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ABSTRACT 

We consider the problem or routing muJtiterminal nets in a two-dimensional gate-array. Given a 

gate-array and a set or nets to be routed, we wish to find a routing that uses as little channel space 

as possible. We present a deterministic approximation algorithm that uses close to the minimum 

possible channel space. We cast the routing problem as a new form of zero-one mullicommodity 

flow, an integer programming problem. We solve this integer program approximately by first 

sof\'ing its linear program relaxation and then rounding any fractions that appear in the solution 

to the linear program. The running time of the rounding algQrithm is exponential in the number 

of terminals in a net; the algorithm is thus best suited to cases where the number of terminals on 

each net is small. 
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l. Problem Statement 

A gate-array is a two-dimensional array of gates. A logic circuit is realized by connecting 

together some of these gates. In an instance of the routing problem, we are gh•en a collection of 

sets of gates that are to be connected. Each such set of gates is called a net. The space over the 

array is used for routing the wires interconnecting the gates. Wires follow rectilinear or 

"Manhattan" paths between gates. The number of wires that can pass between adjacent gates 

is limited by the width of the bound~ry between the gates. This boundary is called tbi: channel 
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between the gates, and the number of wires that can pass through it is called the capacity of that 

channel. In solving the global routing problem, we are to connect the gates in each net without 

violating the capacity constraints of any channel. These ideas are made precise in the fonnal 

model below. 

1.1. Om Approach 

We show that tbe global routing problem for multiterminal nets can be cast as a special form 

of zero--0ne multicommodity flow. This is an zero--0ne linear program that is difficult to solve 

efficiently; indeed, the problem is NP-complete even for two-tenninal nets (10]. We therefore 

try to obtain an approximate solution to this integer program whose solution is close to the opti

mum. We first solve a linear program relaxation of the integer program; this can be done in 

polynomial time [3]. The solution to the linear program could contain fractional values for some 

of the variables, and is therefore not an admissible solution to the global routing problem. We 

"round" these fractional values in deterministic polynomial time in such a manner that the re

sulting integer solution (global routing) is close to the best possible in terms of channel space. 

The main techniques developed in this paper are: ( 1) the formulation of multi terminal routing 

as a new form of multicommodity flow problem; and (2) a simple deterministic algorithm for 

rounding linear program solutions that is easy to analyze. Using these methods, we develop an 

algorithm for global routing that is provably good in that it finds a solution close to the best pos

sible. Our performance guarantee \Vill be in terms of the best possible routing for the instance. 

The notions of "best possible routing" and "nearly optimal" will be apparent from the model 

below. 

1.2. The Global Routing Model 

1. A regular array is a two-dimensional m x n lattice L(V, E) where the lattice nodes represent gates, 

and the edges between nodes represent channels through which nets can be routed. 

2. A net is a set of nodes that are to be connected. 

3. An instance of the routing problem is a set R of nets. 

4. A connection between two nodes \.~ and vb is a simple path in L between v0 and vb . A net is said to 

be routed if there exist connections between every pair of nodes in the net. A net is thus routed 

by specifying a tree in L that spans the nodes of the net. 

5. A solution to the routing pr9blem is a set S of trees such that every net is routed. 

6. The width of an edge given S is the number of trees of S that use that edge. The width of the 

solution S is the maximum edge width among all the edges. 

7. An optimal solution is one whose width is the minimum, among all possible solutions .. 
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A number of features of the model are noteworthy. We are interested only in the number of 

routes passing through an edge - corresponding to the "flux" through a channel - and not in the 

manner in which wires are physically arranged within the channel. We are thus interested only in the 

global routing problem and not in the channel routing problem. Furthermore, we are solving a 

"bottleneck" optimization problem, one in which we consider the edge with the maximum width - the 

worst case occurring in the array. This is reasonable in practical situations, where we cannot afford 

to congest even one channel in the array. Finally, it should be observed that the global routing 

problem in practice is a feasibility problem. We are solving an equivalent optimi:ation problem, one 

that is at least as bard as the feasibility problem. 

