
RC 17680 (#17873) 2111/92
Computer Science 15 pages

Research Report

Rectilinear Steiner Tree Minimization on a
Workstation

Clark Thomborson

Computer Science Department
University of Minnesota at Duluth
Duluth, MN 55812

Bowen Alpern and Larry Carter

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted If accepted for
publication. It has been Issued as a Research Report for early dissemination of Its contents and will be distributed
outside of IBM up to one year after the date indicated at the top of this page. In view of the transfer of copyright to
the outside publisher, Its distribution outside of IBM prior to publication should be limited to peer communications
end specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties).

IB 'll Research Division
1HL Almld!n • T.J. Watson • Tokyo • Zurich

Rectilinear Steiner Tree Minimization on a
Workstation

Clark Thomborson•
Computer Science Department

University of Minnesota at Duluth
Duluth, MN 55812

cthombor@ub.d.umn.edu

Bowen Alpern and Larry Carter
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, N.Y. 10598

carterl@watson.ibm.com, alpern@watson.ibm.com

Abstract: We describe a series of optimizations to Dreyfus and Wagner's dynamic pro­
gram for finding a Steiner minima.I tree on a graph. Our interest is in finding rectilinear
Steiner minimal trees on k pins, for which the Dreyfus and Wagner algorithm runs in
O(k23k) time. The origina.l, unoptimized, code was hopelessly 1/0-bound fork > 17,
even on a workstation with 16 megabytes of ma.in memory. Our optimized code runs
twenty times faster than the original code. It is not I/0-bound even when run on a fast
8-megabyte workstation with a slow access path to a remote disk. Our most significant
optimization technique was to reorder the computation, obta.ining locality of reference at
all levels of the memory hierarchy. We made some improvements on the Dreyfus-Wagner
recurrences, for the rectilinear case. We developed a specia.l-purpose technique for com­
pressing the data in our disk files by a factor of nine. Finally, we found it necessary to
repair a subtle flaw in random(), the 4.3bsd Unix random number generator.

"Research supporled by the Nalional Science Foundation, through ih Design, Tools and Teal Program
under granl number MIP 9023238. ·

1 Introduction

The Steiner problem has a. long history in applied ma.thematics, dating from Fermat in
the early 17th century. It also has a direct application to contemporary VLSI design. In
its VLSI application, the Steiner problem is to find a. minimal-length set of rectilinear
edges joining a set of k pins in the plane. Such a set of edges is called a. rectilinear Steiner
minimal tree, or RSMT.

We use the convention of Dreyfus and Wagner throughout this pa.per, in which the
Steiner problem is posed on an arbitrary edge-weighted graph of n nodes. In this formula­
tion, the Steiner problem is to find the set of graph a.res of minimum total weight needed
to connect a. specified set of k of the n nodes in the underlying graph. We refer to the
distinguished nodes of the graph as "pins," by analogy to the VLSI application.

Most variants of the Steiner problem a.re NP-ha.rd. For example, given a.n arbitrary
weighted graph, a. set of k pins on that graph, and an integer L, one might ask if there
exists a. tree of weight at most L that contains a.II the given pins. This decision problem
is known as the Steiner problem on graphs; it is NP-complete [15]. The problem remains
NP-complete even if the edge weights are obtained, as they a.re in this paper, from the
rectilinear distances in a. pla.na.r embedding of the pins [15].

Given the NP-completeness of the problem, there is little hope of finding a.n exact
algorithm for the RSMT tha.t runs in subexponential time. Instead, most researchers ha.ve
concentrated on developing heuristics [33, 32, 23, 19, 20, 27, 26, 25, 17, 11, 1 O], probabilistic
analyses [8], provably-good approximation schemes[21], algorithms with guaranteed worst­
case performance [7, 34], a.nd fast algorithms for special-case sets of pins [5, 1].

The performance of a RSMT heuristic is typically measured by its expected percentage
reduction over the length of the (easily-computed) minimal spanning tree, where random
problem instances are obtained from pins uniformly distributed over the unit grid. If a
Prim- or Kruskal-style greedy heuristic is used to grow a. Steiner tree, the result is 9%
shorter than the MST, on average [9]. The largest a.vera.ge reduction reported for any
polynomial-time RSMT heuristic is 10% [17].

One of the goals of our research into exact algorithms for the RSMT is to determine the
ratio between the average length of a. minimal spanning tree (MST) on a random pinset
and the average length of the RSMT on a pinset drawn from the same distribution. For
the case of pins uniformly distributed in the unit square, our preliminary data. indicates
that the average RSMT is 10.7% shorter tha.n the average MST. We tentatively conclude
tha.t there is little room for improvement over the Ho-Vijayan-Wong heuristic [17]. We
intend to publish our findings in a. separate pa.per, when our analysis and experimentation
is complete.

The topic of this paper is the efficient computation of exact rectilinear Steiner trees, us­
ing the Dreyfus-Wagner method, on a Sun-4 or RS-6000 workstation with a. 500-mega.byte
disk. Such a workstation is capable of solving any rectilinear Steiner problem of moderate
size in a matter of weeks (for a. 23-pin problem), or in less than a second (for problems
with 10 pins or less). We believe that the techniques described in this pa.per are interesting
in their own right, that they can be applied to other problem areas, and tha.t our RSMT
code can be used to obtain otherwise-unavailable experimental data. on optima.I Steiner
trees.

At the outset of this project, we faced a choice between three methods for computing
optima.I Steiner trees on k pins. A branch-and-bound method, due to Yang and Wing[32],

1

runs in 0(2k') worst-case time. The average-time performance of the Yang and Wing
algorithm is unknown. A divide-and-conquer method, due to Thomborson, Deneen and
Shute !28], runs in 0(cv'k log k) time, for some unknown c < 5. Finally, a dynamic program
due to Dreyfus and Wagner!12] runs in O(k23A:) time. We shied away from the Yang and
Wing approach, fearing that its runtime would be excessive for k > 10. We chose not to
implement the asymptotically-superior divide-and-conquer method because we believe it
will not be competitive for k < 30. Instead, we chose to try to improve on a reasonably­
efficient C-la.nguage implementation of the Dreyfus and Wagner algorithm written in 1988
by Deneen and Shute.

