted m 
F'i.gure 2.4. 

As shown in the figure, data fiows horizontally, the carry cha.U: sig­
nal flows vertically towards the PHI2SIG cell. the phase 2 clock signal 
flows horizontally through the PHI2SIG cell. and the clocked exchange 

· signals flow vertically out from the PHI2SIG cell. Tuer~ are also clocked 
PUSH, POP, CLEAR. and HOLD signals which flow vertically through the 
COL cell, and power and ground which flow horizontally through each 
subcell of the COL cell. 

3. IDw-level Design Description 
This section of our report discusses the design of the main circuits 

of the RESS'!' chip. The COL cell is described in terms of its component 
subcells: the CE. RP, and TOPCE cells. Further details, including control 
logic and cell layouts for the RESST chip. are given in [Car82]. 

3.1. Com~change Circuit (CE} 
Figure 3.1 shows a block diagram representation _of the basic 

compare/exchange circuit (CE) showing contz::ol and da!4 ~als. !unc­
tionally, it can be simply described as a pair of s~nu-static ~egISters 
with some additional circuitry to provide a comparISon of the info~­
tion contained in the two cells and to either pass the carry-like 
exchange chain signal EXCHIN to the next most signifi~ant bit . or to 
assert EXCHOUT high if an exchange is called for by a IIllS~~c? m t?e 
cell. Figure 3.2 shows the circuitry in mixed notation. The italic:-zed sig­

nal names refer to signals which stay within the bounds of a single CE 
cell 
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Figure 2.4. COL Cell Structure. 

SICNALS 

The controlling signals PUSHl and POPl function as you would 
expect. The user asserts either PUSH or POP in proper phasing with 
clock phase 1 (PHU). PHH is ANDed to produce PUSHl or POP 1 which 
are then used to control writing into and reading from the RESST. Data 
present on BDJN will be passed to the gate of the first inverter of the cell 
dur-ing PUSHL Data in the cell may also be passed to the left (read) via 
BDOUT by controlling POPl in similar fashion. Obviously, POPl and 
PUSHl are mutually exclusive for- pr-oper- crrcuit oper-ation. During a 
PHll clock cycle in which neither- reading nor writing of the RESST is 
desir-ed. the signal HOLDl guarantees that the infor-mation which is 
stored in the semi-static cell is refreshed. 

Adjacent cells function in parallel, allowing trne stack operations. 
Data is allowed to fiow between the ith and i+lst CE cells by connecting 
UBDIN of the ith cell to BDOUT of the i+lst cell and. similarly, connect­
ing UBDOUT of the ith cell to BDIN of the i+ 1st cell. Hence, data tlows 
to the "right." during PUSH operations, and to the "left." during POP 
operations. 
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POPl PUSIU HOLDl EXCHJN l:XCH2 EXCHL2 

Vdd Vdd 

BDIN \.'BDOUT 

CE 

BDOUT UBDJN 

CND CND 

POPl PUSHt HOLDl EXCHOUT EXCH2 IXC:HL2 

Figure 3.1. COMP ARE/EXCHANGE Cell Block Diagr-am. 

As mentioned above, the contents of the two cells ar-e compared 
during clock phase 2 (PHI2}. If a mat.ch occurs, the EXCIITN signal is 
pr-opagat.ed. If a mismatch occurs, EXCHOUT will be the inverted value 
of the right.most. bit {signaling that an exchange is needed if the right- · 
most bit is "O"). An exchange is required if EXCH2 goes high after the 
carry-like EXCHIN/EXCHOUT signal has been fully propagated through 
all the CE cells in a word {going from the least to the most significant bit 
position). If an exchange is indeed called for, the two EXCH2-controlled 
pass transistors in the circuit. serve to exchange the inverted data of the 
two st.or-age cells. Thus, data is always applied to the left.most inverter 
of a pair on PHil and to the rightmost inverter on PHI2. This is con­
sistent throughout the design. 

3.2. Record Pointer Circuit (RP) 
As mentioned in the functional description of RESST, r-ecord 

pointers are entered simultaneously with keys to form {key, r-ecord­
pointer) pail's. The record-pointer cell (RP) is identical to the CE cell, 
exc_ept that the compare circuitry is not necessary. 

3.3. Top COMPARE/EXCHANGE Circuit (TOPCE) 
The TOPCE crrcuit is functionally identical to the CE crrcuit, with 

the minor addition of a clear capability. Following assertion of the clear 
signal, the entrre array is supposed to contain null values. To achieve 
this, the CLEARl signal must. cause the most significant bit of all keys to 
be set to "l" {by definition). Thus, the TOPCE crrcuit is simply a CE crr­
cuit with a pass transistor (controlled by CLEAR!) which gates Vdd into 
each bit. 