1.3. Related Work 

A number of algorithms and heuristics have been proposed for the global routing problem. Lee 

popularized the "maze-running" style of global routing [6] . The maze algorithm gives no bound on 

the width of the routing (compared with the optimal solution) within polynomial running time. 

Burstein and Pelavin [2] used dynamic programming to develop an approximation algorithm for tbe 

global routing problem. Subsequently, Karp et al. [4] used a linear programming approach to develop 

a provably good approximate solution. In particular, they showed that if C were the optimal width 

for a problem instance, their method would find a routing of width at most 0( C Jog ~ ). Their al

gorithm can handle nets containing arbitrarily many nodes, whereas the one we develop below is best 

suited to small nets. More recently, the heuristic of simulated annealing bas been applied to the 

problem by Vecchi and Kirkpatrick [5]. 

2. Multiterminal Multicommodity F1ows 

For the remainder of the paper, we only describe problem instances in which e\'ery net bas exactly 

three nodes. Generalizations to larger nets are straightforward, but are practical only when the nets 

are not too large. We now describe the formulation of the routing problem as a zero-one multicom

mod.ity flow problem. 

Let t,1 , ta. and t,..3 be the three nodes of net i. Clearly, the tree in the solution that is used to route 

this net must have a Steiner point - a node in L connected by simple paths to t11 , ta. and 1;3• An indi

cator variable s;
1 

£ {O, 1} in the integer program denotes whether or not vertex v
1 

£ Lis the Steiner 

point for net i. The global routing problem is then a multicommodity flow problem in which s,1 units 

of flow are to be shipped from each of t,1 , ta. and 1;3 to node ''.r We denote by f;(e) the total flux of 

net i (from all its three nodes) through edge e. The net flux through each edge is not to exceed W, 

where Wis the objective function (width) to be minimized in the integer program. All flows are to 

be integral, and conservation laws are to be respected at each node for every commodity. 



3. The RelaxatioD Uncar Program 

Consider a linear program relaxation of the integer multiterminal multicommodity now problem, 

in which all the variables (nows as well as Steiner point indicators) are allowed to take on real values 

in the interval [O, 1]. Let us call this relaxation linear program "LP". We can solve LP in polynomial 

time. The resultant solution could contain fractional. values for the variables f,1,e) , siJ' and W of LP. 

We denote by Fa feasible solution to LP, i.e. a set of non-negati\'e real values for the variahles [;(e) 

and S;r Thus, the set of real values that constitute F must satisfy conservation Jaws, and furthennore 

I s;
1 

- 1 Vi. The last equality is a relaxation of the requirement that we ha\'e a Steiner point for 
J 
each net; instead, we now have "fractional" Steiner points for each net that together sum up to one 

Steiner point. Note that the definition of the feasible now F bas nothing to do with optimality. 

3.1. The Potential Function Algorithm 

A A A 
Let Wbe the optimum width obtained from the solution to LP. LetJ;(e) and s;

1 
be the corre-

sponding values for the various nows and Steiner point "indicators". Let r "'"' IR I denote the 

number of nets in the problem instance, and N - m(n - 1) + n(m - 1) be the number of edges in 

L (i.e. the number of channels in the array). The following are evident: 

mn 

2: ~ij - 1. 1 s i s , 
j=I 

r A A L J;.(e) S W, e € E 
i= 1 

(1) 

II II 
Here all the s11 ,f;;(e) e [O, 1]. Let us define the initial feasible flow F0 to be the set of real values 

given by the linear program solution. To be precise, 

A A II 
Fo - {W,f;(e),sij, 1:s;i:s;r,1:s;j:s;mn,eeE} 

The initial feasible flow F0 corresponds to a fractional routing for all the nets. 

We define the following potential function, which is a mapping from feasible nows to positive real 

numbers. This potential function will play a key role in our algorithm. 

11> (F) - 2: }] [f;(e) ~ + 1 - f;(e)] , f;(e) e F 

n.E 
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In section 3.2 we will specify a value for !:.. > l; then 4>(F) is guaranteed to be positive since the 

values of the flows are non-negative. 