The Deneen-Shute RSMT code solves a non-degenerate problem on ten pins in twenty
seconds on a Sun SPARCstation 1. (Degeneracy speeds things up somewhat by reducing
the size of the underlying graph.) Eleven-pin problems take a minute. Thirteen-pin
problems take a.bout nine minutes. Fifteen-pin problems take eighty minutes, ii sufficient
main memory is available to avoid swapping. Ii less than eight megabytes is available, the
workstation "thrashes," spending more than 99% of its time waiting for a data page to
be read from disk.

Our first insight was to rearrange the order of computation of partial results in the
Dreyfus-Wagner recurrences. The revised computation enjoyed a great deal of locality of
reference. The Dreyfus-Wagner recurrence, and our rearrangement, is explained in Section
2.

Having rearranged the computation in order to solve the disk-thrashing problem, we
obtained an unxpected benefit: our rearrangement was general enough to provide locality
of reference at all levels of the memory hierarchy. We thus obtained a significant reduction
in cpu time, due to less waiting for main memory fetches into cache, and less waiting for
cache memory fetches into register. When our optimization work was complete, we were
pleasantly surprised to find a factor-of-twenty speedup: we can solve any ten-pin problem
in less than one second on our 20 MHz SPARCstation 1. Fifteen-pin problems take about
four minutes; every added pin multiplies the time by three. Our code runs two to three
times faster on a 25 MHz RS-6000/530.

A large part of our speedup is attributable to an algorithmic refinement on the Dreyfus
and Wagner algorithm. We took advantage of the rectilinear distance matrix to save a
factor of n in a sub-dominant term in the Dreyfus-Wagner asymptotic runtime. This
sub-dominant term was, in fact, dominant for all k $ 16, so our algorithmic improvement
gave us more than a two-fold speedup for k = 16, and even larger speedups for smaller
k. For example, at k = 10, we obtained nearly a five-fold speedup. Another, relatively
minor, speedup was obtained after Shmuel Winograd mentioned that we could reduce our
Hanan grid (16] from n = k2 to n = (k - 2)2 points. This reduced our runtimes, and
more importantly our disk space, by approximately 400%/ k. We describe our algorithmic
refinements in Section 3.

In Section 4, we discuss a special-purpose data compression algorithm that reduced
the size of our disk files by a factor of nine. This sped up disk accesses markedly: our
code runs at 98% cpu utilization, and spends at most 20% of its time doing file 1/0, even
if it is limited to about 8 megabytes on a SPARCstation. Our data compression method
may be applicable to the data tables produced by other dynamic programs.

In Section 5, we describe a subtle flaw in a 4.3bsd Unix utility for generating a pseudo­
random sequence by the additive congruential method. In brief, the problem is that there
is a small amount of "hidden" state in the generator, so it is difficult to save the generator

2

state to a. disk file for later restart. We devised a. method for saving and restoring the
complete state of the generator, creating a. version ca.lied mra.ndom(). Section 5 discusses
random() and mrandom() more fully, as well a.s the general problem of genera.ting a. long
series of pinsets, independently and uniformly distributed in the plane.

Finally, in Section 6, we summarize our techniques and identify some areas for fu­
ture work on Steiner tree codes, on codes for other combinatorial optimizations, and on
optimizing compilers for workstations.

2 Reordering -the Dreyfus-Wagner Recurrences

The Dreyfus a.nd Wagner algorithm is, in essence, a. pair of recurrence relations over all
subsets d of the first k - 1 pins. They suggest computing a. vector of length n for each
such subset d. Recall that the k pins of a Steiner problem are distinguished nodes of a
weighted graph of size n.

In the case of a. rectilinear Steiner problem, the underlying graph may be ta.ken as the
Hanan grid 116]: the n $ k2 nodes whose x- a.nd y-coordina.tes match those of any one
or two of the pins' coordinates, the 4-neighborhood edges on the n nodes, with the edge
weight function being the rectilinear distance.

The value of Sid, i] in the Dreyfus-Wagner recurrence is the length of a minimal Steiner
tree on a subset d of the first k - 1 pins, where the tree is constrained to include node i
of the graph.

We adopt the convention that a set d is indexed by the binary value of its bit-vector.
Thus d = 1 is the singleton consisting of the first pin, d = 2i is the singleton consisting of
the (i - 1)st pin, and d = 2J:-l - 1 is the set consisting of all but the kth pin. We write
node(p) to denote the Hanan grid node corresponding to pin number p, 0 $ node(p) < n.
Finally, we write dist(i,j) to denote the rectilinear distance between two nodes i and j,
dist(i,j) = lx(i)-x(j)I + IY(i)-y(j)I, where x() and y() are the x and y coordinates of
a node.

With these conventions, the length of the minimal Steiner tree on the given k pins is
given by the value of S[2l:-l - 1, node(k)].

For analysis and discussion, we break down the Dreyfus-Wagner computation into
three phases.

1. The "initialization" phase: T!d, i] = +oo.

2. The "add term" phase updates elements of T by the recurrence T!d, i] =
min(T!d, i], S!e, i] + S[d - e, i]), where the minimization is taken over all proper
partitions (e, d - e) of d. Note that no S values a.re required to perform this mini­
mization if d is a. singleton.

3. The "completion" phase computes a. row of S from a. row of T, using the distance
function on the underlying graph: S[d, 11 = min;~"(T[d,j] + dista.nce(j, i)).

