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ABSTRACT 

This paper describes SuperCrystal, a computer program for quick yet rea
sonably accurate simulation of MOS VLSI circuits. 

SuperCrystal divides the time axis into time steps. In each time step, a 
transistor circuit maps to a linear RC network for the purpose of waveform esti
mation. Single exponential approximations to node waveforms in the RC net
work are then calculated using an algorithm due to Raghunalhan and Thompson. 

Unlike several other timing analyiers based on the linear RC model, Super
Crystal approximates transistor resistances as functions of the voltage waveforms 
at the gate, source, and drain nodes, after distinguishing between the triode and 
pinchoff modes of operation. An iterative algorithm is presented for the calcula
tion of a transistor's average resistance over a given time period. 

Preliminary tests using SuperCrystal are highly encouraging. Several MOS 
circuits are analyied in this paper using Crystal, SuperCrystal and SPICE, and 
the resulting outputs and CPU times are compared. 

1. Introduction 

337 

Giant leaps in technology over the last sev'eral years have made possible the routine production 

and use of MOS VLSI chips with hundreds of thousands o( transistors. SPICE 17J, a popular cir

cuit simulator, provides detailed and highly accurate voltage waveforms. Unfortunately, SPICE iK 

much too slow to analyze VLSI chips directly. It is useful only on isolated subcircuits of ten~ or 

hundreds or transistors. 

This work was supported in pa.rt by N•tiona.l Science Foundation through it.s Computer Engineering Program, 
under grant DMC-8•~•08. Author Ng is ili-0 supported by • Regent's Fellowship; author Su.ke is alsc support
ed by the Golden Nugget Schola.rship Fund. 
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Relaxation-based simulators, such as SPLICE 116], ELOGIC [51 and WASIM [8j, and waveform

relaxation based simulators, such as RELAX2.1 [22), offer potentially faster runtimes while retain

ing the accuracy of SPICE. 

At the other end of the speed-accuracy spectrum are timing analyurs such as Crystal [12], MOS

SIM 121, SOS 16], and TV 14]. These analyzers are fast enough to process entire VLSI chips, but 

are sometimes woefully inaccurate. 

SuperCrystal is a new circuit simulator suitable for full-custom VLSI. Our intention was to build 

a simulator that is nearly as fast as Crystal, but much more accurate. SuperCrystal is imple

mented in the C programming language, and runs under Berkeley UNIX. 

Conventional circuit simulators attempt to find the exact voltage waveforms at nodt's in a MOS 

circuit. Since these circuits are in general non-linear, waveform <'slimation is time consuming 191. 

Jn an attempt to get around this problem, SuperCrystal restricts circuit elements to be MOS 

transistors, linear resistors, and linear grounded capacitors. Voltage waveforms of nodes in the 

circuit are approximated as first-order exponentials. 

SupcrCrystal is most closely akin to the waveform estimators which model a digital MOS circuit 

by a linear RC network. This approach, described initially by Bryant 121, has been used in a 

number of timing analyzers 14,6, 12, 15, 191. Raghunat.han and Thompson 113, 14] extf'nd Bryant's 

model by incorporating leakage resistors in RC trees. SuprrCrystal currently uses the 

Raghunathan Thompson algorithm for waveform estimation. 

This paper is organized as follows: In Section 2, we review classical circuit simulation techniques. 

Section 3 gives an outline and organization of SuperCrystal. The Haghunathan Thompson algo

rithm is detailed in section 4. Section 5 shows how the transistor model is incorporated into the 

Raghunathan Thompson algorithm. Section 6 describes how SuperCrystal schedules the simula

tion of different parts of the circuit. Discretization of the simulation into time steps is discussed in 

section 7. Section 8 details the comparative results of running Crystal, SuperCrystal, and SPICE 

on various circuit examples. Our conclusions and directions for future work are·presented in sec

tion 9. 

:z. A Brier Overview or Circuit Simulation 

For the purpose of waveform estimation, a MOS circuit maps to an LCR network. Such an LCR 

network is modeled by a system of non-linear, llrst-order differential equations which is in general 

impossible to solve exactly. This motivates the discretization of the time axis into time points. 
An approximate solution to the system of equations is obtained for each time point. Information 

from previous time points is used t.o predict the solution for the current time point. 