We now outline the algorithm. The idea is to progress in stages from F0 to a sequence of feasible 

flows F1 , F2 , • • • , F, with the following properties. 

1. There are r stages in all. During stage i , 1 s; i s; r, we progress from feasible flow f';_1 to feasible 

flow F;. 

2. At the end of stage i, the feasible flow F; that we discover during that stage will have integral values 

for all flows f«(e) , 1 s; k s; i and for all Steiner point indicators s«
1

, 1 s; k s; i. In other words, we 

would have found integral flows (routings) for nets 1 through i inclusive. 

3. Once a net is routed, it is not disturbed again. Thus the flow of net i is changed only during stage 

i and at no other time. 

4. Each of the r rounding stages consists of two phases, which we describe in the following sub

sections. In the first phase of stage i, a Steiner point is chosen for net i. In the second phase of the 

stage, we find paths connecting the nodes of net i to the chosen Steiner poinL The rounding algo

rithm will make use of the potential function at each phase of each stage. 

3.1.1. Choosing the Steiner Point 

We ·will now describe bow a Steiner point is chosen for net i during stage i. This corresponds to 

rounding s;
1 

to 1 for exactly one value of j, and rounding the rest to 0. 

Let us fix our attention on one potential Steiner point (for net i), node v, in.the lattice. Recall tbat 

in our linear programming formulation, we ensured that s,, units of flow were conveyed from each 

" node of net i to node v,. Thus', in the solution to LP, we will have s;, units of flow from each node 

of net i to v,. If we actually chose v, to be the Steiner point for net i, we would be setting s,F to 1 and 

all s;
1 
,j :F- p to 0. As a consequence, the flows from the nodes of net i to\;, should all be increased 

to 1 while flows to all other potential Steiner points should be nullified. To facilitate this discussion, 

" we denote by f;
1
(e) the flow from the nodes of net i to node \}through edge e, and by /;j(e) the value 

assigned to f;ie) by the solution to LP. 

nm 11 A 

L fu(e) · - f;(e) (2) 
J=l 

" l " " Thus, if we select v, as the Steiner point for net i, we replace f;,(e) by-;:- x f;,(e) , and f,ie) by 

O for j :F- p. s,, 

Let us denote by /;ie) and s1
;
1
(e) the new values of the variables (after a Steiner point is chosen 

and flow values adjusted accordingly). It is clear that these values constitute a feasible flow: they 
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I\ 
are scaled versions of the original flows (scaled by either 1/ s;, or O) and thus satisfy conservation 

laws; 1 unit of flow leaves each node of the net; and 1 unit of flow anives at the chosen Steiner point 
I\ 

from each node of the neL Of course, some of the edges may now have ·width exceeding W, but we 

still have a feasible flow. Let us denote by F'; the feasible flow obtained by choosing the Steiner 

poinL The feasible flow F', is an intermediate flow between F;_1 and F;. 

We will now describe bow the Steiner point is picked. The algorithm is simple: we choose that 

vertex v
1 

as the Steiner point which minimizes cJ> (F;). We denote the (already computed) "rounded" 

flows of nets 1 through i - 1 by l,(e). 

Lmrma 1: 

Proof: Let us denote by F;
1 

the feasible flow resulting from the choice of v1 as the Steiner point for 

net i. We will show that min cJ> (F1) $ cJ> (£;_1), the minimum being taken over all possible Steiner 
) 

points vr Let us define 

i-1 

K,{e) - n [Jk(e)A + 1 - fk(e)] 
k=l 

r I\ I\ 

x IT [Jk(e)A + 1 - fk(e)] 
k=i+l 

Then 

I\ . I\ 

4> (F;_1) - L K,{e) [f;(e)A + 1 - f;(e)] 
u.£ 

while 

I\ I\ 

L [ f;}e) f;/e) ] 
K(e) --A+ 1---

' I\ I\ 

£ 
sij sij 

~( 

Using (1) and (2), we can now write 

nm 

cJ> (F;-1) -= L ;u x cJ> <F' u> 
}=I 

But this means that 4> (£;_1) is a convex combination of all the cJ> (F,), and therefore one (and in 

particular the minimum) of the cJ> (F,.) must be at most cJ> (F,_1) • • , 
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Thus our algorithm chooses a Steiner point without allo\\ing the potential function to rise in value. 