The edges in the minimal Steiner tree a.re implicit in the completed S[d, 11 a.rra.y. One
need only examine the terms in the recurrence tha.t generated each S[d, 11 value to discover
a node j and a set e that acheived the minimum length tree. The node j is then part of
a minimal Steiner tree whose subtrees contain pin sets e a.nd d - e. A simple recursive

3

backtracking routine can then print out an optimal Steiner tree in O(n21) time. We will
not discuss this backtracking procedure further, as it is described adequately in [12] and
we have made no effort to accelerate it. Solving the recurrences takes 0(n31

) time, so the
0(n21) time required for the backtracking phase is irrelevant in theory and, we found, in
practice.

Dreyfus and Wagner suggest saving space by storing both S and T in the same array.
They rely on the control structure of their computer program to perform all "add terms"
on a. row T[d, *] before overwriting that row with the "completed" values S[d, *l· Their
control structure also ensures that every row S[d, *] is completed before it is referenced
by another row's addterm process.

We adopt Dreyfus and Wagner's suggestion, so our computation requires 2k-l -1 rows
of n values. To save space in ma.in memory, we represent S values a.s 16-bit short integers.
Since most compilers do not support unsigned arithmetic on 16-bit shorts, we a.re thus
limited to computing Steiner trees of length a.t most 215 - 1 = 32767. Our preliminary
analysis shows that this limitation poses no difficulty for any Steiner problem with less
than 30 pins drawn from a. 1000 x 1000 grid. Furthermore, we will be able to extrapolate
our results on the 1000x1000 results grid to the sta.nda.rd model, pin sets drawn uniformly
from the unit square. Finally, a slight modification to our program allows S values to be
32-bit long integers, with only a modest increase (perhaps 30%) in runtime and in disk
space (less than a factor of 2).

For the case k = 23, the complete S a.rra.y would thus occupy 2·232 ·222 = 4.5 gigabytes.
This not only beyond the virtual memory ca.pa.city of a. contemporary workstation, it
would even strain the addressing capabilities of a Cray. So we a.re forced to write our
own memory manager, swapping in portions of the S array from disk whenever these are
needed.

We decided to store S in row-major format: the elements of each row S[d, *] are
contiguous, both on disk and in ma.in memory. As will be seen below, this allows an
efficient coding of the inner loop of our computation. Row S[d, *] is stored in disk file
number l d/ M J, where M = 212 for our Sun-4 code and M = 213 on the RS-6000. Our
RS-6000 has twice as much ma.in memory (48 mega.bytes) as our Sun-4 (24 megabytes),
so we cut our I/O overhead by bringing in larger blocks of S.

Note that the "completion" step is inherently I/0-efficient, given our row-major stor­
age format. Care must be taken, however, in the "addterm" step to avoid excessive I/O.
The Deneen-Shute control structure, shown in Figure 1, suffers from this defect. Note,
however, the elegance and simplicity of their iteration over all 2-partitions (e, d - e) of a
given bitvector set d.

The cpu will be idle for 10 milliseconds or more whenever a. page (4 or 8 Kbytes on
most workstations) is paged into memory. Thus the disk time overhead per element is
a.t lea.st 2.5 microseconds, even if the page is full of elements that we will reference. A
modern workstation can do dozens of operations in this a.mount of time.

As a. rule of thumb, then, if you want good cpu utilization (in order to get good real­
time performance), your code should use a. da.ta. element dozens of times for ea.ch I/O
operation on that element.

For most d > 21 - 2, the Deneen-Shute code will page through most of the S a.rra.y to
compute a. single row S[d, *]· Thus if the S a.rra.y does not fit into ma.in memory, the cpu
utilization will drop dramatically during the latter pa.rt of the calculation. In fact, both
S[e, i1 and S[d - e, i] will be used less than once, on a.vera.ge, ea.ch time they a.re read from

4

I define NextSubset(e,d) ((d) t ((e) - (d))
I define FirstElement(d) HextSubset(O,d)
for (d=1; d < (1<<k); d++) {

}

Sinit(d);
for (e=FirstElement(d); e<d-e; e=NextSubset(e,d)) {

Sa.ddterm(d,e);
}

Sfinish(d);

Figure 1: The Deneen-Shute control structure.

disk, so the computation slows down by a. factor of a.bout 100.

The control structure suggested by Dreyfus and Wagner is only a little better in its
1/0 efficiency. They suggest completing S[d, *] for a.11 subsets d of cardinality c, before
performing any addterms on subsets of cardinality c + 1. Furthermore, they suggest
completing each S[d, *] before performing any add terms on other rows of S. The Dreyfus
and Wagner control structure will therefore thrash whenever main memory is not large
enough to hold about 2" /Vk rows of S, that is, the S values for a.11 subsets d of cardinality
c, lc/2J, and c - lc/2J.

We discovered a recursive control structure that guarantees locality of reference at
all levels of the memory hierarchy. Up to now, we have only been concerned with disk
memory and main memory, but modern workstations also have a data cache that can be
accessed many times faster than main memory. Also, some of our files could be stored
remotely on a slower disk or tape drive. Fina.lly, a cpu might have a sma.11 fast on-chip
cache, a.s well a.s a slower off-chip cache memory. It is possible to tune an algorithm to
take optimal advantage of each level of the hierarchy - indeed, significant speedups can be
obtained when you have good estimates for memory size and access times [29]. However,
in this case we were able to design a non-parametrized control structure that does well on
every level of the hierarchy, in the following sense:

Theorem 1 The Scale() algorithm of Figure f will perform 0(3m /2m) Saddterm opera­
tions, on average, on each row of S in a memory with a total capacity of 2m rows, if the
memory is managed with a least-recently-used replacement atrategy.

Since the full computation requires 0(n3") elemental operations and 0(n2") space,
this theorem describes the best-possible uniform bound on operations per unit space. We
will discuss this optimality property more fully in the workshop version of our paper.

We will prove the theorem below, after a little more discussion of the underlying issues
and a description of the operation of Scale().