2.1. Standard Circuit Simulation 

Standard circuit simulators like SPICE 171 apply stiffly stable integration formulas (e.g. Backward 

Euler) at each time point to the non-linear system of nodal equations to yield a set of non-linear 

algebraic difference equations. These equations are solved iteratively using a damped Newton

Raphson algorithm. Each iteration produces a sparse linear system, which is solved by sparse LU 

decomposition or Gaussian Elimination. Experimental evidence indicate run times of O(n l.J-1.h) to 

solve the sparse linear system. 

Newton-Raphson approximation techniques are preferred in practice because the rate of conver

gence is quadratic and convergence is guaranteed if the initial guess is sufficiently close to the 

solution. 

--- ---------·----~------·--··--·-·------- -----·-·-·- --··· 
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%.%. Relaxatlon·B~ed Method• 

Relaxation-based methods do not require the direct solution of a large non-linear syst.em of equa

tions. They also permit the simulator to only solve for the nodes whose waveforms are actually 

changing. The two most common techniques used to solve the system of nodal equations are the 

Gauss-Jacobi and the Gauss-Seidel methods !J 1, 20]. 

Both the Gauss-Jacobi and the Gauss-Seidel methods are iterative methods. If the circuit is res

tricted to have a grounded capacitor at each node, then convergence of both met.hods is 

guaranteed, and the rate of convergence is at least linear, This compares unfavorably with the 

provable quadratic convergence rate of the Newton-Raphson algorithm, 

One advantage of relaxation-bas'ed methods is that they involve solving a set of decoupled equa

tions, while Newton-Raphson methods involve solving a sel of simultaneous equations, Therefore 

the computational cost of each iteration of relaxation-based methods is O(n ), This compares well 

with the sparse LU decomposition runlimes if the numper of iterations is small, 

Examples of relaxation-based circuit simulators are SPLICE !Hlj, and WASIM 18). 

3, The SuperCry11tal Approach 

SuperCryslal restricts circuit elements lo be MOS transistors, linear resistors, and linear grounded 

capacitors. SuperCrystal models such a circuit as a control graph where each control graph node 

is a transistor group. 

Group 1 Group 2 

iv~·· dd···············1 id-d-·-·-·~-·-·-D-·-·-

-j ! tl : l t2 
; I ; I 
i -= -;.:- ii -= 
: ........................ : i·-·-·-·-·-·-·-·-·-·-·-·j 

(A) 

RC Equivalent of Group 2 

Vdd 

3 s D 

(B) 

Figure 1: Transistor Groups 

Definition 1: A transistor group is a collection of circuit elements that are electrically connected 

by wires or by transistor channels. Notice lhat under this definition, the gate of a transistor is 

not in the same transistor group as the source and drain unless explicitly connected, as in transis

tor t8 in figure lA. 

For the purposes of waveform estimation, a transistor group maps to an RC network. Figure lB 

shows the such a mapping. In this mapping, a MOS transistor is modeled by a non-linear resistor. 

However, the Raghunathan Thompson algorithm exp<'cts lin<'ar resistors. Our solution is to parti

tion the time axis into time steps and determine a linear approximation to the non-linear resistor 

within each time step. 

Definition 2: The Control Graph of a circuit is a digraph where the nodes are transistor groups 

and where a directed edge (u,v) exists between distinct nodes u and t1 iff the gate node of some 

transistor t is in transistor group u, and the source and drain nodes or t are in transistor group ti. 
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The decomposition of the circuit into transistor groups is motivated by the fact that the voltages 

of the nodes in a transistor group are heavily interdependent, and have to be solved a..~ a simul

taneous system of equations. On the other hand, transistor groups interact by modulating the 

effective resistance of transistors. Note that this is "unidirectional"; if the gate of a transistor 

belongs in a different transistor group from its source and drain, the voltage at the gate of a 

transistor affects its source-drain resistance, but not vice versa. So it suffices to ensure that the 

gate waveforms of transistors in a transistor group are valid before simulating it. 

The naive approach of simulating the entire circuit can be improved by exploiting latency. We 

say a transistor group v is latent with respect to some input transient applied to a node:.in 

another transistor group u, iff there doe11n 't exist a directed path from node u to v in the control 

graph. Intuitively, this means that a transient applied to a node in transitor group u cannot 

affect transistor group v. SuperCrystal only simulates transistor groups that are not latent with 

respect to the applied transient. 

.C. The RC Model 

This section introduces the model of Raghunathan and Thompson for their waveform estimation 

algorithm. 

