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AbseaTdd. Xght lower and upper bounds on the area of VLSI sorting ciasuits are proved. The 
area required lo sort n k-bib nulnbers is shown to be dependent on the relative sizes of R and n .  
For example, A = @  (n logn) when k2?:2logn, but A = @  (Zk ( logn-k))  when k<logn. 

Beswsaue. npennaramasacw onTwrManbrabne HMxmrre M B ~ ~ X H H ~  r p a a ~ 4 ~ 1  nnonqaaa GEEC KpacTan- 
noe gnw CO~TH~OBKB.  Eloxasaeo, s ~ o  nnonrqagb nnsr copTaposKM n k-pia3p~fl~bn~ geowwbHx 
ween 3aBHCBT OT O T N O C E T ~ ~ ~ R O B  B ~ ~ E ~ B H A H ~ I  n a k .  H a n p x ~ e p ~  A =8 (n logn), ecna 
k 2 2  logn, ~o A = @  (%k(logn-k)), ecnE k e l o g n .  

Complexity theory for VLSI differs from c%rrssical complexity theories in its treatment sf 
circuit she, memory space and drcuit area. Classical damit complexity theory counts only 
the number of gates required to compute a function (circuit size). Classical algorithmic 
compleGty theory counts only the amount of storage required to compute a function 
(memory space). %ST complexity theory combines these two measures, gate count and 
memory space, as well as adding a third component --wire area. In VLSI compleghy theory, 
as in present day engineering practice, the area occupied by a circuit is the sum of three 
components: gate count, memory space and wire area. A circuit i s  it~feasible if any of these 
three components takes up too much "silicon real estate9'. Several recent papers have 
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developed VI,Si complexity-theoretic iechniq~xes for proving lower bounds on VkSZ circuit 
area, These papers make two assump$ions about circuit input and output (110) : circuits read 
their inputs exactly once (semelectivi: 118) and circuits allways read their inpats and give 
outputs in the same order (when oblivious 110) .  Using these assurn$sk$ons, any circuit sorting 
rr &-bit numbers can be proved [I] to occupy Qjn)  area, if k 3 2 Iogn. IG 52, 51 this result 
was extended for k >logra. By adding the assumption of b2's-serial 110, Ts-9OhfFSON [3j 
shows that A -- $2 ( n  logn)  for k 3 E logn, where c > I is an arbitrary constant. TNBMP- 
SON expresses the hyprrthesis that the same result could be proved withaat the condition of 
bit-serial lk!O 

LEIGHTQN [~l . ]  PTOBIeS this hypcfhesis for E = 2 and remarks that it could be proved for 
any e > 1. Furtherj LEIONFON appears to believe that the same result is true for k -log 17. 

Let US assume X =  (x,, x2 ,  : ., x,), Y = by,, y2, , , . ?  ye) are input ar:d output sequences of 
a sorting circuit respective@y, v4,here xi :  y, are k-bit binary numbers, %; is a narrdecreasing 
sequence and n i s  a power of two. 

In this paper we cornpEetePy solve the problem of proving tight bounds on area for sorting 
circuits : 

@", l0gi. l) if k 3 2  log2 
@(n(k-logn))  if 2 Z o g ~ t : . ~ ~ r > ! o g n  A =  
@(?I) if k ;= iogn 
@(2"(40gia - k ) )  if k < Iogn 

We use a simple model aC VLSI computation: expressed by the Csllowiiag three 
assumptions. 
1. Semelecbive input: each input varaable is read only once. 
2. When-oPsEt40~ input and output: the timing of Hi8 eve~sts is data-independent. 
3. Unit-area bits: each bit of sws~1ol.y occupies one unit of area. 
We prefer the term "wfsesn-oblivions" 141 to ""when-determirraW i2] fo.r assumption 2, 
because a. no~~-oblivious, i,e. data-dependeas1 chip is a more realistic concept than 
a ncsn-deterministic, i.e. srashe-driven chap. For more detailed inf~ima..Eib;n about ~nodels see 
[%I. 