Figure 2 shows our recursive control structure, ca.lled from the main program by
Scalc(O, 0, dlim/2). Most recursive routines a.re difficult to understand at first, and this
one is no exception. The design principle of Scale() is to recurse "uniformly11 over the d
and e indices into S. In particular, it is an inefficient use of memory to hold d fixed while
letting e and d - e range widely. Our objective is to perform Saddterms in an order that
maximizes the similarities among the sets d and e.

5

t define IsSingleton(d) ((d) == firstelement(d))
void Scalc(d, e, PinVal)
long d, e, PinVal;
{

}

if (PinVal == 2 U e != O) { /• compute 9 "addterm" leaves */
Sadd9terms(d, e);

} else if (PinVal == 0) { /• leaf node, general case •/
if (d != 0) { /• note: S[O] is never referenced •/

if (lsSingleton(d-e)) {

}

Sinit(d);
}

if (e == 0) { /• no more addterms are needed •/
Scomplete(d);

} else { /• add term (e,d-e) to row d •/
Saddterm(d, e);

}

} else { /• internal node: 3-way recursion except on left spine •/
Scalc(d, e, PinVal/2); /• (0,0) subtree•/
if (d != 0) {

Scalc(d+PinVal, e+PinVal, PinVal/2); /• (1,1) subtr_ee •/
}

Scalc(d+PinVal, e, PinVal/2); /• (1,0) subtree •/
}

}

Figure 2: Our recursive control structure Scale().

6

Note that d, e, and (21 - 1 -1)- d- e form a 3-way partition over the set {O, 1, ... k - 2}
of pins. Our recursive control structure is thus applicable to a.ny combinatoria.l a.lgorithm
that is based on an enumeration of all 3-way partitions of a set.

A typical "leaf" of our recursion is a.n Sadd term for a. (d, e) pair, where e is a proper
subset of d that contains highest-numbered pin of d. Special-case leaves, separated out by
the if-then testing of the non-recursive prefix of Scale(), cause rows of S to be initialized
or completed a.t appropriate times. Nine related Saddterm leaves ma.y be computed at
once, saving on register loads a.nd stores. More on this optimization later.

The subsetting of d and e is accomplished by the 2- or 3-way recursion of the last
nine lines of Sea.le(). The "(0,0) subtree" corresponds to leaving a pin out of d, a.nd
therefore out of e. The pin currently under consideration has value "Pin Va.I" in the binary
representation of a. subset. The "(0,1) subtree" corresponds to including the current pin
ind, but not in e. This subtree is not generated unless d already has some pins in it (dlow
!= 0), thereby insuring that e will contain the highest-numbered pin of d. Finally, the
"(1,1)" subtree corresponds to the inclusion of the current pin in both d and e.

Proof of Theorem 1. The reference-locality property of our Sea.le() recursion is a
reflection of the fact that each subtree is completed before the next is started. Just three
blocks of storage are referenced in the 0(3h) leaves of a subtree of height h = log2 (Pin Va.I),
namely those rows S[x, *] with x in one of the three ranges d $ x $ d+Pin Va.I, e $ x $
e+ Pin Val, and d - e $ x $ d - e+ Pin Val. If 3 · 2h $ 2m, then all three blocks will fit in
a memory capable of holding 2m rows. During the computation of a subtree of height h,
no reference will be made to any row of S outside of these blocks, so a lea.st-recently-used
replacement policy will not discard any row within the blocks until all rows outside the
blocks have been overwritten. 0

We take explicit advantage of the memory access pattern of Scale() by keeping just
three blocks of S in memory at any time. File reads and writes occur only when the
recursion variable "Pin Val" is equal to the number of rows of S in a file.

We note, in passing, that we could avoid using file I/O if we had sufficient virtual
memory in our workstations. Our recursive control structure, and the demand-paging
strategy of a typical workstation opera.ting system, would do a good job of optimizing its
use of all data pages currently available in ma.in memory. However, our use of explicit
file I/O leads to significant practical advantages. First, we gain a constant-factor speedup
because we can predict the pattern of file accesses, reading a large file a.s a single block
instead of accessing portions of it upon demand. More importantly, since we compile
our Sun4 program to use at most 8 megabytes of main memory (16 megabytes on the
RS-6000), we can run our programs in the background with a "nice" cpu priority, without
disturbing other uses of the workstation. In particular, our code will not cause other
programs to be paged-out, so we do not lose the good response-time on multiple windows
that one comes to expect from a workstation.

As mentioned above, the uniform reference-locality property of our recursion also
allows our program to ma.ke good use of all lines of data cache that a.re a.va.ilable to
it, at any given time.

Locality of reference a.t the register level is a. little harder to arrange. Early versions
of our program had no test for Pin Val = 2; all Saddterms were computed one row a.t a
time with a literal translation of the Dreyfus-Wagner recurrence: "for (i = O; i < n; i + +)
if (S[d, i] > S[e, i] + S[d - e, i]) S[d, i] = S[e, i] + S[d - e, 11);".

Optimized Sun4 code for the Saddterm inner loop required 12 statements (that is, 12

7

clock ticks) for each min-add operation, in the overwhelmingly-common ca.se that S[d, i]
is not updated. The Sun compiler (cc -04) did not unroll this loop. Even if it had done
so, a.t a. minimum we would need three memory loa.ds, one addition, one compare, and one
branch, for a total of six clocks per min-a.dd. If, instea.d, we interleave a.ddterm operations
on adjacent rows Sid, i], Sid+ 1, i], Sid+ 2, i], and Sld+3, i], for any d == 0 mod 4, we can
amortize the memory references to the eight data. elements Sle, i], Sle + 1, i], Sle + 2, 11,
Sle+3, i], S[d-e, i], Sld-e+ 1, i], S(d-e+2, 11, and S[d-e+3, 11, over nine min-a.dd steps.
An idea.I Sun4 compiler would then issue code requiring just 4-1/3 clocks per min-add,
since just 12/9 = 4/3 memory reads are sufficient, on average, for a min-a.dd step.