3.1.2. Choosing routes for net i 

We have just described the procedure for picking a Steiner point (let us call it ~:,,) for net i. In the 

process, we rounded all the variables s;1 , j -:F p to s';
1 

- 0 and s;
1 

to s',, .. 1 . We now pick paths 

from the nodes t,1 , ta and t,.3 to the chosen Steiner point v
1

• In doing so we will round all the flows 

/;
1
(e) to 0 or 1 (recall that all flows / 11(e) , j -:F p , have already been set to O). The feasible flow 

thus obtained will be F; . 

We now describe bow node t,1 of net i is connected to the chosen Steiner point v,. Identical pro

cedures are followed for nodes ta and 1;3• Let /;11 (e) denote that component of f,1 (e) that flows from 

node t,1 to v,; thus 

To begin with, we convert the flows / 111 (e) from t,1 to i; into a set of paths r,1 "'"' { P1, P2, ... , P, } 

that can be used for connecting t,1 to v,. To do this, we use a procedure known as "path stripping" 

which bas been used before for global routing [11] and is similar in spirit to a process used in the 

network flow algorithm of Malhotra, Kumar and Mabesbwari [7]. 

Path stripping consists of the following three phases: 

(1) Form a directed subgraph 1;1 ( V ,E.1 ) where E,1 is the set of directed edges derived from E as fol

lows: for each e E E, assign a direction toe which is the direction of the flow /;11 (e). If /;11 (e) = 0, 

e is excluded from En. 

(2) Discover a directed path { e1, ... , eL } in L,1 from t,1 to v, using a depth-first search. Let 

For 1 $ g $ L, replace / 111 (e1) by / 111 (e1) - f,,.. Add the path { e1, ... , eL} to r,1 along with its weight 

f,,.. 

(3) Remove any edges with zero flow from £,1. While there is non-zero flow leaving t11 , repeat (2). 

We remark that since at each execution of step (2) we remove at least one edge of E;1 (that edge 

with the minimum flow f'"), the above process takes at most 0 (mn) time. Let w1 be the weight of path 

P1 , 1 $ I $ k. It is clear that 

(3) 

and 
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~ K-i "" I ip1<e> (4) 
r£ P1 

We can think of the feasible fractional flows from t,1 to i:. as being the superposition of the flows »i 

in the paths P1• We will now use one of the paths P1 to connect r,1 to ''.o· When we do so, the flow in 

all edges of P1 is rounded up to l, and the flow in all other edges of £,1 is set to O; a phenomenon 

similar to the choice of the Steiner point 

The algorithm for choosing the path is similar to the one used for the choice of the Steiner point: 

we choose that path which minimizes the new value of the potential function. Let cf> ( F' (P1) ) denote 

the new value of the potential function if P1 is used to connect t,1 to vP. It is easy to prove that 

k 

cl> (£' ip) - ~ Wf X cl> ( £' (P1) ) 
I= l 

The proof is similar to lemma l, with the role of equations (1) and (2) being replaced by (3) and (4). 

We can now assert, as in lemma 1, that in our choice of the path connecting t,1 to vP, we have not 

caused the potential function to rise. In a similar manner, nodes t,2 and 1;3 are connected to ''.c· 

Throughout, we ensure that the potential function does not rise. We can thus establish the following: 

Lemma2 

We have thus described bow net i is routed. The process is repeated for all the nets 1 s i $ r, 

and we can then assert the following about the final \'alue of the potential function: 

Corollary 3 

cl> (F,) $ cf> (F0 ) 

3.2. The Quality of the Approximation 

In the preceding sections, we described the rounding algorithm which converted the solution to 

