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ABSTRACT 

A scheme for maintaining a balanced search lree on 
O(lgN) parallel processors is described. O(lgN) search, 
insert, and delete operations are allowed to run con­
currently, with each operation execuling in O(lgN) 
limesleps. The scheme is based on pipelined versions of 
lop-down 2-3-4 tree manipulation algorilhms. 

1. Introduction 
This paper proposes a scheme for using a linear array of O(LgN) 

processors lo maintain a balanced tree structure for N items. The 
scheme allows pipelined operation so that, while individual operations 
require O(lgN) lime, O(lgN) operations may be at varying stages of exe­
cution al any point in lime. Also, the scheme avoids excessive data 
movemenl between processors. 

Similar work on VLSI "dictionary machines" has been reported in 
recent years by Benlley and Kung [Ben79], Leiserson [Lci79], and Ott­
man, Rosenberg, and Slockmeyer [OllBl]. The salient feature of the 
scheme presented here is lhat O(lgN) processors are required. The 
earlier schemes were based on the use of O(N) processors organized in 
tree-like configurations. 

2. Architecture 
The architecture used here is a linear array of O(LgN} identical pro­

cessing elements, each with their own private memory attached. Pro­
cessor P 1 has memory capable of storing a single tree node, and each 
processor Pt.. 1 < i < k, has twice the 6JllOUnl of memory of its prede­
cessor p,_1• The last processor, P1:;. must have memory sufficient lo 
hold all of the data which is lo be stored in the machine. Also, lo 
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provide for the processing of range queries, the memory of processor p,. 
must be dual-port for external accessibility. 

The. pr~cessors operate independently, in an MIMD manner. Tue 
~ommuru:aUon paths between processors are bidirectional. The resull­
mg machme architecture, similar lo lhe heapsort machine architecture 
of Arr_rtstrong [Arm?BJ, is shown in Figure 1. In the figure, the architec­
ture is s?own storing a 2-3-4 tree using the scheme described in the 
nerl section. 

requesll 

M5 
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Figure 1: Parallel Architecture for Balanced Tree Maintenance. 

S. Some Obeervalions 

Given the desid7rala of parallel operation, minimal data movement, 
and balanced operation, the following comments are in order: 

(1) The dat8: struc~ures of choice are the 2-3 tree [Aho74] or the 2-3-4 
tree [Gui7B], smce balancing operations are quite simple for these 
tree tlPes. More generally, the B+ tree [Com79], a variant of B­
lrees LB~y72] where data resides only in leaf nodes, would be per­
fectly smtable here. The 2-3 tree is a special case of the B+ tree 
and lhe 2-3-4 tree is an extension of the 2-3 tree where four-node~ 
are allowed in addition to two-nodes and three-nodes. 
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(2) Top-down tree operations [Gui78, AllBO] are the only reasonable way 
lo maintain balance in this scheme, as pipelining would be very 
difficult if node splits and merges were allowed lo propagate 
upwards in the tree as a result of lower splits and merges. Thus, 
the 2-3-4 tree is the best choice, as this tree type lends itself lo 
simple lop-down insertion and deletion algorithms [Gui7B]. 

(3) The obvious way lo map the problem lo lhe architecture is lo store 
one level of the tree with each processing element. The processor 
storing the leaf nodes will contain the data. and the other proces­
sors will simply store index nodes containing keys and pointers. 

(4) When the root of the 2-3-4 tree is full, the height of the tree will 
have lo grow by one level. Similarly, when the root of the tree and 
its sons are nearing the empty point. the height of the tree will have 
lo shrink by one level. Hence, the tree should be started ofT on pro­
cessor P,. and allowed lo grow upwards towards P 1 on root-splitting 
insertions and back down towards P,. on root-removing deletions. 
Processors above the level of the actual tree root will store unary 
nodes (nodes with a single tree pointer). 

4. Operations for Tree Maintenance 
In this section, the 2-3-4 tree manipulation operations will be 

described. A 2-3-4- tree is a balanced search tree where two, three, or 
four pointers appear in each internal (index) node, and all data items 
appear in external (leaf) nodes. The tree manipulations described here 
are basically just parallel versions of normal 2-3 or B+ tree searching 
[Bay72, Aho74, Com79] and lop-down 2-3-4 tree insertion and deletion 
[Gui7B, AllOO]. Thus, in lhe interest of brevily and clarity. the descrip­
tion will be somewhat informal, with actual pointer and key manipula­
tions omitted. 

4.1. Searching 
The SEARCH operation for the parallel 2-3-4 tree scheme is a sim­

ple, pipelined version of normal B+ tree searching [Com79]. Hence, 
when processor P, receives a "SEARCH(key n, using pointer p )" mes­
sage, it should do the following: 

Case H1 - P, contains an index node (i < k ): 

Follow the pointer p lo lhe appropriate index node in local memory. 
Use the key value n lo select the appropriate pointer (p'} to follow from 
here. Send SEARCH(n,p') lo P01 . 

