
ALGORITHMICALLY
SPECIALIZED

PARALLEL COMPUTERS

EDITED BY

LAWRENCE SNYDER
Department of Computer Science

University of Washington
Seattle, Washington

DENNIS B. GANNON
Department of Computer Sciences

Purdue University
West Lafayette, Indiana

198~

LEAH H. JAMIESON
School of Electrical Engineering

Purdue University
West Lafayette, Indiana

HOWARD JAY SIEGEL
School of Electrical Engineering

Purdue University
West Lafayette, Indiana

@
ACADEMIC PRESS, INC.

(Harcourt Brace Jovanovich, Publishers)

Orlando San Diego New York London
Toronto Montreal Sydney Tokyo

Sorting Records in VLSI

Micha.el J. Crr:rey
Pa:uJ. IJ. Ha:n.sen

Qark D. Thompson

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, CA 94720

ABSTRACT

This report discusses a VLSI implementation of a
record-sorting stack. Records are represented on the stack
as (key, record-pointer) pairs, and the operations supported
ere PUSH, POP, and CLEAR When records are POPped, they
ere returned in smallest-first order. The implementation
allows the sorting of n records in O(n) time, and the design
is cascadable so that the capacity of a single VLSI chip does
not limit the amount of data which may be sorted.

This report describes a paper design and evaluation,
and thus serves two purposes: lt describes one particular
VLSI sorting circuit, and it also serves as a case study in
VLSI design methodology. The algorithm is described, the
overall chip organization and data ti.ow are presented, and
detailed circuits, layouts, and timing analyses are given.

1. Introduction.
This report describes RESST, a VLSI REcord. Sorting S'l'ack. The

chip operates in a stack-like manner, allowing (key, record-pointer) pair
representations of records to be pushed and popped. Each key is an B­
bit integer, and each record-pointer is an B-bit pointer value. When a
(Irey, record-pointer) pair is popped from the RESST chip, the pair with
the smallest key value is returned. Hence, RESS'!' may be used to sort a
group of records by pushing them and then popping them. We envision
RESST chips being utilized as a form of hardware support for database
systems, perhaps as disk bufl'er storage for providing automatic sorting
of secondary indices for multi-relation 'luery processing in a relational
database system [UllBO].

niD work W'2IS supported by the Natianel Science FOUlldation Grant ECS-Sll0684, a
CileT?'Qil U.S.A. Career Development Gnmt. a California llICRO FelloWllbip, the Mr
Farce 01fice of Sc:iemijic Research Gnmt. AFOSR-7~3596, and the NaTlll Electroilic
Systema Commend Contract mstrNOCXl39-Bl-C-o569.

ALGORrrHMICAUY SPEClALIZED
?ARAU.EL COMPUTERS

27 Copyright IC 1985. by Academic Press. Inc.
All rights of reproduction in any fonn reserved.

ISBN 0-12-654130-2

28 MICHAELJ. CAREY, PAULM. HANSEN.AND CLARK D. THOMPSON

The algorithm chosen for the VLSI RESST implementation, a parallel
version of the classic bubblesort algorithm, is quite similar to other
recent work in the area of hardware sorting devices. Armstrong and
Rem [ArrnB2], Chung, Luccio, and Wong [ChuBO], Leiserson [Lei79],
Miranker, Tang, and Wong [Mir82], and Mukhopadhyay and Ichikawa
[Muk72, MukB1] have all published papers on similar O(n) time
hardware sorting algorithms. The particular algorithm chosen for the
RESST implementation is basically the Weavesort algorithm of Mukho­
padhyay [MukBl], though it was independently developed when RESST
was designed.

In the remainder of this report, we will describe the hardware sort­
ing algorithm and a 32 data item VI..'31 implementation. The algorithm
and the overall chip organization will be presented in section 2. Circuit
schematics and cell layouts will be presented in section 3. Performance
estimates for RESST, based on simple SPICE models for timing and
power consumption, will be discussed in section 4. Section 5 contains a
discussion of some possible enhancements for RESST. Finally, section 6
contains a summary of the main things that we have learned from our
RESST experience.

2. High-Level Design Description
This section of our report discusses the high-level design issues

involved in the RESST project. The RESST sorting algorithm is
presented, and the overall structure and data flow of the RESST chip are
described.

2.1. A Hardware Sorting Algorithm
The algorithm that we chose to use in the design of RESST is a

parallel bubblesort algorithm. Let n be the number of items to be
sorted, where each item has a fixed-length key (that is, key length is
independent of n). Let N be the number of items that lhe chip can
hold. This algorithm allows n items to be sorted in O(n) time using
O(N) chip area. We chose this algorithm from the many possible VI..'31
sorting algorithms [Tho82] for several reasons, including simplicity.
regularity, and extensibility.