'Ilk next section contains our lower bound proofs. 8sj. upper bound proofs appeai- in\ 
Section 3,  in the form of circuit constructions, 

finally, we close the paper with csnncBusions and opexi problan~s. 

For the sake of clarity we represent input and output 0% the sorting circuit by rectangles 
divided in~taii fa  c01umns and k TOWS (see Fig, I), whereby the i-ah bit of the j-t% number is 
assigned lo tare pixel in the i-th row of the j-*ah column of the rectang9es. Let us assume that 
the TOWS (~02"~n1nsf are numbered from the bottom to ihe top {from Ihe Xefe to the right) by 
numbers 0, 1, ..., k -- 1, (I, 2, .. ,, n) .  About Figures 2 and 3 let us assume that the bits in the 
shaded area are 1's. Otherwise the bits are 0"~ 
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Fig. I. 

We show an auxiliary lemma before proving the main results. 

Lemma 1. Any sorting circuit satisfies the following property: for each r > p  and f o ~  each q ,  
s it holds that the p-th bit of the q-th output number depends on the r-th bit of the s-th 
input number. 

Proof. Let us prove the property by contradiction. Let the r-th bit of the s-th input number 
be not yet input, whereby r > p .  Recall now that the order in which the bibs are input and 
output is data-independent because of when-obliviousness. 
(i) If the r-th bit of the s-th input number in Fig. 2 ( i s .  the pixel. with a question mark) is 

O (I), then the g-th bit of the q-th output number must be 8 (1 resp.). 
(ii) Hf s > q, let us consider the input as in Fig. 2 with interchanged columns s and q.  

(iii) If the a-th bit of the s-th input number is 8 (I), then the p-tR bit of the q-th output 
number must be E (8 resp.). 

Qiv) If s - q > 1, let us consider the input as in Fig. 3. If the a-fh bit of the s-th input number 
is 8 (I), then the p-th bit of the q-th output number muse be E (0 resp.). 

(v) If s = q =. I, let us consider the input as in Fig. 3 with the r-th bits of all input numbers 
equal to 8. 

(vi) If the a-th bib of the s-th input number is 0 (I), then the p-th bit of the q-th output 
number must be 8 (1 resp.). 

Therefore the p-Eh bit of the q-th output number cannot be determined earlier than the p-th 
bit of the s-th input number. 

Now we state the main result: 

meorem I. Any sircuit sorting ~2 k-bit numbers requires the following area: 



Wg. 2 

p-005. The prooC consasts 3f  ?OUT C Z S ~ S  accord~ng to the relative sizes of k and n. 

Case 1, "icagn<kd2?ogn 
Lakm=2"10E"aradlet(a~,a2 ,..., a , ) = ( 0 3 0 9 . ~ ~ ~ ~ 9 ~ 9 i ? ~ ~ ~ , ~  > . . . *  m - ~ 9 m - ~  >..., m-1)  

be such a sequence where each number j E {D, 1, ..., m - 1) is replicated exactly nlm-times. 
Let Vf be the set of a91 sequences [of length rt) of the following form : (a,, rn + a,, ..., 

(n -, l )n% i ai,), where ir, ir, . . ., 3, is an arbitrary permutation of 1, 2, . , ., n .  L e t V  be the set 
of aT4 sequences oI length n of the form : (rrm -9- al, t r n  + az, ..., trim d- a.), where tl, 82, . .., 8, 
k an arbitrary permntakow of 2, ..,, n .  It is evident that ion- each sequence 
w = { W I ,  w2, . . , 9  tvn) E VJ a aaqence .u. = (vl, v2, ..., IJ,) E \/ exists such that w i s  equal to 
sorted ii, Fwctker, if wi and wl are the i-th elements sf distinct sequences w and W '  E &' 
reap., and 1~~ and W :  are dlstinch then they differ in the i-iih bit sf their binary representation 
for SC)IBS~ I ,  0 H s R - iog r~ -- 1 because IP;~ -- ( i  - 1]m -i- s and w:  = ( i  - 1)m f c:, where 
C<PJi. C ; g ~ i - ' o s n - l _ . m - l ~  