LP to a routing. In our discussion of feasible flows and potential functions during the algorithm. we 

did not explicitly consider the value of tbe width of the edges at any stage of the algorithm (except 

" at the beginning, where we knew the width to be W). We now show that the width of the solution 
A A 

produced by our rounding algorithm is close to w: Since Wis the optimum for the relaxation linear 

program, it is a lower bound on the best possible width of any integer solution (routing). 
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We now provide the analysis for the performance guarantee. We first specify the value used for 

!:>.in the computation of tile potential function. We choose !:>.to satisfy the equation 

[ exp(:t.- 1) ] ~' 1 
- N (5) 

Recall that N is the number of edges in the array. Using this value of!:>., we now compute the value 

of <I> (F0). 

L n " " 
, 

" cl> (Fo) - [.ti(e) !:>. + 1 - .ti(e)] s 2:Il exp { .ti(e )[!:>. - l] } 
uE i= 1 

'EE 

r " " " - L exp { L f;(e)[~ - 1] } s 2: exp { W[~-1]} s !:J.t.W 

'EE i= 1 ,,EE 

The last inequality follows from (3 ), and the fact that there are N edges in all. Using corollary 3, we 

can now conclude that 

" <I> (F,) S !:J.t.rv 

We now note that either f(e) 1 (if some path of the routing of net i passes through edge e), 

or j;(e) - O. This is not entirely obvious, since it can happen that more than one of the three paths 

of net i may be routed through e. However, in this case only one unit of flow (one wire) need phys

ically pass through that edge (channel), since all the paths of the net are electrically the same. We 

can thus ignore multiple passages of a net through an edge, counting only one unit of flow in such 

cases. Let f(e) be the total flow through edge e - the ·width of the edge - at the end of the rounding. 

Then, it is clear that 

cl> (F,) -= 2: }] [f;(e) !:>. + 1 - ];(e)] 

,EE 

Since all the terms of the summation are nonnegative, we can conclude that for any edge e, 
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This implies the following theorem. 

A 

Theorem The width of the solution produced by the rounding algorithm is at most ~ W. 

3.2.1. A Discussion of the Bound 

Owing to the choice of !l by the somewhat complicated equation (3), our perfonnance guarantee 

may be difficult to interpret We now give some simplified versions of the guarantee. Using some 
A . 

algebraic manipulation, it can be shown that provided W > In N, our performance guarantee be-

comes 

Width S ~ W S W + (e - 1) V iJ> ln N 

A 
Note that thee referred to here is the base of the natural logarithm. For such values of JV, our per

A 
formance guarantee is especially good; Wis the best possible width we can possibly achieve, and we 

A 

are off by an additive factor that is small as W becomes large and N remains fixed. Our bound is not 
A A 

as tight when W becomes small. More algebraic manipulation shows that when W < In N, our 

guarantee becomes 

Width S 
elnN 

4. Concluding Remarks 

Our algorithm can be modified to handle more than three nodes per net; the number of Steiner 

points grows, and as a consequence the number of variables in the linear program. Note that the 

number of Steiner point indicator variables is exponential in the number of nodes in a net, since we 

have to consider all pairs of Steiner points for four-node nets, all triples for five-node nets, and so on. 

It remains open whether this difficulty can be circumvented by means of a better integer program 

formulation than ours. Note that our formulation is not exponential in the size of the gate-array or 

the number of nets. 

We ha\·e not included a careful analysis of the running time of the rounding algorithm because it 

is dominated by the running time of the linear program phase (both in theory and in practice ). We 

do note that the entire rounding algorithm is polynomial-time. The practical significance of our 

method remains to be seen; the cost of solving the linear program is considerable. We are initiating 

experimental work on a related randomized algorithm [8]. 
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Our algorithm is derivable from probabilistic methods [12) , but we have chosen to present a 

simple combinatorial description here to highlight the practical flavor of the problem. The potential 

function approach is similar in spirit to algorithms for set-balancing and related combinatorial prob

lems due to Olsen and Spencer [9] and also Beck and Fiala [l]. 
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