3.4. Other Circuitry 
There ar-e a number of other circuits involved in the RESSI' imple­

mentation. These include crrcuitry for buffering the EXCHIN/EXCHOUT 
signals, generating various control signals, and buffering data on and otI 
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POPl 

POP1 -L.. 
-L.. 

Bll01JT Ul!DIN 
PUSHl HOLlll PllSHl 

-L.. -L -L.. 
JU)IN UBDOt.'T 

/aft f"i911t 

f"i9lltL 

J:XCHOUT 

Figure 3.2. COMPARE/EXCHANGE Cell Schematic Diagram. 

the chip. C-ircuit details and layouts for the complete RESST chip may 
be found in [Car82]. 

4.. Performance Estimates 

This section of our report discusses the performance of the RESST 
chip. We examined the ~iming of_ each of the clock phases using simple 
SPICE models of the salient portions of our circuit. (The MOS parame­
ters used in these _SPICE models were taken from page 51 of Mead and 
Conway [YeaBO ]. lrlth the polysilicon resistivity assumed to be 50 ohnis 
per_ square.) We also brie:tly considered the power consumption of the 
design .. The results of these performance estimates will be summarized 
here, with further details available in [Car82]. 
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4..1. 'l'iming J!stimates 
During phase 1. data is PUSHed or POPped from the RESST chip. 

This involves getting data on and otf the chip, getting phase 1 clocked 
signals distributed throughout the chip, shifting data from cell to cell, 
and allowing the carry-chain-like EXCHIN/EXCHOUT signal to ripple from 
the least to the most significant bit (worst case). Our SPICE simulations 
indicated that the time required for these events is approximately 705 
nanoseconds. 

During phase 2, keys are compared and exchanges are conditionally 
made. This involves time to get the phase 2 signal to the PHI2SIG cell, 
time for the PHI2SIG cell to generate and distribute clocked EXCH2 and 
EXCHL2 signals, and time to actually perform the exchanges. Our SPICE 
simulations indicated that the time required for these events is approxi­
mately 480 nanoseconds. 

Using pessimistic approximations and SPICE for circuit simulation, 
we obtained a width of 705 nanoseconds for phase 1 a.pd a width of 480 
nanoseconds for phase 2. The total cycle time for our present RESST 
design, then. is 1185 nanoseconds, or about 1.2 microseconds. With 8-bit 
keys and 8-bit record pointers, this is equivalent to a processing rate of 
about L67 megabytes per second. As discussed in [Car82], this speed 
could be enhanced by maximizing the use of metal in long signal runs or 
by utilizing the Mead and Conway scheme for optimal buffering [Mea80]. 

4.2. Power Estimates 
We used Mextra and Powest [Ber82] to extract and estimate power 

consumption for our various cells. According to Powest. our circuitry 
(array plus clocked signal logic), which occupies an area of 3358 
microns by 4466 microns, requires a worst-case DC power of 0.182 watts. 
Similarly, our pads, laid out around a 7000 micron by 7000 micron 
square chip perimeter, require a worst-case DC power of 0.633 watts. 
Thus, the worst-case DC power consumption of a RESST chip should be 
about 0.815 watts. 

5. Other Enhancements 

In reflecting on our work. several possible enhancements come to 
mind. First. rather than have separate CE and RP cell types. we could 
have stored record-pointer bits in CE cells. If they were stored in the 
least significant bit positions, they would appear as "insignificant bits" in 
sorting, coming into play only with duplicate keys. The advantages of 
doing this would be one less cell type and variability in the bot.mdary 
bebreen where keys end and record-pointers begin. The disadvantages 
would be increased RP cell size, increased EXCHIN/EXCHOUT signal 
delays. and somewhat increased overall power consumption. 

Another possible enhancement involves the external RESST control 
circuitry, whereby an intelligent RESST controller could monitor the 
FULL pin on the leftmost RESST chip in a cascaded collection, and vary 
the clock cycle speed based on whether or not the leftmost chip is full 
[Car62]. 



6. Cor:t.clusions 
This report discussed a VLSI implementation of a record-sorting 

stack. The implementation allows the sorting of n records, represented 
as {key, record-pointer) pairs, to b~ accomplished in O{n) time. The 
design is cascadable so that the capacity of a single VLSI chip does not 
limit the amount of data which may be sorted. 

The algorithm. a parallel version of the classic bubblesort algo­
rithm. was described, the overall chip organization and data ftow were 
presented, and detailed circ_uits, layouts, and timing analyses were 
given. It was shown that a RESST implementation can perform at disk. 
transfer rates, making feasible its use as an enhancement to a database 
machine. 
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