Now we show that any sorting circuit must have at least as many states as the number of 
distinct. sequences in W ,  According to Lemma 1 there exists a Bime T when the h-th bits of 
all hput numbers are input for h -- k -Bogn, ..., & - 1 and none of the I-th bils of output 
numbers for I - 0, 1: . , ., k - logn - 1 6s output. Let vv, w' E !,V be distinct and let v ,  v '  E V 
be such that w and w' are sorted I: and u '  respectively. Let s and s' be the stakes in which the 
sorting circuit is En the time T if it starts computation with v and v' respectively. As in the 
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s - q  

time % only some of the 0, I, . . ., ( k  - log n - I)-th bits of input numbers are not input and as 
in these bits v, = v: for each i (see the form of sequences from V) one gets that if s and s f  are 
the same states, then the ~ r c u i t  works equally for v and v ' .  Tkerefo~e MI, = w: in the 0, I ,  . . ., 
(k  - log pa - 1)-th bits for each j = 1, 2,  . . ., 8t (see the selection of time T ) ,  which is the 
contradiction with the fact that w and w'  are distinct in some element in the I-th bit, where 
0 S E s  k -logn - I .  As the circuit area is proportional to the iogarithm of the number of 
states and the number of stakes is not less than the cardinality of W ,  one gets 

A -- a (log(m I)"'") = Q ( n ( k  -1ogn)). 

Case 2. 2 S k G l o g n  
k t  U be a set of sequences (of Ien@h n) of fornn (0, 0, ..., 0,  I, 1, ..., 1, ..., 2' - 2,  

2'" - 2, . .., 2' - 2,%" 11, Zk  - I, . . ., PLk - I)? where the even numbers occur as many times as 
the odd numbers (i.e. pa J2 - times) and for each j = 0, 1, . . ., 2k-' - 1 it holds that the length 
of the masma1 subsequence of the form ( 2 j ,  2 j ,  . . ., 21, 2 j  + 1, 2 j  d- 1, . . ., % j  6 I) is exactly 
n/2'-'. Let Z be a set of sequences (of length n) such that the first n / 2  elements are even 
numbers and other elements are odd numbers and after sorting of each such sequence one 
gets some sequence from U. If u ,  u' E &I are distinct, then according to the fact that in each 
sequence from Ic' the size of each maximal subsequence of the form ( 2 j ,  2 j ,  . ..> 2j ,  2 j  + 1, 
2 j  + I ,  . .., 2j 9 1) is exactly n/Zk-l9 j = 0, 1 ,  .. ., %k-" I, there exists i such that u, differs 
from u: just in the 0-th bit. Similarly as in the first case one can show that any sorting circuit 
bas to have as many states as there exist mutually distinct sequences from U .  According to 
k m m a  1 there exists time T when all bits except the 0-th bits of all input numbers are input 
and at the same time the 0-th bit of no output number is determined. 

Let us consider the inputs from the set Z. If z ,  z '  E Z, then the 0-th bits of z, and z: are 
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Fig. 4. 

equal for each i and if u,  la' E U are distinct, then there exlsts i suck that u, and u :  differ in 
the 0-th bit. 

The cardinality sf U caw be estimated as follows: it is evident that for a sequence 
(poP p,, ...? ~ a k - 1 ) ~  where O s p ,  ~ n / 2 ~ - '  for each i and p, +p,*-z,, = ~ z / 2 ~ - '  for each i .= 

0, 1, . . ., 2'02-- I, there exists a sequence u E U for which p, is the number of occurrences of 
the number %i in the sequence u (the equality p, +pax-z,, ==n/2'-' guarantees that the 
numbers of occurrences of odd and even numbem in u coincide). As there exist at least 
(n/2k-P+ sequences of the form (po,  &el, ..., p , k - l - , )  (since the first 2k-2 p9s  can be 
chosen arbitrarily), the number of dk%inct sequences in U is at least (n/2k-1+ From 
this it follows, similarly as in case I, that: A = GI (log(a/2k-1 + I)2k-2) = Q(Zk Bog(n - k) ) .  