Definition 9: An RC network is a tree on n nodes. With each edge i is associated a nonnegative 

resistance r 1• With each node k is associated a positive resistance Rk, a positive capacitance Ck, 

a nonnegative charge Qk, and a voltage source 11k E { \foo,G ND,</>}. where <P indicates no connec

tion. 

In the above definition, circuit elements associated with a node exist between the node and G ND 

in the network. Note that this definition docs not allow for floating capacitors (capacitors associ

ated with the edges of the graph) in the network. 

The incorporation of leakage resistors in the RC network has a twofold effect: 

1 Node capacitors need not have to charge to \foo, or discharge to GND, but could take·on 

intermediate voltage values. 

2 RC networks can now be driven by more than one source. 

When the edges and nodes are all labeled with numbers, these parameters can be grouped t.oge.ther 

as vectors. An RC network is then denoted by N(n, r, R, C, Q, \!),where n is the number of 

nodes, r is a vector of edge resistances, R is a vector of leakage resistances, C is a vector of node 

capacitances, Q is a vector of capacitance charges, and '' is a Yf'ctor of node voltage sources. 

When an RC network is driven by exactly one source, it is called a standard RC network . 

.(,1. Modeling Voltage Waveform11 \n an RC Network 

The Raghunathan Thompson algorithm defines the approximate time constant of the voltage 

waveform at node k in an RC network to be 

rk = __ v_k_(_oo_) ___ v_k_( 0-)--
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We now have the following exponential waveform with time constant r1., 

where vk(t) represents the actual voltage waveform at node k. 
Theorem 1. The exponential waveform iik (t) of node k in an RC network satisfies the property 

00 

j[vk(t)-vk(t)[dt = o 
0 

In other words, the average error over time is 0. 

In an RC network with no input or only step inputs, the Laplace transform [3[ of the voltage 

waveform of a node can be written as 

Stated more simply, the voltage waveform can be expressed as a sum of exponentials. This leads 

to one further property of Tk, namely that it is a weighted average of the individual time con

stants. 

Theorem %. rk can be expressed as 

Although r,. has many interesting properties, it is not a linear function in the sense that the time 

constant or the sum or two voltage waveforms is not the sum or the individual time'constants. 

This leads us to define the following parameter. 

Definition 4: The parameter Dk is defined as the product of (vk (oo) - vk (0)) and T1c. 

Dk= h(oo) - vk(o)]·rk 

It can easily be shown that Dk is a linear function. 

When the context is not obvious, we will refer to Dk in a network N(n, r, R, C, Q, \1) as 

Dk(n, r, R, C, Q, V). 

We need another important result from network theory, the Superpo11ltlon Theorem [3]. which 

can be stated as follows for the purpose or this paper. 

Theorem 3. D1r(n, r, R, C, Q, \!)is obtained as the sum of the D,. in each network obtained 

from N(n, r, R, C, Q, V) by setting all but one source to GND. 

D,.(n, r, R, C, Q, V) = D,.(n, r, R, C, Q, [vi[) 

+ D,.(n, r, R, C, Q, [vd) 

+ ... 

+ Ddn, r, R, C, Q, [vnl) 

where [v;[ represents the vector V with all driven sources other than v; set to G ND. 

(5) 

Since the Ragbunathan Thompson algorithm provides vk(O), v,.(oo), and Dk for RC networks 

driven by a single source, we can use the superposition theorem for estimating waveforms in RC 

networks driven by several sources. 

.I 
i 
! 
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4.%. Waveform Estimation ln Standard RC Networks 

Prior to any further discussion, a more constructive definition of standard RC networks is given. 

A standard RC network is recursively defined to be one or the following: 

(C) 
r-----1 

(A) (B) I - - - - - ., 

2 r1 1 

~' n+{==N===: 
I Nm 

n+l~- _ f!n __ J 
TC" _{_Rn' 

-=- -=-
L-----1 

Series Parallel 

Figure %: Primitive Element, Series Connection, and Parallel Connection 

A resistor in series with a nonideal capacitor. The free end of the resistor is the input, 

labeled 2, and its other end is the output, labeled 1. The other end of the capacitor is 

grounded. This is shown in figure 2(A). This network will also be referred to as the primi
tive element or N 2 in the rest of the paper. 

2 A series connection or the primitive element and an RC network with n nodes, N", to give 

Nn+l· The input or Nn+l is the input of N2, with the input of Nn connected to the output 

or N 2• The nodes in Nn+l are renumbered as follows: The node numbers in N" remain 

unchanged. Node 2 or N 2 is relabeled n+l. This is shown in figure 2(8). 

