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Abstract. Tight lower and upper bounds on the area of VLSI sorting circuits are proved. The
area required to sort n k-bit numbers is shown to be dependent on the relative sizes of k and n.
For example, A =® (n logn) when k=2 logn, but A=0 (2" (logn —k)) when k<logn.

OnruManpEbie HIUKHEE H Bepxane rpamnnsl miomans CBMC pus copTHpoBKH
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Pestome. [IpennararoTcs onTHMaNbHbIE HIDKHYE ¥ BepxHUe rpanuub! miomanu CBUC kpucran-
N0B AJNst copTUpoBKM. [ToKa3aHo, YTO IIOWIafb HJsl COPTHPOBKH M k-paspsfiHbIX ABOWYHBIX
YHCeN 3aBMCHT OT OTHOCHTENbHOHM BenwuuHbl n M k. Hanpumep, A =0 (nlogn), ecnu
k=2logn, Ho A=0© (2*(logn —k)), ecnu k <logn.

1. INTRODUCTION

Complexity theory for VLSI differs from classical complexity theories in its treatment of
circuit size, memory space and circuit area. Classical circuit complexity theory counts only
the number of gates required to compute a function (circuit size). Classical algorithmic
complexity theory counts only the amount of storage required to compute a function
(memory space). VLSI complexity theory combines these two measures, gate count and
memory space, as well as adding a third component — wire area. In VLSI complexity theory,
as in present day engineering practice, the area occupied by a circuit is the sium of three
components: gate count, memory space and wire area. A circuit is infeasible if any of these
three components takes up too much “silicon real estate”. Several recent papers have
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developed VLSI complexity-theoretic techniques for proving lower bounds on VLSI circuit
area. These papers make two assumptions about circuit input and output (I/O): circuits read
their inputs exactly once (semelective I/0) and circuits allways read their inputs and give
outputs in the same order (when oblivious I/0). Using these assumptions, any circuit sorting
n k-bit numbers can be proved [1] to occupy Q(n) area, if k=2 logn. In [2, 5] this result
was extended for k >logn. By adding the assumption of bit-serial /0, THOMPSON (3]
shows that A =Q (n logn) for k =¢ logn, where € >1 is an arbitrary constant. THOMP-
SON expresses the hypothesis that the same result could be proved without the condition of
bit-serial I/0.

LEIGHTON [4] proves this hypothesis for € =2 and remarks that it could be proved for
any £> 1. Further, LEIGHTON appears to believe that the same result is true for k =logn.

Let us assume X =(xy, X2, ..., %), Y =(y1, ¥2, ..., Ya) are input and output sequences of
a sorting circuit respectively, where x,, y: are k-bit binary numbers, Y is a nondecreasing
sequence and n is a power of two.

In this paper we completely solve the problem of proving tight bounds on area for sorting
circuits:

©(n logn) if k=2logn
A= O(n(k —logn))  if 2logn>k>logn
Tl em if k=logn

@*(logn—k)) i

Pty

k<logn

We use a simple model of VLSI computation: expressed by the following three
assumptions.
1. Semelective input: each input variable is read only once.
2. When-oblivious input and output: the timing of I/O events is data-independent.
3. Unit-area bits: each bit of memory occupies one unit of area.
We prefer the term “when-oblivious” [4] to “‘when-determinate” [2] for assumption 2,
because a non-oblivious, i.e. data-dependent chip is a more realistic concept than
a non-deterministic, i.e. oracle-driven chip. For more detailed information about models see
[2).

The next section contains our lower bound proofs. Our upper bound proofs appear in
Section 3, in the form of circuit constructions.

Finally, we close the paper with conclusions and open problems.

2. LOWER BOUNDS FOR SORTING

For the sake of clarity we represent input and output of the sorting circuit by rectangles
divided into n columns and k rows (see Fig. 1), whereby the i-th bit of the j-th number is |
assigned to the pixel in the i-th row of the j-th column of the rectangles. Let us assume that
the rows (columns) are numbered from the bottom to the top (from the left to the right) by
numbers 0, 1, ..., k~1, (1, 2, ..., n). About Figures 2 and 3 let us assume that the bits in the |
shaded area are 1’s. Otherwise the bits are 0’s.
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k—1

Fig. 1.

We show an auxiliary lemma before proving the main results.