Case 3, k>2%sgn  
In this case the proof is the same as for k ==2 logn in case I, whereby the I-th bits of a11 

input numbers are equal to O for I=2 l sgn ,  2 I o g n + f ,  ..., k -1 .  
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Case 4. k = 1 
Similarly as in Lemma 1 one can prove that any output number cannot be determined 

formerly as all the input numbers are input. 

4. AREA-OPgllMAL CIRCUITS FOR SOWING 

Constructed sorting circuits are realized as sequential machines. We will show that the 
required area coincides with lower bounds. 

4.1. A radk sorter 
This construction requires for sorting of n k-bit numbers O(n logn) area. Let us assume 

there is a table in the sorting circuit (see Fig. 4) which has n rows and logn + 3 columns. In 
the columns 1, 2, ,.., logn + 1 of the table indices of input numbers are stored. At  the very 
beginning of the computation there is index j for j = 1, 2, ..., a, in the j-th row. In column 
logn + 2  FLAG-bits are stored which are zeros a t  the bednning of the computation. 
Column logn + 3 serves for storing bits of the same rank of input numbers. 

Sorting is performed in k-stages. The i-th stage consists of four operations. 
1. Input the k-i-th bits of all input numbers into the (logn + 3)-th column in such a way that 

the bit of the j-th number and index j are in the same row. 
2. If there exists a couple of the neighbour rows in the table such that the upper neighbour 

row contains 1 in the (logn + 3)-th column and the lower neighbour row contains 0 in the 
same column, and at the same time the lower neighbour has K A G - b i t  equal to 0, then 
these rows except FLAG-bits are changed. 

3. For each row such that in the (logn +3)-th column it contains 1 and in the upper 
neighbour row in the same column there is 0, the corresponding FLAG-bit is set up to 1. 

4. Output of bits from the (logn + 3)-th column. 
It  is evident that the realization of the table and of the above-described operations 
requires B(n logn) area. 

4.2. A small so&ing circuit 
The second construction, which is designed for sorting of the numbers shorter than 2 logn 

bits, is more complicated. Let us assume that sorted numbers are kept in the circuit in the 
form of a string. Every item of the string is composed of two numbers of a variable length 
DELTA and COUNT. DELTA represents the difference between the number and its 
predecessor, COUNT indicates the multiplicity of its occurrences. After input of the number 
into the circuit, the DELTA-values are step by step subtracted from the input number until 
the end of the string is reached or the result of the subtraction is not positive. If the end of 
the string is reached a new item with the value of difference as DELTA and COUNT= 1 is 
added to the end of the string. If the difference is equal to zero, the number C O  
corresponding item is incremented by 1. If the difference is equal to a negative number, 
a new item with the difference value attained before the last subtraction and with 
C O U N T = 1  is inserted before the item whose DELTA-value was for the last time 



subsracted. Theorern 2, below, bounds the area required by small sorting circuit. 
Before stating the tliesrem we prove a useful 

-.r _ 
b c ~ c ~ , ~ s a ,  2, &e! s. m, q ,  pl,  pi, ..., p; be positive real numbers such that 

6" t p , d q  and B d s S m < g .  
1 s i s r - i  

'Then n p, d(aq/rn)". 
ISlS, 

Shce  the gtanx'irlc mean sf a sequence is a t  most equal to its arithmetic mean (Jensen's 
inequaliayj, 

-, ?.t.icm.ca~ 2, Srrrari sorting cnrcgnir requires 0(~1161~(n, Zk)(P -+- jk - 1 0 ~ ~ 1 ) )  area KO sort n k-bit 
numbers. 