3 A parallel composition of an n-node network N" with an m-node network Nm, forming a 

network Nn+m-l· The input of Nn+m-l is the input of Nn, as shown in figure 2(C). The 

nodes in Nn+m-l are renumbered as follows: The node numbers in one of them, say N", 

remain the same except for the input node, while the node numbers in Nm get incremented 

by n -1. The input node of Nn+m-l gets the label n +m -1. 

In all three cases, the input node is connected to Voo. 

Any N" has a set of twelve parameters associat.ed with it. While it is beyond the scope of this 

paper to define them all in detail, some of the more important paramet.ers are defined below. 

Parameter 
p(n) 

tlk(n) (co) 
D,..Cn) 
Q(n) 

Cl") 

Dimension 

resistance 

voltage 

time X voltage 

charge 

charge 

Remark 

Effective Resistance between input and G ND. 

Final voltage of node k. 

Time-Voltage product at node k. 

Total initial charge in the network. 

Total final charge in the network. 

From definition 4, the time constant of the voltage waveform at node k is given by 

D (n) 
r,..Cn) == k 

v,..(n) (oo)-v,..Cn) (0) 

The Raghunathan Thompson algorithm provides simple equations involving only additions and 

multiplications for the three separate cases: (A) calculating the parameters for N
2

, (B) deriving 

th!' parameters for Nn+i from the parameters for N 2 and Nn, and (C) deriving the parameters for 
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Nn+m-i from the parameters for Nn and Nm. Some of these equations are listed below: 

Parameter 
Primitive Series Parallel 

k=2 k=n+l k=n+m-1 

p(k) r1+R1 
Rnp(n} p(n).p(m) 

~n+ Rn+P(n} p<n) + p\m} 

VDD[l- p<~:I) l i=n 
v/n) ( 00) 

v/kl ( oo) 1'DD[~] l~i<n 

r1+R1 r,, (11+1)(00)·1 V1-n+I (m) ( 00) n~i<n+m-1 
n v/nl (oo) otherwise 

VDD 

Q(k) V1(0)·C1 Vn (O)·C,. + Q(n) Q(n)+Qlm) 

('J(k) v\2> (oo)·C1 11 (n+ll(oo) C +--I ('J(n) l 
n n VDD 

Ctn) +C\m) 

Table 1: Some Equations from the Raghunathan Thompson Algorithm 

The set of equations given in [13] provides us with the following simple linear time algorithm for 

estimating the waveform at a node in the RC network: 

Starting off from the leaf nodes of the tree, build the tree using the serial and parallel 

connections described earlier, until the entire tree is built. At each stage of tree con

struction, update the relevant parameters using the equations of [13]. 

The node waveform can now be approximated as 

5. Tranel11tor Model 

SuperCrystal supports any transistor model that satisfies the following requirements: 

1 The transistor model must define a finite set of states. A transistor is required to be in 

exactly one of these states at a given time. The final state is the state that a transistor 

assumes at t =oo. A transistor has triggered when it enters its final state permanently. The 

transistor model must be able to determine when a transistor triggers. 

2 The transistor model must provide the effective resistance as a function of the voltages at its 

gate, source, and drain nodes and other technology dependent process parameters. 

Although there are several models for the MOS transistor in the literature, SuperCrystal currently 

supports the second-order Shichman-Hodges model [ 18, 2 I]. The Shichman-Hodges model defines 

three states: Orr, TRIODE, and PINCllOF'F'. 

Let r (t) denote the effective source-drain resistance of transistor k. Using the Sbichman-Hodges 

model, we have: 

00 v0,(t) < vt(t) Orr 

r(t) = 
1 

t•0,(t) ~ vt(t) vpd (t) ~ v,(t) TRIODE ( 1) 
K(v0, (t )-v1 (t)) 

2vd1 (t) 
v0, (t) ~ v,(t) v¢(t) < v,(t) PINCH Orr 

K(v11, (t )-v1 (t ))2 
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where K is a constant dependent on the geometry o( the transistor and other technology depen
dent process parameters, and v1 (t) is the transistor threshold voltage, given by: 

v1a+1j(v.0(1)+2<1>1 )1! 2 + (24>1 )112 1 N-Channel 

vt(t) = v1a-1l(v.i,(t)+2<1>1 )1l 2 + (2<1>1 )1121 P-Channel 

where V1a, /, and 24>/ are process parameters. 

