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ABSTRACT

A single value for delay, based upon the delay
of Elmore, is derived for two types of RC tree net-
works. In one type of network, there is no driving
source: this undriven situation causes statie charge ’
sharing among nodes. An expression for ‘delay is

. obtained by straightforward analysis of this net-
work, o

. 'Inour second case, an RC tree which is driven
by at least one source has leaky capacitors, We
show 'how to calculate delays for such trees by a
linear time algorithm., ~ *

", A simple MOS “circuit with a leakage path to ..
ground is analyzed using the method presented in
this paper. The result is compared with that of

. SPICE, - Lo Sl S

1. Introduction

Modeling digital MOS circuits by RC networks for the pur-
pose of estimating delay has become a well accepted practice
[0,11,12,4,7). One approach pioneered by Rubinstein,
Penfield and Horowitz (R-P-H) is to model a circuit as an RC
network driven by 'a single source {9,11,12,4]. Crystal [7]
takes a more restrictive approach, calculating the delay at a
node by ‘considering only a single resistive path to the source.
The result of a delay calculation may be a single value 7], a
“best fit" exponential [4], or a pair of bounding waveforms

[9,11,12]. We choose the intermediate course of supplying a.

“best fit" exponential,

The RC model of R-P-H [9] depends on two basic approxima--

tions, Transistor inputs are approximated by step
waveforms, and conducting transistors are approximated by
linear resistors.” A simulation program like SPICE [5], on the
other hand, makes no such approximations and is hence com-

putationally much slower, though more accurate. The R-.P-H -
approach is conceptually simple and computationally efficient, -
and has been incorporated into several timing-analysis pro-

grams [3,10].° In this paper, we employ this basic R-P-H
model. o . o
Most analyses of RC networks introduce several additional

assumptions, One is that all RC networks need to be driven

by exactly one source. However, many MOS circuits used in
practice have no driving source: this undriven situation may
cause static charge sharing among nodes [1], a situation we
have addressed in this paper. Secondly, there are instances
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where more than one source drives a network. For example,

consider an nMOS inverter driving two loads with its input

set to logic value '1'. - The load capacitors are driven by two

sources, VDD and GND. To the best of our knowledge, ours '
is the only analysis to allow multiple sources. A third addi-'
tional assumption of analyses of RC networks -is that all

capacitors are ideal, having no leakage path to ground.

Under this assumption, a previously charged capacitor that is

isolated from the rest of the circuit would retain its charge for

an infinite duration of time. Yu and Wyatt [12] relax this

assumption, allowing one leaky capacitor. Our analysis per-

mits any number of leaky capacitors. . o

A fourth additional assumption that many models make is

that the RC network is a tree, meaning that no resistor

meshes are allowed. Lin and Mead (L-M) [4] have provided a

“best fit" exponential for an RC mesh. Wyatt [11] extends

this, providing a pair of bounding waveforms for an RC mesh.

In this paper, we analyze the restricted case of an RC tree.

A most general RC model would allow floating capacitors in
the network, No floating capacitors are permitted in this
paper. There exists no known analysis for such a model, and
it remains an important open problem for future research.

The proofs of all theorems in this paper can be found in 8]
2. The Timing Model . ,

The timing model for MOS transistor circuits is based on the
switch model proposed by Bryant [1]. In this model, a circuit
is represented by a set of transistors {4y, ..., tn} and a set of
nodes {py, ..., p,}. With each node p, are associated a resis-
tance, a capacitance, a charge and a voltage source. Also
associated with a node is a state, which is a function of its
charge. With each transistor are associated a set of resis-
tances. The value of a transistor’s resistance depends on the
the state of the node controlling its gate and on the states of
its other two nodes, the source and the drain. Although the
capacitance and resistance at a node and the resistance of a
transistor are voltage dependent, they are assumed as con-
stants here. - T : o

The evolution of an MOS circuit is approximated by a
sequence of RC networks. Various node capacitors are
charged and discharged through the network. This charging-
discharging process may change the state of a node which in -
turn changes the topology of the RC network. ~The process
continues until the topology of the metwork changes no -
longer. - :
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Definition 1. An RC network is a loopless connected graph
on n nodes. With each edge ¢ is associated a nonnegative
resistance r,, With each node k are associated a positive resis-
tance R;, a positive capacitance C, a nonnegative charge @,
and a voltage source v, ¢ {VDD, GND, ¢}, where ¢ indicates
no connection.