Despite extensive experimentation with various C-la.nguage constructs, we a.re still
unable to persuade Sun's "cc -04" optimizer to produce code that took less than 8 clocks
per min-add in Sadd9terms(). In contra.st, it did not take us long to write specialized C
code for Sa.dd9terms() on the RS-6000 that runs at approximately 5 clocks per min-a.dd.
The limiting speed of the RS-6000 on the Sa.dd9terms() inner loop is just 3-1/3 clocks per
min-a.dd: 1-1/3 clocks for the memory accesses (the same as the Sun4), one clock for the
addition, and one for the comparison. The branches add no latency on an RS-6000, if the
comparison result is available sufficiently far in advance of the branch instruction.

Given enough incentive and/or inspiration, we believe we could write ma.chine-specific
versions of Sa.dd9terms() that would run close to the limiting speed on both the Sun4 and
the RS-6000, thereby speeding up our code appreciably (perhaps by 60%). Additional
speedups could then be obtained by interleaving even more a.ddterms: we might try to
write a.n Sa.dd27terms() routine that would perform 33 = 27 min-a.dd steps with only
3 · 23 = 24 data reads, in a.n e:lfort to get below 3 clocks per min-a.dd on the RS-6000 and
below 4 clocks per min-add on the Sun4.

3 Algorithmic linprovements

Dreyfus and Wagner proposed their dynamic program as a method for solving the Steiner
problem on graphs. In our application, the graphs have special structure which we were
able to exploit for significant speedup.

First we realized that the Dreyfus-Wagner "completion" recurrence S[d, i] =
minj<n(T[d,j] + distance(j,i)) is inefficient for a. graph of bounded degree, or indeed
for ai;°y sparse graph. It would be better to perform a. breadth-first search, or some other
"wavefront propagation" scheme, calculating a.n entire row S[d, *] in time proportional to
the number of edges in the underlying graph. This way, we could calculate an entire row
of S in 0(n) time, rather than the 0(n 2) time of the Dreyfus-Wagner recurrence.

Further consideration revealed that our grid graphs have another special property. A
minima.I-length path between any two nodes i and j can always be formed from some
rotation of an L-shaped set of edges: either going left then up, or up then right, or right
then down, or down then left. We thus rewrite the Dreyfus-Wagner completion recurrence
as a four-step process:

for (i=O; i<n ;i++) s [d' i] = (S[d,i], S[d,left(i)] + ldista.nce [i]);
for (i=n-1;i>=O;i--) s [d. i] = (S[d,i], S[d,right(i)] + rdistance [i]);
for (i=O; i<n ;i++) s [d. i] = (S[d,i], S[d,up(i)] + udista.nce [i]);
for (i=n-1;i>=O;i--) s [d. i] = (S[d,i], S[d,dovn(i)] + ddista.nce [i]);

8

Here left(i) is the left neighbor of node i, if a.ny, otherwise it is the index of a special
node at distance oo from every other node. The other node adjacency functions right(),
up(), a.nd down() a.re defined similarly. We index the nodes so that left(i) = i - 1 and
up(i) = i + k,., where k,. is the number of distinct x coordinates in our Ha.nan grid. This
adjacency function is not accurate a.t the boundary of the grid, however in this routine we
need only to have very large values stored in the various distance matrices to represent the
length of a.n edge to a. non-existent neighbor. Also note that we must iterate in different
node orders, depending on the direction of "wavefront propa.ga.tion."

As ca.n be seen from the above, our revised Sfinish() code updates each a.rra.y element
S[d, i] a.t most four times, with a. very low a.mount of overhead. Thus Sfinish() never
dominates the runtime of our code, except possibly for very small k.

As mentioned in the introduction, we made a. second algorithmic improvement a.t the
suggestion of Shmuel Winograd. He thought that his idea was probably well-known, a.nd
indeed it did not surprise us - but we hadn't thought of doing it on our own. The idea is
simple. Without increasing the Steiner tree length, the pin a.t the maximal x-coordinate
ca.n be connected by a. horizontal edge to the Ha.nan grid node of next-smaller x-coordina.te
a.nd identical y-coordina.te. We thus run the Dreyfus-Wagner recurrence over a smaller
Hanan grid, with the x-maximal column of nodes removed, a.nd with the x-ma.ximal
pin mapped onto its x-neighbor Hanan grid point. A simple post-processing step can
add the eliminated horizontal edge to the Steiner tree produced by the Dreyfus-Wagner
recurrences.

By similar reasoning, we can strip the x-minimal column from the Hanan grid, as well
as the y-extremal rows. In the end, we are left with just n = (k - 2)2 nodes for the
Dreyfus-Wagner recurrences, reducing our time and space by a factor of 1 - k2 /(k - 2)2 ,

or approximately 400%/ k.

Our grid reduction has a. non-trivial cha.nee of reducing the number of pins in our
problem, even for non-degenerate point sets. Two pins will coincide after the grid reduc­
tion if they were among the four nodes forming a. square at the upper-left corner of the
Hanan grid, or indeed if they are in the four-node square a.t any of the corners of the
grid. More formally, if we represent the pins by listing their y-ranks, after sorting the pins
by their x-rank, any of the k! permutations of the values 1 through k are equally likely
to appear if the pins' x- and y-coordinates a.re drawn from independent distributions.
There are eight patterns of y-ra.nks that will lead to a. reduced number of pins after the
grid is reduced, namely (1, 2, ...), (2, 1, ...), (k, k - 1, ...), (k - 1, k, ...), (... , 1, 2), (... , 2, 1),
(... , k, k-1), and(... , k -1, k). The probability of observing a.t least one of these patterns
is thus 8(k - 2)!/(k)! = 8/k2 • For pinsets of cardinality k = 20, we therefore have a
2% chance of needing to solve a Dreyfus-Wagner recurrence on 19 or fewer pins. Our
computation speeds up by a factor of 3 whenever a pin is removed. On average, then, the
speedup due to "cornerpoint pin reduction" is (3-1)8/k2

, or 4% fork= 20. Fork= 10,
the speedup is much more dramatic: 16% on average.