5.1. The Iterative RC Network Algorithm 

There are two difficulties to be overcome in modeling a transistor as a linear resistor: Firstly, the 
equation for r (t) is depend<'nt on the voltages at the source and drain nodes, v, (t) and vd (t ), 
which are in turn dependent on r (t ). This interdependence motivates the iterative RC network 
algorithm, described below. Secondly, r(I) is non-linear. We overcome the non-linearity or equa
tion (I) by simulating a transistor group over some small time interval ja,/31. The average 
effective resistance, f is approximated by an integrating average: 

(}' 

f r(t)dt 
f= _f1 __ _ 

/3-a 

Notation: X(il denotes the quantity X during the ith iteration of the iterative RC network algo
rithm. 

The iterative RC n.etwork algorithm makes an initial guess, f1: <0l, ror each transistor k using the 
transistor model and the initial voltages at the nodes of the RC network. The node voltages are 
then approximated with the Raghunathan Thompson algorithm. The transistor model is then run 
again on the updated node voltages. This iterative process continues until the effective resistances 
or the transistors have "stabilized". 

Formally, at the ith iteration, we have fk•'l. We then run the RC network algorithm to get 

v,,.1:/i+I) (t ), and vd.k(i+J) (t ), the source and drain voltages for each transistor k. These voltage 

waveforms then give a value ror rii+Il(t) which we integrate by the above equation to get a value 

' 

-fi+l) or r1r . 

Definition 5: 01 .. ,,,4 is defined as: 

8 (i) 

''°"" 

E 
kET 

_(t'+l) _(i) 2 r" -ri: 
_(t) 

r" 
IT I 

where T denotes the set of transistors in the translstor group under consideration. 81,.,,.,, (i) is the 

mean of the squares of the normalized difference between iterations of the effective resistance. 
Intuitively, 81,..,,.,, (I) is a measure of how much the transistor resistances have changed. The algo
rithm converges when 81,..,,.., (i) falls below some threshold value. 

Further details can be found in jIOI. 

a. Tranalator Group Firing Sequence 

We have seen how a transistor group g is simulated within a time interval. Ideally, the voltage 
waveforms at the gates of transistors in g should have been computed prior to the simulation of g 

- in other words, the parents of g in the control graph should, as far as possible, be simulated 
berore g. 
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Consider the simulation of a circuit for which a transient is applied to some node n in a transistor 

group g. The following tasks are performed: 

1 Cycles in the control graph are detected by running a depth-first sear<'h algorithm (1] start

ing from g. Back edges (edges that complete cycles) are marked. 

2 The control graph, minus the marked edges, is then a DAG. A breadth-first search (I] is 

done on the DAG to decide the order in which the transistor groups are processed by the 

iterative RC network algorithm. 

3 

We note that the DAG defines a partial order on the firing sequence. The breadth-first 

search algorithm finds a total order compatible with the partial order such that a transistor 

group is processed only after all ancestor groups in the DAG are processed. 

The breadth-first search will only process groups that are affected by the input exponential -

i.e. groups which. can be reached by a directed path from the root group. This way, 

unaffected groups are not re-computed. 

7. Tl me Steps 

As mentioned previously, the resistance of a transistor, r(t), is a time varying quantity, and can

not be used directly in the corresponding RC network for wavdorm estimation. Instead, we parti

tion the time axis into small enough intervals so that r (t) can be assumed to be constant over 

that time interval. 

Notation: !T1-11T1l denotes the jth time interval. xiii denotes the quantity x in the jth time 

interval. 

The iterative RC network algorithm provides us with vklil (t) for the jth time interval. Since this 

is valid for the jth time interval only, we set the voltage at the beginning of the (j+l)th time 

interval to be the voltage reached at the end of the jth time interval: 

vkli+ll(o) = 11"1il(TrT1_i) 

We then rerun the iterative RC network algorithm. 

This iterative process gives us waveforms vklil (t) for all j= 1,2, ... , which we put together piece

wise to obtain t'k (t ). 

7 .1. Trlggerlng of'Tramil11tor1 

Although it is theoretically feasible to find vk Iii (t) for j = 1, 2, ... , oo, in practice, we need to 

stop at some finite value for j. This section describes the criterion SuperCrystal uses to deter

mine this value. 