Lemma 1. Any sorting circuit satisfies the following property : for each r > p and for each ¢,
s it holds that the p-th bit of the g-th output number depends on the r-th bit of the s-th
input number.

Proof. Let us prove the property by contradiction. Let the r-th bit of the s-th input number
be not yet input, whereby r > p. Recall now that the order in which the bits are input and
output is data-independent because of when-obliviousness.
(i) If the r-th bit of the s-th input number in Fig. 2 (i.e. the pixel with a question mark) is
0 (1), then the p-th bit of the g-th output number must be 0 (1 resp.).
(ii) If s>gq, let us consider the input as in Fig. 2 with interchanged columns s and q.
(iii) If the r-th bit of the s-th input number is 0 (1), then the p-th bit of the g-th output
number must be 1 (0 resp.).
(iv) If s =g >1, let us consider the input as in Fig. 3. If the r-th bit of the s-th input number
is 0 (1), then the p-th bit of the g-th output number must be 1 (0 resp.).
(v) If s=gq =1, let us consider the input as in Fig. 3 with the r-th bits of all input numbers
equal to 0.
(vi) If the r-th bit of the s-th input number is 0 (1), then the p-th bit of the g-th output
number must be 0 (1 resp.).
Therefore the p-th bit of the g-th output number cannot be determined earlier than the p-th
bit of the s-th input number.
Now we state the main result:

Theorem 1. Any circuit sorting n k-bit numbers requires the following area:
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Fig. 2.
Q(n logn) if k=2logn
A= Q(n(k—logn)) if 2logn>k>logn
Q(n) if k=logn

Q(2%(logn —k)) if k<logn

Proof. The proof consists of four cases according to the relative sizes of k and n.

Case 1. logn<k<2logn

Let m =2*"*"and let (a4, 4, ..., 4.)=(0,0,...,0,1,1, ..., 1, ., m—=1,m—1,...,m—1)
be such a sequence where each number j € {0, 1, ..., m — 1} is replicated exactly n/m-times.

Let W be the set of all sequences (of length n) of the following form: (a,, m +ay, ...,
(n—1)m+a,), where iy, i, ..., i, is an arbitrary permutation of 1, 2, ..., n. Let V be the set
of all sequences of length n of the form: (tim + a1, bm + a,, ..., tm +a,), where ty, &, ..., 1
is an arbitrary permutation of 2,..,n. It is evident that for each sequence
w=(wi, s, ..., w,) € W a sequence v ={(v1, Vs, ..., U.) € V exists such that w is equal to
sorted v. Further, if w; and w)} are the i-th elements of distinct sequences w and w'e W
resp., and wi and w! are distinct, then they differ in the [-th bit of their binary representation
for some |, 0<I<k—log n—1 because w,=(i—1)m+¢ and wi=(i —1)m+c!, where
0<gq, ci<2 e~ 1=m—1.

Now we show that any sorting circuit must have at least as many states as the number of
distinct sequences in W. According to Lemma 1 there exists a time T when the h-th bits of
all input numbers are input for h =k —logn, ..., k —1 and none of the I-th bits of output
numbers for [=0, 1, ..., k —logn — 1 is output. Let w, w' € W be distinct and let v, v' e V
be such that w and w' are sorted v and v’ respectively. Let s and s’ be the states in which the
sorting circuit is in the time T if it starts computation with v and v’ respectively. As in the
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time T only some of the 0, 1, ..., (k —logn — 1)-th bits of input numbers are not input and as
in these bits v; = v for each i (see the form of sequences from V) one gets thatif s and s’ are
the same states, then the circuit works equally for v and v'. Therefore w,=wjinthe 0, 1, ...,
(k —logn —1)-th bits for each j=1,2, ..., n (see the selection of time T), which is the
contradiction with the fact that w and w' are distinct in some element in the /-th bit, where
0<lI<k—logn—1. As the circuit area is proportional to the logarithm of the number of
states and the number of states is not less than the cardinality of W, one gets

A=Q(log(m!)"™)=Q(n(k —logn)).