Circuit elements associated with a node in the definition are
elements that exist between the node and GND in the net-
work. Note that this definition does not allow for floating
capacltors (capacitors assocrated with the edges of the graph)
in the network. :

When the edges and nodes are all labeled with numbers, these
parameters can be grouped together as vectors. An RC net-
work is then denoted by N(n, r, R, C, @, V), where n is the
number of nodes, r is a vector of edge resistances, R is a vee-
tor of leakage resistances, C is a vector of node capacitances,
Q is-a vector of capacitance charges, and .V is a vector. of
node voltage sources. In Fig. 1, below, the nodes are labeled
by circled indices. Edges are the series resistors r,. A single

leakage resistor, Ry, is shown.. All other leakage resistors are .

(by. default) infinite.

AAA

va|

Figure 1. A standard RC network.

With the approximations introduced above, the problem of
estimating the delay of an MOS circuit reduces to that of
estimating the delay of an RC network. Certain special cases
of RC networks, which - occur in this paper, are denoted
below:. :

- 1) N(n; r, R, C, @, VDD) An RC networlc with 'n

nodes,- drrven by a single source, namely VDD, which is

connected to node n. This network will be referred to as
the standard network, or N,, in the rest of the paper.
Fig. 1 is an example of Ns.
2) N(n, r, R, C, Q,GND,) : The same network as in 1)
‘with node n connected to GND.
'8) N(n, r, 0, C, ,4) : An RC network on n nodes with
only ideal capacitances and no sources, This network
will be referred to as the charge sharing network, or
N,(¢) in the rest of the paper.
Since our RC networks are loopless, we may assign the label
min(a, b) to the edge (s, b).- PO .
Define a path nk to be the (unlque) list of edges joining node
n to node k.- Let Ry, denote the sum of the resistances of the

edges common to the unique paths nk and ni [9]. For exam-

ple, in Fig. 1, Rog=r4+rs and Ry = r,. Note that a dou-
bly subsenpted Ry, is dxstmct from a leakage resrstance R,. :
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3. Definition of Delay

Prior to analysis, it is necessary to have a consistent and
unambiguous definition of delay. Although there are a
number of such definitions in practical use, most of these are
awkward for theoretical investigation. Accordingly, we define
delay as

{l”(wl- v(4)] d¢
) ) (1)

T ==

We now have a “best fit” exponential waveform with time
constant r,,

(1) = (0) + [v(c0) - w(O)(1 - /") (2)

where v,(¢) represents the voltage waveform at node i,
Theorem 1, 7(!) satisfies the property

[ -m(ae =0~ SN

Definition 2. The parameter D is deﬁned as the product of
(v,(00) - v,(0)) and the delay 7,. ,

" D, = (1,(c0) - v, (0)7, . ‘ ‘ (4)
When the context is not obvious, we will refer to D, in a net-
work N(nrRCQ,V)asD(nrRCQ,V) As the

next few theorems show, most of our results on delay are
expressed through the parameter D,.

We need another important result from network theory, the
Superposition Theorem (2], WllICl’l can be stated as follows
for the purpose of this paper .

Theorem 2. D{n,r, R, C, Q, V) is obtained as the sum of
the D, in each network obtamed from N(n,r,R,C, Q, V) by
setting all but one source to GND,

D,(n,r,R,C,‘Q,V) =le("nf;RrC:ervll) : . (5)
i+ Do(”rrerClQl[U2])
+ D,(n,r,R,C,Qlv.)).

where [u] represents the vector V with all aources ¢ {VDD}
other than v, set to GND ' '

'Theorem 3. D(n rR,0C,0Q, GND) is obtalned as the

difference between the D, in the networks N, (the same net-"
work, but driven by VDD at node n), and N,,(O) (the standard
network with no initial charge).