The parallel bubblesort algorithm is two-phase in nature. That is,
each step of the sorting process consists of two substeps. Let key[i]<j >
and rec.Pb-[i]<j>. where i = 0,1, ... , 31 and j = 0,1, ... , 7, denote the
jth bit of the ith word of the RESST key and record storage, respec­
tively. {For the ith element, key[i]<O> and recPtr[i]<O> represent the
least significant bits.) Let key[-1] and rec.Pb-[-1] represent the values
presented to/from the I/O pins of the chip. The two phases of the algo­
rithm are given in terms of this notation in Figure 2.1.

The first substep of the algorithm {phase 1) involves shifting data in
or out. clearing the chip's storage cells. or refreshing the chip's storage
cells. The PUSH, POP, and REFRESH operations have the obvious mean­
ings, while the CLEAR operation is somewhat more subtle. Associated
with each B-bit key is a 9th, hidden bit. This bit serves to distinguish
real key values from empty ce)l~, with a one in this most significant bit

SORTING RECORDS IN VLSI

Phase 1: (l/0 Phase I

case operation of
PUSH:

POP:

fonill i in 0 .. 31 ~
key[i] :=key[i-1]; .
recPtr[i] := rec.Ptr[t-1];

od;

fonill i in 0 .. 31 pardo
key[i-1] := key[i]; .
rec.Ptr[i-1] := rec.Ptr[i];

od;
CLEAR:

fonill i in 0 .. 31 pmdo
key[i] := 1;

od;
REFRESH:

fonill i in 0 .. 31 pardo
key[i] :=key[i]; .
recPtr[i] :=recPtr[t];

od;
end;

Phase 2: (Compare/Exchange Phase ~

forall i in 0 .. 31by2 pardo
if key[i] > key[i+1] the~

Exchange(key[i], key[t+l]);.
Exchange(rec.Ptr[i]. rec.Ptr [t+l]);

fl;
od;

Figure 2.1: Hardware Sorting Algorilhrn.

29

position representing an empty cell. This way, nrmempty cells are
always kept towards the left {I/O) side of the chip.

The second substep of the algorithm_ (phase 2) dt1t!11 the actual sort­
. and involves comparing and conditmnally exc:tinnging the (key,
~ord-pointer) pairs associated with keys 0 and 1, ;! nnd 3, and so on,
up to N-2 and N -1. .As denoted by ~he forall. .. J>llrdo ... ad notation,
these pairwise compa:iso~ take_ plac~ m parallel. /\n example of the
operation of this algorithm is depi.cted m Figur.e 2.2.

The advantages of this algorithm for VLSI implenirintation should be.
immediately obvious. Because data only moves b,,tween adjacent
storage cells, and because compaz:isons take place r)nly between every
other pair of adjacent cells, there is no i:eed for gl?IHtl communication.
As a result. the cell layout can be orgaruzed as a l!LOJf>le linear array of
storage cells with a compare/exchange cell between rrvr:iry other pair of
adjacent storage cells. Also, it i: quite easy l~ accommodate the sorting
of more than N items by mak1~g RESS! chips crusr:11dable. Providing
cascadability just involves buflenng the nght-hand orJt.puts and inputs of

:30 MICHAELJ. CAREY, PAUL M. HANSEN, AND CLARK D. THOMPSON

...... -
D

PUSH 1 I
;

2 1 i
PUSH 3 3 !

2 1 i
;

PUSH II II I
i

2 1 i
PUSH 5 1 5 !

2 1 !
PUSH 2 2 !

2 1 i
;

PUSH II II !

2 1 !
POP II !

2 2 i
;

POP 2 1 II !

2 3 i
POP 3 II I

i

2 3 i
POP II II !

2 II i
;

POP • 1 II I
i

2 II !
POP •

2

2

3

3 !
----=----!

II 3 !

II !
--.:..__i-

5 3 !

5 ! --
2 3 i

2 !
·--~

II 2 !

2 3 !

II 3 i
3 5 !

II 3 i
i

5 II !
___:__i..

II II !

II I

----i-
II !

I

--i
I
;

I

--i-
!

3

3

II

3

3

3

3

5

5

II

II

4

I ___ .j__

!

I

·---~---
!

II !
-·-=--+-­

II !

5 ! II
·--~--

5 ! II

II !
--=---!-----

; !
I ___ i_ __

i
I

--~---
!
I
;

I

f---~-­
!

Figure 2.2. Example of Parallel Bubblesort Operation.

the last storage cell in the array and providing off-chip connections for
them.