Case 2. 2<k<logn

Let U be a set of sequences (of length n) of form (0,0,...,0,1,1,..., 1, ..., 2*=2,
2k—2 ..., 2k=2 2k—1,2¢~1,...,2%— 1), where the even numbers occur as many times as
the odd numbers (i.e. n/2 —times) and for each j=0, 1, ..., 2“"' —1 it holds that the length
of the maximal subsequence of the form (2j, 2j, ..., 2j, 2j+1, 2j+1, ..., 2j + 1) is exactly
n/2*!, Let Z be a set of sequences (of length n) such that the first n/2 elements are even
numbers and other elements are odd numbers and after sorting of each such sequence one
gets some sequence from U. If u, u' € U are distinct, then according to the fact that in each
sequence from Y the size of each maximal subsequence of the form (2j, 2j, ..., 2j, 2j +1,
2j+1,...,2j+1) is exactly n/2*7', j=0, 1, ..., 27" — 1, there exists i such that w differs
from u} just in the 0-th bit. Similarly as in the first case one can show that any sorting circuit
has to have as many states as there exist mutually distinct sequences from U. According to
Lemma 1 there exists time T when all bits except the 0-th bits of all input numbers are input
and at the same time the 0-th bit of no output number is determined.

Let us consider the inputs from the set Z. If z, z' € Z, then the 0-th bits of z and z; are
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equal for each i and if u, u' € U are distinct, then there exists i such that u, and u/ differ in
the 0-th bit.

The cardinality of U can be estimated as follows: it is evident that for a sequence
(po, 1, ..., P2+-1), where 0<p,<n/2*' for each i and p;+ py-2.=n/2*" for each i=
0,1, ..., 2*2—1, there exists a sequence u € U for which p; is the number of occurrences of
the number 2i in the sequence u (the equality p; + pa-2..=n/2*"' guarantees that the
numbers of occurrences of odd and even numbers in u coincide). As there exist at least
(n/2'+1)*"* sequences of the form (po, pi, ..., p2+-1-1) (since the first 22 p’s can be
chosen arbitrarily), the number of distinct sequences in U is at least (n/2**+ 1)*". From
this it follows, similarly as in case 1, that: A =Q (log(n/2*'+1)*7) = Q(2" log(n — k)).

Case 3. k>2logn

In this case the proof is the same as for k =2 logn in case 1, whereby the [-th bits of all
input numbers are equal to 0 for [=2logn, 2logn+1, ..., k—1.
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Case 4. k=1
~ Similarly as in Lemma 1 one can prove that any output number cannot be determined
formerly as all the input numbers are input..

4. AREA-OPTIMAL CIRCUITS FOR SORTING

Constructed sorting circuits are realized as sequential machines. We will show that the
required area coincides with lower bounds.

4.1. A radix sorter ,

This construction requires for sorting of n k-bit numbers O(n logn) area. Let us assume
there is a table in the sorting circuit (see Fig. 4) which has n rows and logn + 3 columns. In
the columns 1, 2, ..., logn + 1 of the table indices of input numbers are stored. At the very
beginning of the computation there is index j for j=1, 2, ..., n, in the j-th row. In column
logn+2 FLAG-bits are stored which are zeros at the beginning of the computation.
Column logn + 3 serves for storing bits of the same rank of input numbers.

Sorting is performed in k-stages. The i-th stage consists of four operations.

1. Input the k-i-th bits of all input numbers into the (logn + 3)-th column in such a way that
the bit of the j-th number and index j are in the same row.

2. If there exists a couple of the neighbour rows in the table such that the upper neighbour
row contains 1 in the (logn + 3)-th column and the lower neighbour row contains 0 in the
same column, and at the same time the lower neighbour has FLAG-bit equal to 0, then
these rows except FLAG-bits are changed.

3. For each row such that in the (logn + 3)-th column it contains 1 and in the upper
neighbour row in the same column there is 0, the corresponding FLAG-bit is set up to 1.

4., Output of bits from the (logn + 3)-th column.

It is evident that the realization of the table and of the above-described operations
requires O(n logn) area.