pkQQf, ; *ortin;: circuit ~epresents a sequence X = Oxl, x2, ..., x,) as a string sf DELTA 
%a(JNT-qalues 

Y a a  this sfl-ing, d ,  is equal co min(xi, ..., x,,), aa~d ci is the number of times the minimum 

eien;cnr appears in X. h general, a", and c, are defined so that  C d, is the value of the j-eh 
ISiSi 

irna1'aes.t clement sf X, and c, 1s the number of times this elemeret appears in X. Trivially, we 

have 2 C, d 2'; avsd c, d n ,  Furthersnore, all d, and c are positive integers, and 
lS,S, i s s i r  

rs l :~ i l - l (n~ 2'<J 
Let us assume that any na (DELTA or COUNT-value) from S(X) is binary encoded so 

i"iit I (0) is represented by 1 I (01) and terminator # by 06. Thew any rn with the 
terr~~inator  froim S jY I )  can be represented by %jlog(~lp~ d- I)] dp2 bits. Therefore the length of 
the ene:re string S(%) is equal to 

If 2% P r ,  by Lemma 2 the lerngth of S(%j is less than or equal to ! 

2j6.2" + 2Vog j2k * ' i 2k )+2h  i*+~g(Zin/Z~))= 0(2* (logn -- k + I)). 
SEi-oilariy, if n S 2 "  the dengeh ot S(%) is Less ellan or equal to 
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Csnlbiwing thes-, bounds, we obtain that the length of $:XI i s  eqaai to 
B(rnbn(n, 27jjJk -1ognj + 3)). 

It is evident t h a t a  shift register storing the stl-kg S ( X )  seq~sires 
O(rnira(~r, Zk)(j k -1ogn / -i- 1)) area which subsnmes the a r m  required for rcalizatic~n of the 

described operations and control. 

We have son~pletely determined the area complexity of when-oblivious VESI; circuits CBT 
snrtilig, Our area bounds ai-e a Eranciiora of irspzr? rispordlerrgtir k and number of ir~pots n .  

k l t h m g h  our method was developed for T~d7aJL,SI ~aodels, it coarsid be applied to tape- 
bounded Turing machine models or lo snemsrg-,boundzd stored-program random-rtccess 
maclaines [6]. The converse is also true : lower bhsa~acis on space in cias:iir:al ~ T I O ~ E ~ S  can lue 
interpreted as lower bounds on 'VLSI area. Note, however, that scch classically-derived 
Kowe~ ?sollnds for VLSZ map be s~~bopt imal  because they ignore the area co~atributions of 
wires and gates. No~leiheless, for the proSkenle s',iadied in. this paper; memory-F;lase$ 1owi.s~ 
bounds are seen to be sruffkient. 

We skovii our lolael- bsnnds on 'VLSL area a x  optima3 by describing rnirrirmal-area VLSI 
circuits. 

We also note that SIEGEL and BELAFDI [81 have r5centby ~ka ined  f i e  tightchip 
area bounds presented in this paper (excepf. for the upper boutnd in case k --. Eogn in [8]). 

Althasuglu .we have completely determined the nairsin~~~.m area reqPBirements of l+vhe~"~-obYiv- 
iaas sorting, a couple of ~nterestiwg open questions remain: 
I .  Are mar upper bounds still optimal if the when-obl%vioa.ps restriction is dropped? 'Vde t h i ~ k  

so, even though we are unable to remove this assumption from our lower bolsnd proofs. 
2, $%%at i s  the opP'imaHeime complexity for n-t4nirzal-area ssrters7 For examplej amilabie 

lower bounds on the area, time' product of VLSI sorting C3i"~IPits (41 cover ~ ~ d y  tire cast? 
k = c logn, c > li. For other k then we do not know karw *cc ~irnualar~e~i~sly rminimize both 
area and time. 
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