It may well be possible to obtain more drama.tic speedups, on average, by additional
reductions to the Hanan grid. Near the boundary of the grid, one might be able to assert
the existence of more than the four "Winograd" edges in a minimal Steiner tree.

Another possible avenue for algorithmic improvements is suggested by the research
of Eppstein et al. into the structure of dynamic programming [13]. We see no direct
application of the Eppstein-Ga.lil-Gia.nca.rlo ideas to the Dreyfus-Wagner recurrences, but
of course this does not prove that such a.n application does not exist.

9

4 Data Compression

Data compression on our temporary files afforded us notable savings in space and time.
Our research in this area was mostly ad hoc. We merely applied standard techniques until
we obtained good compression ratios.

Our earliest code formed a Unix pipe to the 4.3bsd system utility "compress." This is a
Ziv-Lempel compression method that does a good job of finding near-field correlations on
a byte-by-byte basis. Our S[d, i] data is, however, organized on a much grander scale: the
individual elements are 2-byte integers, not single bytes; an S[d, i] element has significant
correlations not only to its (near-field) right- and left- neighbors S[d, i + 1] a.nd S[d, i - I],
and to its (distant) up- and down- neighbors S[d, i + kx] and S[d, i - kx], but also to its
(very distant) "set-neighbors" S[d', 11 where d' is at unit Hamming distance to d. Thus we
were pleasantly surprised to obtain a. 3:1 compression ratio from the "compress" utility.

We took our next idea. from picture compression: coding an S value by its difference
from a. linear predictor. Our first predictor was derived from the familiar 2 x 2 Laplacian
difference opera.tor on the four values in its down-left neighborhood, namely S[d, i] =
S[d, i - 1] + S[d, i - k..,] - S[d, i - k.., - 1] +A, where k.., is the number of columns in our
reduced Ha.nan grid. If there are fewer than four S values in a. down-left neighborhood,
as occurs for nodes in the first row and the first column of the reduced Ha.nan grid, we
filled in zeros for the missing S terms.

Since most A values were zero, we transmitted the length of any sequence of successive
zeros with a one- or two-byte sequence. A one-byte code sufficed for all runs of at most 16
zeros, Runs of up to 256 zeros required two code bytes, and longer runs were decomposed
into runs of length at most 256. To obtain longer runs, we adjusted the transmission order
of the Ha.nan grid, transmitting the first row and column of the grid (i.e., the As with
incomplete predictor functions) before sending the rest of the grid. We sent non-zero A
values with one or more code bytes, depending on the magnitude of the value.

Our compression ratios improved dramatically when we incorporated set-neighborhood
correlations into our scheme. For computational convenience, we stored the array in Gray
code order, d = d' ffi (d' /2), so that row S[d', *] was stored on disk immediately after row
S[d' -1, *]. By a well-known property of Gray codes, the set d corresponding to the (d')th
row of a disk file is at unit Hamming distance (i.e. differs by just one pin) from the set
corresponding to the (d' - 1)th row of the file. It was thus easy to take a second-order
difference, transmitting only the difference between highly-correlated, file-row-adjacent,
A values: A 2 (d', i) = A(d', i) - A(d' - 1, i). The first row in each disk file is encoded with
our previous scheme, as a. string of encoded A values.

Our compression ratios vary somewhat from file to file within a. given computation,
from random pinset to random pinset drawn from the same distribution, and (most dra­
matically) when the x-range or y-ra.nge of the distribution is varied. Typically, we see 9:1
compression for files of 212 rows when the pins are drawn from a 1000x1000 grid. For
this reason, we believe that a. 500-mega.byte disk should be sufficient for a 23-pin problem.
(Unfortunately, we have access to only 300 megabytes of scratch space on disk, so we a.re
only able to run 22-pin problems at the present time.)

Better compression ratios could no doubt be acheived with more complicated, or more
clever, schemes. Our present scheme has the virtues of speed and simplicity, requiring
only a few dozen instructions on average to compress or decompress an average element
of S. The 9:1 ratio we typically observe is sufficient to remove disk access time as a

10

consideration in total runtimes. With uncompressed files of 212 rows, our Sun4 ran at
only 80% cpu utilization. With compressed files of 212 rows, we run at 98% cpu utilization,
even though it takes almost a second to open a file, and even though we can only read
files at 100 or 200 Kbytes/second over our Ethernet connection to a remote ftleserver.

5 Generating Random Pinsets

Originally, we generated pinsets uniformly distributed in a. 1000x1000 grid by the following
method. We initialized the 4.3bsd random() additive congruential generator by calling
srandom(seed), where we took the value for seed from a disk file. We called the generator
twice for each pin, once for each coordinate, extracting the coordinate values from the
most-significant-bits of the pseudorandom integer:

for (i=O; i<k; i++) {

}

x[i] = (long)((float)random() I (float)HAXLONG • 1000.0);
y[i] = (long)((float)random() I (float)HAXLONG • 1000.0);

Then we called random() one more time, writing the return value into the seed file for use
in reseeding the generator on the next program run.

This process worked fine until one day it looped on a series of 16-pin sets: the 33rd
number in random()'s sequence when initialized with a seed of 1380895877 is the same
number, 1380895877.

We then tried to save random()'s entire state to a disk file, using its setstate() and
initstate() calls. This was trickier than it seemed at first, since random() maintains some
state information in private local variables. Unless these variables are saved and restored
along with the state table, random() will not be restartable. In a pathological case, if
only one call to random() is made on each program run, the resulting "random number
sequence" is just an arithmetic progression.