D(nrRC’QGND)=D(nrRCQVDD) (®)
! _.”-D(nrRoovvn)' ’

where the network N(n, r, R, C,'0, VDD,) represents the stan-
dard " network N thh the capacrtances havmg no initial
charge. ' b

Theorem 4. (The drschargmg theorem. ) Let Q represent the
final charge attained by N(n, r, R, C, 0, VDD,). The delay at
node § in network N(n, r, R, C, @, GND,), is the same as the
delay at node i in the network N(n r. R, C,0,VDD )

A consequence of theorems 2 & 3 is that we need an expres-
sion for delay only in the charge sharrng and standard net-
works, ; e .




4. An Expression for Delay in the Charge Sharing
Network- »

Consider a charge sharing network with n nodes, N,(¢). We
need to derive an expression for delay at some node in the
network, Renumber the nodes as follows: the node for which
we need to solve is numbered n, and the other nodes are
numbered by a depth first traversal of the tree.

The final voltage at any node § in the network is obtained as
. - ,

ye ‘

te=1

- )

P
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Here, the @, stand for the charge in C, at time =0,

Kirchofl's voltage law and charge conservation give the ex-
pression for delay at node n as

"E_l G "E—lRt.-‘Ct(”t(“) - 05(0))

1=l k==)

u(t) =

(®)

Ty == —

(22(c0) = v, (o»g Ce

Naive evaluation of this expression takes O(n? time, but it
can be done in O(n) time by taking advantage of the tree
structure of Ry,.

5. An Expression for Deln; in the Standard Network

Prior to any further discussion, a more constructive definition
of standard RC networks than the one provided in Sections 1
& 2 is given. A standard RC network is recursively defined
to be one of the following: )
a) A resistor in series with a nonideal capacitor. The free end
of the resistor is the input, labeled 2, and its other end is the
output, labeled 1. The other end of the capacitor is
grounded. This is shown in Fig. 2{a). This network will also
be referred to as the primitive element or N, in the rest of the
paper. R '

b) A series connection of the primitive element and an RC
network with n nodes, N,, to give N,4,. The input of N,,, is
the input of N,, with the input of N, connected to the output
of N,. The nodes in N,;,; are renumbered as follows: The
node numbers in N, remain unchanged. Node 2 of N, is rela-
beled n+ 1. This is shown in Fig. 2(b).

¢) A parallel composition of an n-node network N, with an
m-node network N, forming a network N,y ny. The input of
N, 4y is the input of N,, as shown in Fig. 2(c). The nodes in
Nyymy are renumbered as follows: The node numbers in ohe
of them, say N,, remain the same except for thé input node,
while the node numbers in N, get incremented by n-1. The
input node of N, gets the label n+ m-1,

In all three cases, the input node is connected to VDD.

® , 0

~ IC.

Figure 2(a). The primitive network N,.
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Figure 2(b). Series composition.

Having defined standard RC networks as dealt with in this
paper, we¢ recursively define certain parameters associated
with such a network. Their circuit interpretation can be
found in [8].

&

e

Figure 2(c). Parallel composition,

Theor?'ni 5(a). For the primitive element N, (see Fig. 2(a)),
the various parameters are given by

D =r +R,
R
v{ oo =VDD'[ ! J
f ( ) l']+R1
R
5("’)=VDD-[ 1 ]
rt+ Ry 01‘
Q(z) = (0)-C,
® R,
R{] =
(i) rit+ Ry
o) =
r+R,y .
R (R
D = ¢p D201 (VDD-[ 1 J~
h 1 Py T v,(0)
) R 2
DOfd = VDD-¢ [ 1 ]
{ n ry+ Ry
A52)=VDD.(;,_LR;_2_
(ri+R,)




Ciry

A®) = L
n+R, r+R,

- 1(0) (9)

Theorem 5(b). Given the parameters for network N,, the
parameters for the network N, 41 (see Fig, 2(b)) are given by

0
(a+41) =
4 rt 'R"‘_“_. +p’(,,;

v{*+(c0) = VDD[I - ;(:—:_3-]

. (n41) .
v, o0
”o(”+l)(°°) = ["”' VD“'D'( _) l”o(")(oo)
c™
nt1) o (nt1)
o v (o) [C + VDD]
QM) = y,(0)C, + Q™
. (n+1) 1
il
1+ ‘E +ry

(a+1) (»)

R)" = &)™ r2)
S (R;]("+l)~[a(')+%]

D) = o, [R,;)("“).