Since any transistor changing state can potentially change the topology of the RC network, any 

measure of convergence can only be applied after all transistors have triggered. Once all transis

tors have triggered, the measure of convergence is the mean of the squares of the difference 

between iterations of the v (oo) terms of each node: 

Definition fJ: tSTIJI is defined as: 

E ( l'"' 111 ( oo J-v,.11-11 ( oo n2 

6Tlil = _k_EN ___ ~l -N..,....,.I ___ _ . ' 
' I 

: l · 
'I 

! ' i 
: : r 
. : . 

! 
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where N is the set of the nodes of the RC network under consid<'ration. 

Convergence is reported when <\Iii falls below some threshold. Let convergence be r<'ported at the 

f th time interval. We thrn define vk (t) to be: 

vklil(t-T;-1) T;-1~1 <T;~T/-1 

vk(ll(t-T1_i) t >T1-1 

7.2. The Firing Sequence and Time Steps 

A haive approach to simulating a circuit would be to run t.he iterative RC network algorithm on 

each transistor group in a given firing sequence for each time stl.'p. However, empirical evidence 

l9J has i;hown that not all transistor groups need to be simulated for each time step. SuperCrystal 

uses the above time step convergence criterion to determine dynamically if a transistor group 

needs to be simulated for the next time step. If a transistor group nreds to be simulated, then all 

descendents of that group in the control graph will also be simulated. If there exists descendents 

of the current group that preceed it in the firing sequence, then simulation is backed up to the 

earliest such descendent. Otherwise, simulation continues with the next group in the firing 

sequence. 

8. Experimental Results 

Contrived Examples 

Circuit Description #Nodes # Fels # Transistor Groups 

08C 3-inverter ring oscillator 5 6 3 

nand4 4-input NANO driving pass-gate 12 g 6 

Real-Life Examples 

Circuit Description # Nodes #Fels # Transistor Groups 

r~ff 1-bit clocked static RS flip-Hop 13 16 7 
bit 1-bit static register 23 18 13 

eqO 16-bit equal-0 comparator 38 40 21 

decode 4 to 16 decoder 74 136 24 
deer em 16-bit parallel-prefix decremen ter 4gg 932 317 

Table 2: Circuit Sizes 

Table 2 gives the seven circuits that were simulated using SuperCrystal and SPICE. In addition, 

the real-life circuits were analyzed by Crystal. For the simulations, SuperCrystal used a subset of 

the SPICE parameters for the transistor model. In all the experiments, the parameters for the 

transistor models for both SuperCrystal and SPICE were identical. The Crystal parameters were 

derived from these SPICE parameters 117]. In addition, SuperCrystal and SPICE simulated the 

circuits with the same time steps and time intervals. 
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8.1. Contrived Examples 

nand4 Ol!C 

Vdd 

Pass-Gate 

Figure 3: Circuit Diagrams for 11a11d4 and oBc. 

Figure 3 gives the circuit diagrams for two circuits that dC>monstrale SuprrCrystal's ability lo 

handle "difficult" simulations. For 11a11d4, the n-channel transistors on the D, C, and £3 inputs 

and the pass transistor have varying voltagrs at the source trrminals. In addition, loading the 

nodrs with parasitic capacitances and l<'akage resistances "slows" the wavrforms. 

Steady-stale analysis was pNformrd with Input A held at OY, inpllls B, C, and D held at 5V, and 

the Pass-Gale held at 3V. A OV-+5V slrp was applied lo input A for transient analysis. 

The ring oscillator ou demonstrates Supr.rCryslal's ability [.o handle astahle sequential circuits. 

In addition, there are no load capacitances on the nodes, thus the method by which SuperCrystal 

estimates the source and drain capacitances on the transistors determines the delay through the 
inverter and thus the frequency of ORcillation. Since 08C has no steady-state, the init.ial transient 

solution was specified with NI =5Y. 
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Figure 4: Simulation Waveforms for nand4 and o8c. 

Figure 4 shows t_be results from SPICE and SuperCrystal for the nand4 and osc circuits. Super

Crystal models the waveforms in nand4 q1Jile accurately, despite the fact that the end points of 

the waveforms are not Voo or G ND. In 08C, SuperCrystal is accel-!tably close to SPICE even 

though we do not allow floating capacitors between the gate-source and gate-drain terminals of 
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each transistor in our transistor model. 