We finally resolved our difficulties, within the constraints of the random() interface,
when we discovered that random()'s internal state varies in a. cyclic fashion, modulo its
table size. We thus make sure that random() is called 31j times, for some j, on each
program run. In this way, we can obtain the same sequence from a restarted genera.tor as
we would have seen if the generator were kept running undisturbed. We therefore expect
to enjoy the long-period guarantees of the additive congruential scheme.

So far, we have observed no defect in our point generation scheme. The observed
distribution and average length of trees for 2-pin sets matches the theoretical distribution
(a third-order polynomial with a breakpoint) very nicely. The observed average length of
Steiner trees for 3-pin sets matches the theoretically-predicted average length. And the
observed number of "corner-pin reductions" for 16-pin sets matches the value derived in
Section 3.

Random pinsets could also be obtained from a. scheme based on a multiplicative con­
gruential generator, such as the 4.3bsd ra.nd() or ra.nd48(). One should be cautious with
such genera.tors, however. Frequently-recommended 32-bit moduli and multipliers (e.g.
the minimal standard generator [24) RNUN in the IMSL library) produce pinsets with
noticeable "stripes" (22]. A combined scheme, based on two multiplicative generators, can
be used to overcome this defect [22].

11

6 Conclusion

We have described a method for computing rectilinear Steiner minimal trees on up
to 23 pins on a. contemporary workstation with a. 500-megabyte disk. Our method is
based on the Dreyfus-Wagner dynamic program for solving Steiner problems on arbitrary
graphs[l 2].

To keep the Dreyfus-Wagner algorithm from "thrashing" a. workstation's disk, we
found it necessary to reorder the computation. Our reordering is compactly expressed
by a recursive control program. It is provably the best such reordering for maintaining
locality of reference across the entire memory hierarchy. Thus it not only prevents disk
thrashing, it speeds up the computation by keeping an appreciable fraction of its data
references within whatever portion of the cpu cache is available to the running process.

A theory of computational reordering is emerging: there is a body of previous work
on ordering matrix multiplications, Fourier transformations and sorting algorithms for
locality [14, 18, 2, 3, 4, 6, 29, 30]. However, no one has previously studied iterations over
three-way partitions of sets. Such partitions are encountered in other forms of dynamic
programming, so our recursive control structure may well be useful in other combinatorial
problems.

Someday, perhaps, the problem of ordering a set of recurrences for efficient computa­
tion on a workstation will be well-enough understood to be made part of an optimizing
compiler. Also, some future operating system might be able to take runtime "hints" from
the code emitted from a re-ordering compiler, causing it to initiate paging activity in
advance of a forthcoming demand, and to make more accurate decisions about which data
pages to discard or write-back to disk.

As described in Section 3, we obtained significant speedups by rewriting the Dreyfus­
Wagner recurrences in view of the underlying rectilinear metric space in our application,
and by reducing the Hanan grid. We have thus made a small contribution to the theory
of Steiner tree algorithms. One could hope for further reductions in the Hanan grid that
would lead to further speedups in the Dreyfus-Wagner recurrences, as well as improve­
ments in the number of terms required to compute the dominant "addterm" recurrence.

We documented some inefficiencies in the code emitted by optimizing compilers for
our inner "addterm" loop, indicating that another factor of two speedup on our code is
available, either by low-level optimizations or by compiler improvements. We believe that
such optimizations can and should be handled by the compiler, so we hope that Section
3 of our paper will be used as a case study by compiler designers.

In Section 4, we illustrated how known techniques in the field of picture compression
can be applied to the problem of storing large data arrays on disk. The resulting arrays
are not only nine times smaller but, because they a.re smaller, they can be accessed more
rapidly.

Section 5 documented a problem with the 4.3bsd random() utility. This should serve
as a cautionary tale for anyone trying to collect experimental data on probabilistically­
generated objects, especially if these objects are computed from point sets uniformly
distributed in the unit square. Our resolution of our problem with random() should
be of interest to anyone using this pseudorandom generator. Unfortunately, we cannot
guarantee that random() will not exhibit some other defect in the future. Future research
in this area is of vital importance, so that we can make statistically-valid conclusions on
the basis of pseudorandom geometric experimentation.

12

We are currently using our Steiner code to collect data on sets of 2 to 23 pins chosen
uniformly over a large grid. Tentatively, we assert that a rectilinear Steiner minimal tree
on 10 to 20 pins is about 10.7% smaller than a rectilinear minimal spanning tree, on
average, and that the ratio appears to be constant for k > 10. We a.re thus able to assert
that the best high-speed heuristics currently available a.re almost as good as any possible
heuristic, in that they deliver about a 10% reduction.

A possible future use of our code is as a. subroutine in the Komlos-Shing approximation
scheme [21). In this scheme, one uses an exact Steiner algorithm on O(log n) pins to solve
a.n n-pin problem with vanishingly-small relative error. It would be interesting to see
how the Komlos-Shing approximation scheme behaves in a. practical setting, where our
code can be called as a subroutine for problems of size k, for some k small enough for
rapid computation with our code. Recent results of Deneen and Dezell suggest that the
planar dissection method proposed by Komlos and Shing, while effective asymptotically,
is ineffective when there are only 5 to 8 points, on average, in the pinsets for which
optimal Steiner trees are generated. The resulting Steiner trees a.re longer, on average,
than the minimum spanning tree [10)! Clearly, more algorithmic work is needed if the
Komlos-Shing idea is ever to be translated into a. practical heuristic.

We did not fully explore all known algorithmic options for computing exact rectilinear
Steiner trees. Instead we concentrated our efforts on the Dreyfus-Wagner recurrences[l2].
It may well be that a branch-and-bound technique [32) will eventually prove superior
in average case runtime, possibly in conjunction with a divide-and-conquer method that
takes advantage of the planarity and rectilinea.rity of the problem [28].

7 Acknowledgements

We are grateful to Linda Deneen and Gary Shute of the University of Minnesota-Duluth
for making their Dreyfus and Wagner implementation, and other graph-theoretic source
codes, available to us. Much of this research was accomplished while Clark Thomborson
was on a one-month appointment as an Academic Visitor at IBM's T. J. Watson Research
Center.