2.2. Chip Structure and Data HOY

The actual structure and data fiow for RESST follow naturally from
the preceding discussion of the algorithm and its advantages. As
described in the discussion, the algorithm. is two-phase, so our design
utilizes a two-phase clocking scheme. The chip is organized as a linear
array of storage and compare/exchange cells. In our physical design,
we chose to group each pair of storage cells and their associated
compare/exchange unit into a single cell. called a COL cell The overall
RESST structure, shown in terms of this type of cell, is shol'fll in Figure
2.3. As shown, data tlows horizontally between adjacent COL cells.

Each COL cell contains a pair of 8-bit keys, a pair of 8-bit record­
pointers, and logic for comparing keys and exchanging (key,. record­
pointer) pairs. There are 16 COL cells in our RESST implementation, so

DATA

1/0

BtJ11'ERS

SORTING RECORDS IN VLSI

COL COL
2

COL
15

F"igure 2.3. RESST Chip Structure.

CASCADE

1/0

BtJFFERS

31

the kth COL cell. Jc = 0,1, ... , 15, contains Jcey[2k]<0:8>.
key[2k + 1]<0:8>. rec.PtT[2k]<0:7>. and recPtr[2k +1]<0:7>.

Five types of cells are used for building a COL cell: a CE cell. ~hich
contains storage and compare/exchange logic for.': pair of key bits. a
TOPCE cell, which is a CE cell with preset capability (to support t~e
CLEAR function), an RP cell, which contains storage and ~xchange logic
for a pair of record-pointer bits, a CBUF cell, wh1c~ butiers a
Manchester-type carry chain used for word-parall~l comparisons, and a
PHI2SIG cell. which generates clocked exchange signals from th~ end of
the carry chain for controlling the CE and RP cell exchan~e log~c. ~e
structure of a COL cell in terms of these five subcell types lS depicted m
F'i.gure 2.4.

As shown in the figure, data fiows horizontally, the carry cha.U: sig­
nal flows vertically towards the PHI2SIG cell. the phase 2 clock signal
flows horizontally through the PHI2SIG cell. and the clocked exchange

· signals flow vertically out from the PHI2SIG cell. Tuer~ are also clocked
PUSH, POP, CLEAR. and HOLD signals which flow vertically through the
COL cell, and power and ground which flow horizontally through each
subcell of the COL cell.

3. IDw-level Design Description
This section of our report discusses the design of the main circuits

of the RESS'!' chip. The COL cell is described in terms of its component
subcells: the CE. RP, and TOPCE cells. Further details, including control
logic and cell layouts for the RESST chip. are given in [Car82].

3.1. Com~change Circuit (CE}
Figure 3.1 shows a block diagram representation _of the basic

compare/exchange circuit (CE) showing contz::ol and da!4 ~als. !unc­
tionally, it can be simply described as a pair of s~nu-static ~egISters
with some additional circuitry to provide a comparISon of the info~­
tion contained in the two cells and to either pass the carry-like
exchange chain signal EXCHIN to the next most signifi~ant bit . or to
assert EXCHOUT high if an exchange is called for by a IIllS~~c? m t?e
cell. Figure 3.2 shows the circuitry in mixed notation. The italic:-zed sig­

nal names refer to signals which stay within the bounds of a single CE
cell

32 MICHAEL J. CAREY, PAUL M. HANSEN, AND CLARK D. THOMPSON

RIPPLE

CARRY

ICXCHANCE

SICNAL

CEO

(brl21c]<O>. nr(2k+l]<O>)

c:El

(brl21<]<1>. 1cer[21<+1]<1>)

CE7

(br[21<]<7>. l<ey{2k+1]<7>)

TOP CE
{lcey{2k]<ll>. lcer(2k+l])

JCEY BITS

IN .. OUT

CLOCKED
_s-!....z.... ________ ..._.._~ EXCHANCE

PH12SJC

RPO
{recPtr(21<]<0>. ncPtr[2k+1]<0>)

RPl

{ncPtr[2k]<t>. ncPtr(2k+l]<1>)

RP7

{ncPtr(21<]<'7>. ncPtr(21c+1]<7>)

Figure 2.4. COL Cell Structure.

SICNALS

The controlling signals PUSHl and POPl function as you would
expect. The user asserts either PUSH or POP in proper phasing with
clock phase 1 (PHU). PHH is ANDed to produce PUSHl or POP 1 which
are then used to control writing into and reading from the RESST. Data
present on BDJN will be passed to the gate of the first inverter of the cell
dur-ing PUSHL Data in the cell may also be passed to the left (read) via
BDOUT by controlling POPl in similar fashion. Obviously, POPl and
PUSHl are mutually exclusive for- pr-oper- crrcuit oper-ation. During a
PHll clock cycle in which neither- reading nor writing of the RESST is
desir-ed. the signal HOLDl guarantees that the infor-mation which is
stored in the semi-static cell is refreshed.