8.2. Real-lire Examples 

Simulations were run using Crystal, SuperCrystal, and SPICE on real-lire circuit examples. eqO, 

decode, and decrem are combinational circuits, and r.1// and bit are s<>quenlial circuits. 

Two simulation runs were perrorm<'d on c:qO. In the first run, all inputs W<'re h('ld al OV ror t.hr 

stf'ady-state analysis. A rising OV-+5V st.rp was applird to lrast-significant bit ror transi<'nl 
analysis. In the second run, ~teady-state analysis was done with all inputs except for th<' lf'ast 

significant bit, which was held at 5\1. A railing 5\1-.0V step was applird to the least-signitlcant 

bit d 11 ring t ransirn t. analysis. 

For decode and decrcm, the st!'ady-state analysis was done with all inputs at OV. A rising OV-+5\1 

strp was lhrn applied to the least significant bit or the input during transient analysis. 
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Figure 6: Simulation Waveforms for eqO, decode, and dccrPm 
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Figure 5 shows the Crystal delay values, and SuperCrystal and SPICE simulation waveforms (or 
the three combinational circuits. In each case, the SuprrCrystal waveform closely tracks lhr 

SPICE wavdorm. 

The disparity in the d1!lay for cqO arises from the way the circuit is implrmt'nted. The inp11t5 to 

th<' circuit drive 4-input CMOS NOR gates, with tht> lrast signifkant bit driving thr topmost p
transistor in t.lt<' S<'ries chain. It. therdorr takrs longf'r to pull thf' 011tp11l or the Non gate lo \'pn 

through 4 p-t.ransistors, than it takes lo pull in to G ND through I n-lransislor. 
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Figure O: Simulation Waveforms (or r,•f! and bit. 

For rs!f the stead)·-st.ate was computed with the flip-flop in its "reset" state and both inputs inac

tive. A 5V step was applied to the Set input for transient analysis, ~ausing the flip-flop to changf' 
state. For bit the ste~dy-state wa.s computed with the rrgist.er storing OV and input held at 5V, 

with the register-load disabled. A OV-+5V rising step was appli<'d to Id and 5V-+OV falling stl'p 
was simultaneously applied to Id, thus loading lhe register wilh lhr input value, i.e. SV_ 

These two examples were chosen lo demostrate SuperCrystal's ahilit.y lo handle different typ<'s or 

sequential circuits. r~!f is a pair of back-to-back NAND gal<'s, i;o lhat the actual loading and 

storage fonclions are realized digitally. bit realizes lhe storage mechanism by a pair or invertrrs 

or di!Terent strength driving the same node. This node waveform is plotted as latch. 



350 R. L. Bauer et al. 

8.3. RunTlme11 

Circuit Crystal SPICE 
SuperCrystal 

SPICE/SuperCryslal Ratio 
Steady-State Transient Total 

osc . 74.0 - 13.2 13.2 5.6 

nand4 - 79.7 5.1 2.0 7.1 l l.3 

bit 0.1 Hl8.3 0.3 20.3 20.6 8.2 

rs ff 0.1 122.4 0.3 10.0 10.3 11.9 

eqO - up 0.1 296.5 0.6 17.7 18.3 16.2 
decode l.O 1478.4 l.5 31.3 32.8 45.1 

eqO - down 0.1 342.2 0.6 3.3 3.9 87.7 

decrem l.O l 9940.3 12.2 33.0 45.2 441.2 

Table 3: SuprrCrystal and SPICE Jluntimes. 

Table 3 shows the runlimes of Crystal, SuperCrystal, and SPICE. Nole that the SuperCryslal 

runtimes scale more favorably than SPICE. 
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Figure 7: Compari1'on Plot of SuperCrystal and SPICE Runlimes. 

Figure 7 is a comparison plot of SuperCryslal and SPICE runtimes. Note that the SPICE scalP is 

1011.arithmic. These results show that SuperCryslal is more than just a constant raclor raster than 

SPICE. The gains in runtime appear lo increase non-trivially as circ11its get larger. In addition, 

whereas the SPICE runtimes appear in be a function of the size and not the topology or the cir

cuit, the SuperCrystal run times appear to depend on both size and topology. In particular, the 

distinction between combinational and sequential circuits is more pronounced in the SuperCry:;tal 

case as is evident from the figure. 

O. Conclu11lon11 and Future Work 

This paper described SuperCrystal, a computer program for the simulation of full-custom \'LSI 

chips. The highlights of SuperCrystal are brieny listed below: 
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