References

[1] P. K. Agarwal and Man-Tak Shing. Algorithms for special cases of rectilinear Steiner
trees: I. points on the boundary of a rectilinear rectangle. Network8, 20:453-485,
1990.

[2] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A Model for
Hierarchical Memory. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, May 1987.

[3] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical Memory with Block
Transfer. In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science, October 1987.

(4) Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116-1127, September 1988.

13

15] A. V. Aho, M. R. Garey, a.nd F. K. Hwang. Rectilinear Steiner trees: Efficient
special-case algorithms. Networks, 7:37-58, 1977.

16] B. Alpern, L. Carter, a.nd E. Feig. Uniform memory hierarchies. In Proceedings of
the S1st Annual Symposium on Foundations of Computer Science, October 1990.

17] Piotr Berman a.nd Viswa.na.tha.n Ra.ma.iyer. An approximation algorithm for the
Steiner tree problem. In Proceedings of the S£nd Annual Symposium on Foundations
of Computer Science, October 1991.

18] Marshall W. Bern. Two probabilistic results on rectilinear Steiner trees. In Pro­
ceedings of the 18th Annual ACM Symposium on the Theory of Computing, pages
433-441, Ma.y 1986.

19] Marshall W. Bern a.nd Ma.rcio de Carvalho. A greedy heuristic for the rectilinear
Steiner tree problem. Technical Report UCB/CSD 87 /306, Computer Science Divi­
sion, U.C. Berkeley, 1987.

110] L. L. Deneen a.nd J. B. Dezell. Using partitioning and clustering techniques to gen­
erate rectilinear steiner trees. In Second Canadian Conference on Computational
Geometry, August 1990.

[11] Linda. L. Deneen a.nd Gary M. Shute. A plane-sweep algorithm for rectilinear Steiner
trees with deferred connections. Technical Report 90-6, University of Minnesota,
Duluth, 1990.

[12] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195-207,
1972.

[13] David Eppstein, Zvi Ga.lil, a.nd Raffaele Giancarlo. Speeding up dynamic program­
ming. In Proceedings of the £9th Annual Symposium on Foundations of Computer
Science, October 1988.

[14] R. W. Floyd. Permuting information in idealized two-level storage. In R. Miller a.nd
J. Thatcher, editors, Complexity of Computer Calculations, pages 105-109. Plenum,
1972.

[15] M. R. Garey a.nd D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal of Applied Mathematics, 32(4):826-834, June 1977.

[16] M. Ha.nan. On Steiner's problem with rectilinear distance. SIAM Journal of Applied
Mathematics, 14(2):255-265, March 1966.

[17] Jan-Ming Ho, Gopalakrishna.n Vijayan, a.nd C. K. Wong. New algorithms for the
rectilinear Steiner tree problem. IEEE Transactions on Computer-Aided Design,
9(2):185-193, February 1990.

(18] J. W. Hong and H. T. Kung. I/O complexity: The Red-Blue Pebble Ga.me. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, May
1981.

[19] F. K. Hwa.ng. The rectilinear Steiner problem. Design Automation and Fault Tolerant
Computing, 2:303-310, 1978.

14

[20] F. K. Hwang. An 0(n log n) algorithm for suboptimal rectilinear Steiner trees. IEEE
Transactions on Circuits and Systems, CAS-26(1):75-77, January 1979.

[21] Janos Komlos and M. T. Shing. Probabilistic partitioning algorithms for the recti­
linear Steiner tree problem. Networl:s, 15:413-423, 1985.

[22] Pierre L'Ecuyer. Efficient and portable combined random number genera.tors. Com­
munications of the ACM, 31(6):742-774, June 1988.

[23] Jerry H. Lee, N. K. Bose, and Frank Kwa.ngming Hwang. Use of Steiner's problem in
·suboptimal routing in rectilinear metric. IEEE Tran8action8 on Circuits and Systems,

CAS-23(7):4 70-476, July 1976.

[24] Stephen K. Park and Keith W. Miller. Random number genera.tors: Good ones a.re
ha.rd to find. Communications of the ACM, 31(10):1192-1201, October 1988.

[25] Dana llichards. Fa.st heuristic algorithms for rectilinear Steiner trees. Algorithmica,
4:191-207, 1989.

[26] Michal Servit. Heuristic algorithms for rectilinear Steiner trees. Digital ProcesHs,
7:21-32, 1981.

[27] J. MacGregor Smith, D. T. Lee, and Judith S. Liebman. An 0(n log n) heuristic
algorithm for the rectilinear Steiner minimal tree problem. Engineering Optimization,
4:179-192, 1980.

[28] Clark D. Thomborson, Linda L. Deneen, and Gary M. Shute. Computing a rectilinear
Steiner minimal tree in n°<./ii"> time. In A. Albrecht, editor, Parallel Algorithms and
Architectures, pages 176-183, Berlin, June 1987. Akademie-Verlag.

[29] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory i:
Two-level memories. Technical Report CS-90-21, Department of Computer Science,
Brown University, September 1990.

[30] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory
ii: Hierarchical multi-level memories. Technical Report CS-90-22, Department of
Computer Science, Brown University, September 1990.

[31] Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the
Steiner problem in graphs. Acta Informatica, 23:223-229, 1986.

[32] Y. Y. Yang and Omar Wing. Optimal and suboptimal solution algorithms for the
wiring problem. In IEEE International Symposium on Circuit Theory, pages 154-158,
1972.

[33] Y. Y. Yang and Omar Wing. Suboptimal algorithm for a. wire routing problem. IEEE
Transactions on Circuit Theory, pages 508-510, September 1972.

[34] A.Z. Zelikovsky. An 11/8-approxima.tion algorithm for the Steiner problem on net­
works with rectilinear distance. unpublished manuscript, March 1991.

15