4.2. A small sorting circuit

The second construction, which is designed for sorting of the numbers shorter than 2 logn
bits, is more complicated. Let us assume that sorted numbers are kept in the circuit in the
form of a string. Every item of the string is composed of two numbers of a variable length
DELTA and COUNT. DELTA represents the difference between the number and its
predecessor, COUNT indicates the multiplicity of its occurrences. After input of the number
into the circuit, the DELTA-values are step by step subtracted from the input number until
the end of the string is reached or the result of the subtraction is not positive. If the end of
the string is reached a new item with the value of difference as DELTA and COUNT =1 is
added to the end of the string. If the difference is equal to zero, the number COUNT of the
corresponding item is incremented by 1. If the difference is equal to a negative number,
a new item with the difference value attained before the last subtraction and with
COUNT =1 is inserted before the item whose DELTA-value was for the last time
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subtracted. Theorem 2, below, bounds the area required by small sorting circuit.
Before stating the theorem we prove a useful

Lemma 2. Let s, m, q, pi, p2, ..., ps be positive real numbers such that

pi<q and 1<ssms<q.

1<ism

Then
.ﬂ pi<(Q2q/m)".
Proof. If s <m, we write pi1=p.=...=p,=1. Then for all s<m, we have
> p<q+ms<2q and T[] p=]] p.
1<ism I<ism Isiss

Since the geometric mean of a sequence is at most equal to its arithmetic mean (Jensen’s
inequality), ,

[T pi"<(/m) > pi<2q/m.

I<ism 1

<ism

Theorem 2. Small sorting circuit requires O (min(n, 2*)(1 + |k —logn|)) area to sort n k-bit
numbers.

Proof. Sorting circuit represents a sequence X = (x,, X, ..., X.) as a string of DELTA and
COUNT-values

S(X)=d1#C1#d2#C2#...#d,# G .
In this string, d, is equal to min(x,, ..., x.), and ¢, is the number of times the minimum

element appears in X. In general, d and c: are defined so that ' d; is the value of the j-th

isj=i

smallest element of X, and ¢; is the number of times this element appears in X. Trivially, we

have > d;<2* and > ¢<n. Furthermore, all d; and ¢ are positive integers, and

1<is<r 1<i=sr
r<min(n, 2%).

Let us assume that any m (DELTA or COUNT-value) from S(X) is binary encoded so
that 1 (0) is represented by 11 (01) and terminator # by 00. Then any m with the
terminator from S(X) can'be represented by 2[log(m + 1)] + 2 bits. Therefore the length of
the entire string S(X) is equal to

212 (log(d: +1)] +[log(c: + 1)]+2) <2 ( z logd: +

1<isr

+ logci+6r)$2 (6r+10g [T d+log ] c;).

1si=<r 1<i<r 1sisr
If 2“<n, by Lemma 2 the length of S(X) is less than or equal to \
2(6-2% + 2% log(2**1/2*) + 2% log(2n/2%)) = O(2* (logn — k + 1)).

Similarly, if n <2, the length of S(X) is less than or equal to
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2(6n + n log(2“*'/n) + n log(2n/n)) = O(n(k —logn + 1)).

Combining these bounds, we obtain that the length of S(X) is equal to

O(min(n, 2°)(|k —logn| +1)).
It is evident that a shift register storing the string S(X) requires

O (min(n, 2°)(|k —logn| + 1)) area which subsumes the area required for realization of the
described operations and control.

5. CONCLUSIONS

We have completely determined the area complexity of when-oblivious VLSI circuits for
sorting. Our area bounds are a function of input wordlength k and number of inputs n.

Although our method was developed for VLSI models, it could be applied to tape-
bounded Turing machine models or to memory-bounded stored-program random-access
machines [6]. The converse is also true: lower bounds on space in classical models can be
interpreted as lower bounds on VLSI area. Note, however, that such classically-derived
lower bounds for VLSI may be suboptimal because they ignore the area contributions of
wires and gates. Nonetheless, for the problems studied in this paper, memory-based lower
bounds are seen to be sufficient.

We show our lower bounds on VLSI area are optimal by describing minimal-area VLSI
circuits.

We also note that SIEGEL [7] and BILARDI [8] have recently attained the tight chip
area bounds presented in this paper (except for the upper bound in case k ~ logn in [8]).

Although we have completely determined the minimum area requirements of when-obliv-
ious sorting, a couple of interesting open questions remain:
1. Are our upper bounds still optimal if the when-oblivious restriction is dropped ? We think

s0, even though we are unable to remove this assumption from our lower bound proofs.
2. What is the optimal time complexity for minimal-area sorters? For example, available

lower bounds on the area-time” product of VLSI sorting circuits [4] cover only the case

k =c logn, c>1. For other k then we do not know how to simultaneously minimize both

area and time.
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