Adjacent cells function in parallel, allowing trne stack operations.
Data is allowed to fiow between the ith and i+lst CE cells by connecting
UBDIN of the ith cell to BDOUT of the i+lst cell and. similarly, connect­
ing UBDOUT of the ith cell to BDIN of the i+ 1st cell. Hence, data tlows
to the "right." during PUSH operations, and to the "left." during POP
operations.

SORTING RECORDS IN VLSI 33

POPl PUSIU HOLDl EXCHJN l:XCH2 EXCHL2

Vdd Vdd

BDIN \.'BDOUT

CE

BDOUT UBDJN

CND CND

POPl PUSHt HOLDl EXCHOUT EXCH2 IXC:HL2

Figure 3.1. COMP ARE/EXCHANGE Cell Block Diagr-am.

As mentioned above, the contents of the two cells ar-e compared
during clock phase 2 (PHI2}. If a mat.ch occurs, the EXCIITN signal is
pr-opagat.ed. If a mismatch occurs, EXCHOUT will be the inverted value
of the right.most. bit {signaling that an exchange is needed if the right- ·
most bit is "O"). An exchange is required if EXCH2 goes high after the
carry-like EXCHIN/EXCHOUT signal has been fully propagated through
all the CE cells in a word {going from the least to the most significant bit
position). If an exchange is indeed called for, the two EXCH2-controlled
pass transistors in the circuit. serve to exchange the inverted data of the
two st.or-age cells. Thus, data is always applied to the left.most inverter
of a pair on PHil and to the rightmost inverter on PHI2. This is con­
sistent throughout the design.

3.2. Record Pointer Circuit (RP)
As mentioned in the functional description of RESST, r-ecord

pointers are entered simultaneously with keys to form {key, r-ecord­
pointer) pail's. The record-pointer cell (RP) is identical to the CE cell,
exc_ept that the compare circuitry is not necessary.

3.3. Top COMPARE/EXCHANGE Circuit (TOPCE)
The TOPCE crrcuit is functionally identical to the CE crrcuit, with

the minor addition of a clear capability. Following assertion of the clear
signal, the entrre array is supposed to contain null values. To achieve
this, the CLEARl signal must. cause the most significant bit of all keys to
be set to "l" {by definition). Thus, the TOPCE crrcuit is simply a CE crr­
cuit with a pass transistor (controlled by CLEAR!) which gates Vdd into
each bit.

3.4. Other Circuitry
There ar-e a number of other circuits involved in the RESSI' imple­

mentation. These include crrcuitry for buffering the EXCHIN/EXCHOUT
signals, generating various control signals, and buffering data on and otI

34 . MICHAEL J. CAREY, PAUL M. HANSEN, AND CLARK D. THOMPSON

POPl

POP1 -L..
-L..

Bll01JT Ul!DIN
PUSHl HOLlll PllSHl

-L.. -L -L..
JU)IN UBDOt.'T

/aft f"i911t

f"i9lltL

J:XCHOUT

Figure 3.2. COMPARE/EXCHANGE Cell Schematic Diagram.

the chip. C-ircuit details and layouts for the complete RESST chip may
be found in [Car82].

4.. Performance Estimates

This section of our report discusses the performance of the RESST
chip. We examined the ~iming of_ each of the clock phases using simple
SPICE models of the salient portions of our circuit. (The MOS parame­
ters used in these _SPICE models were taken from page 51 of Mead and
Conway [YeaBO]. lrlth the polysilicon resistivity assumed to be 50 ohnis
per_ square.) We also brie:tly considered the power consumption of the
design .. The results of these performance estimates will be summarized
here, with further details available in [Car82].

SORTING RECORDS IN VLSI 35

4..1. 'l'iming J!stimates
During phase 1. data is PUSHed or POPped from the RESST chip.

This involves getting data on and otf the chip, getting phase 1 clocked
signals distributed throughout the chip, shifting data from cell to cell,
and allowing the carry-chain-like EXCHIN/EXCHOUT signal to ripple from
the least to the most significant bit (worst case). Our SPICE simulations
indicated that the time required for these events is approximately 705
nanoseconds.

During phase 2, keys are compared and exchanges are conditionally
made. This involves time to get the phase 2 signal to the PHI2SIG cell,
time for the PHI2SIG cell to generate and distribute clocked EXCH2 and
EXCHL2 signals, and time to actually perform the exchanges. Our SPICE
simulations indicated that the time required for these events is approxi­
mately 480 nanoseconds.