[5"'“)- QD _ Al [M ]Asﬂ)]
ntl ’Sn+l) 0
Do+ = r, (R3) " [5(”") } [_"_vﬁ()_l]agﬂ]

(n41) :
Do) = pofetl) 4 [i\;ﬁ(;ﬁ][)g'(")

DAt = pn) 4 po(r+3) - po(m -

' [Rl'](ﬂll)'(o("“)v'*' AR - AfM)
,(»+l) Do(»+l) ("+l)(°°)
AfPH) = (n+1) ( ] g )

APFD = A g Afr+D afM -
. (R;)('“)-a"')[Q('“)+A(')- A‘gn)] (10)

Theorem 5(c). Given the paraméters for networks N, and
Nn, the parameters for the network N,yn (see Fig. 2(c)) are
given by

RN

(n4m-1)
p ==
AR A

v,(")(oo), i =1,...n-1

vo(-"r‘n?fl(oo)l { =

g 4 g

i . S

IR E '={ .
v+ eo) 0, Bt m=2" "
a(u+m-l)=
Qirtm-) = Q) 4 o(m)

am

(n4m-1) [R') i=l,...,n—l
N (Ra'-n+1](M) t=n,.,n+ m-2

(&)

olrtm-1) 0(") + o™

D; i=1,..,n-1

. . (n)
(nfm-1)
pprrnl= {D,‘_",‘,Z,_, f=n,.,n+ m-2
Do®™  imi.n-
polrtm-1) — { o ’,_l'm'” !
! ‘D[),(_",‘,Z,,l : t=n,.,n+m-2

4

AP = Al 4 Af™
Alrtm-1) . A(m) 4 Alm) C (11)

The algorithm for delay computation at a node in an RC net-
work follows immediately from Theorems §a-c. Starting from
all the leaves, build the tree using steps a, b & ¢ as given ear-
lier in this section, until the entire tree. has been built. At
each stage of construction, update the relevant parameters as
given by Theorem 5.

vbd

®

in)—-l‘

Figure 3(a). A nbMOS NAND gate.
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Figure 3(b). An RC network for the NAND gate.




Flgure 4, The waveforms vy(1) and T,(¢).

6. An Exa.mple

Consider the NAND gate shown in Fig. 3(a), with both gate
transistors in the ‘'ON’ state, The RC network derived from
this is shown in Fig. 3(b). .

Fig. 4 shows a plot of the “best fit" waveform of vg(t) Also
plotted in the same figure is the waveform obtamed by a
SPICE simulation of the RC circuit.

The waveform obtained by our analysxs follows the SPXCE
waveform very closely, although it is a single time constant
approximation.

7. Conclusions -

An expression for delay, based upon the delay of Elmore, has
been derived for RC trees with charge sharing or leaky capa-
citors, Our definition of delay provides a “best fit” exponen-
tial waveform in networks with charge sharing, with more
than one source and with nonideal capacitors. - We are
currently examining the use of these networks in ELOGIC l6].

An important fact to keep in mind when using our results is
that we have provided a "best fit" single exponential for the
linear RC model. A simulation program like SPICE can
handle nonlinear circuits, although much more slowly. Thus,
an interesting topic for future research is to study the effects
of linearization and the speed vs, accuracy tradeofls in simula-
tion programs, ' '

We also need to study the usefulness of bounding the
waveforms of a nonlinear circuit by waveforms derived from a
linear circuit, and, if found useful, derive tight lower and
upper bounds on the waveform.” One important step in this
direction is the derivation of boundmg waveforms for linear
circuits [9,11,12].

Our current rescarch effort is to extend our results to RC net-
works with floating capacitances, in order to model the impor-
tant “Miller effect™.
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