Using pessimistic approximations and SPICE for circuit simulation,
we obtained a width of 705 nanoseconds for phase 1 a.pd a width of 480
nanoseconds for phase 2. The total cycle time for our present RESST
design, then. is 1185 nanoseconds, or about 1.2 microseconds. With 8-bit
keys and 8-bit record pointers, this is equivalent to a processing rate of
about L67 megabytes per second. As discussed in [Car82], this speed
could be enhanced by maximizing the use of metal in long signal runs or
by utilizing the Mead and Conway scheme for optimal buffering [Mea80].

4.2. Power Estimates
We used Mextra and Powest [Ber82] to extract and estimate power

consumption for our various cells. According to Powest. our circuitry
(array plus clocked signal logic), which occupies an area of 3358
microns by 4466 microns, requires a worst-case DC power of 0.182 watts.
Similarly, our pads, laid out around a 7000 micron by 7000 micron
square chip perimeter, require a worst-case DC power of 0.633 watts.
Thus, the worst-case DC power consumption of a RESST chip should be
about 0.815 watts.

5. Other Enhancements

In reflecting on our work. several possible enhancements come to
mind. First. rather than have separate CE and RP cell types. we could
have stored record-pointer bits in CE cells. If they were stored in the
least significant bit positions, they would appear as "insignificant bits" in
sorting, coming into play only with duplicate keys. The advantages of
doing this would be one less cell type and variability in the bot.mdary
bebreen where keys end and record-pointers begin. The disadvantages
would be increased RP cell size, increased EXCHIN/EXCHOUT signal
delays. and somewhat increased overall power consumption.

Another possible enhancement involves the external RESST control
circuitry, whereby an intelligent RESST controller could monitor the
FULL pin on the leftmost RESST chip in a cascaded collection, and vary
the clock cycle speed based on whether or not the leftmost chip is full
[Car62].

6. Cor:t.clusions
This report discussed a VLSI implementation of a record-sorting

stack. The implementation allows the sorting of n records, represented
as {key, record-pointer) pairs, to b~ accomplished in O{n) time. The
design is cascadable so that the capacity of a single VLSI chip does not
limit the amount of data which may be sorted.

The algorithm. a parallel version of the classic bubblesort algo­
rithm. was described, the overall chip organization and data ftow were
presented, and detailed circ_uits, layouts, and timing analyses were
given. It was shown that a RESST implementation can perform at disk.
transfer rates, making feasible its use as an enhancement to a database
machine.

References
[Arm82] Armstrong. P., and Rem, M., "A Serial Sorting Machine", Com­

puters and Electrical Engineering, Vol. 9, No. 1, Permagon
Press, March 1982.

[Ber82] "Berkeley VLSI Tools", R Mayo {ed.), Computer Science Divi­
sion, University of California, Berkeley, 1982.

[Car82] Carey, M., Hansen, P., and Thompson, C., "RESST: A VLSI Imple­
mentation of a Record-Sorting Stack", Report No. UCB/CSD
82/102, Computer Science Division {EECS), University of Cali­
fornia, Berkeley, April 1982.

[Chu80] Chung, K., Luccio, F., and Wong, C., "On the Complexity of Sort­
ing in Magnetic Bubble Memory Systems", IEEE Transactions on
Computers, Vol. C-29, No. 7, July 1980.

[Lei79] Leiserson, C., "Systolic Priority Queues", CMU Technical Report
No. CMU-CS-79-115, Department of Computer Science,
Carnegie-Mellon University, 1979.

[MeaBO] Mead, C., and Conway, L., "Introduction to VLSI Systems",
Addison-Wesley Publishing Company, 1980.

[Mir82] Miranker, G., Tang, L., and Wong, C., "A 'Zero-Trme' VLSI
Sorter", IBM Research Report, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1982.

[Muk72] Mukhopadhyay, A., and Ichikawa, T., "Ann-Step Parallel Sort­
ing Machine", Technical Report No .. 72-03, University of Iowa,
Iowa City, 1972.

[Muk81] Mukhopadhyay, A., "WEAVESORT -A New Sorting Algorithm for
VLSI". Technical Report No. TR-53-81, University of Central
Florida, Orlando, 1981.

[Tho82] Thompson. C., 'The VLSI Complexity of Sorting", ERL Memo No.
UCB/ERL M82/5. University of California, Berkeley, 1982.

[Ull80] Ullman, J., "Principles of Database Systems", Computer Sci­
ence Press, 1980.

-GlilWI -