Case N2 - P, contains a data node (i = k ): 
Given key n and pointer p. see if pointer p points al a data node 

containing key n. H so, send the data lo the outside world. If not, send 
oul e. message indicating that the desired data was not found. 
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4.2. Insertion 

The INSERT operalion for lhe parallel 2-3-4 lree scheme is a pipe­
lined version of the lop-down node-splilling insert algorithm of Guibas 
e.nd Sedgewick [Gui7B, AllBO, McCB2]. When the search encounters a 
node which is full, the transformalion shown in Figure 2 is applied, 
ensuring lhal future node splils will nol cause upwardly propagating 
splils. Nole that the inserlion transformation results in an increase in 
the actual tree beighl when applied al the rool node. The figure depicls 
the transformation in terms of 2-3-4 lrees, with op.lional pointers drawn 
in dolled lines and the search path pointer indicated via a small black 
square. Though the figure shows the insertion path as being the left­
most. path, the transformation applies in the obvious way retiardless of 
the path. The correctness of this lransformalion is proven in L Car82]. 

Figure 2: Insertion Transformation. 

Hence, when processor p._ receives an "INSERT{key n, using poinler 
p )" message, it should do the following: 

Case Nl - P, conlains an internal index node (i < k-1): 

Follow the pointer p lo the appropriale index node in local memory. 
Use the key value n lo select the appropriate pointer (p') lo follow from 
here. Send lNSERT_J'RANSFORM(p') lo P01. P01 will apply the insertion 
transformation if il is applicable, splilling the nexl node on the search 
palh for key n, and send INSERT_J'RANSFORM_JIBPLY(m,np) lo P,. This 
reply will inform P, or the new splitting key {m) and new offspring 
pointer (np) resulting from a node splil if one occurred, and P, will 
insert.this information inlo its current index node. 

Now, once again use n lo selecl lhe appropriate path (p') lo follow 
from here. (The path may be diCiercnl if P01 performed a node splil in 
response lo the INSERTJRANSFORM message.) Send lNSERT(n.p') lo 
PHI· 

Case /2 - P, contains lhe last index node (i = k-1): 

Follolf the pointer p lo the appropriale index node in local memory. 
Use lbe key value n to select the appropriate pointer (p') lo follow from 
here. Send INSERT(n,p') lo P,.. P1r; will allempl the insertion, sending 
back either 8 pointer to the newly inserted node or a nil pointer in an 
TNSERT REPLY(flJJ} message. A nil pointer indicates that the key was a 
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duplicale and no insert look place. Jr no err~r occurred, insert the key 
and new pointer information into the current mdex node. 

Case #3 - P, contains a data node ( i = k ): 
Ir the indicated data i tern is not already present. install it in. a new 

data node, send p,._1 a pointer np lo the new node m B.11 

INSERT_JIBPLY(np) message. and send ~he outside world an ack­
nowledgement. Jr the indicated dala item 1s already present, send P1c-1 

an INSERT_JlEPLY(nil) message. and send the oulside world B.11 error 
response. 

-4-.3. Deletion 
The delete operation is a modified version of the ~uib57 a~d 

Sedgewick lop-down deletion algorithm [Gui7B]. The r_nod1ficalton _is 
based on the observation that old keys may be used lo gUtde searches m 
B+ trees [Com79], since all predecessors of a deleted key are predeces­
sors or its successor key, and all successors of its successor key are also 
successors of the deleted key. Thus, it is not necessary lo delete the 
instances of a data item's key from the index portion or a 2-3-4 tree 
when deleting the ilem. 

The basic idea of top-down deletion is that. when a node wilh ~be 
minimum allowable number or keys is encountered, ft transformation 
that adds keys must be performed lo ensure that deletions cBJlnot pro­
pagate upwards [Gui78, AllBO. McCB2]. No paper in lhe literature hes 
described these transformations in terms or standard 2-~-4 trees o~ B+ 
trees in a particularly comprehensible manner, so they ~11 be de~cnb~d 
here in some detail. There are three such transformations, depicted m 
F"igures 3 through 5 for 2-3-4 trees. Nole that deletion transformation I 
can result in a decrease in the tree height when applied al the root 
node. While the figures depict the deletion path as being lhe leflmosl 
path lhe transformations apply in the obvious way regardless or the 
path'. The correctness or these transformations is proven in [CarB2]. 

Figure 3: Deletion Transformation I. 

Hence, when processor P, receives a "DELETE(key n, using pointer 
p )" message, it should do the following: 
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II 

F"tgure 4: Delelion Transformation//. 

Ill 

F"igure 5: Delelion Transformation Ill. 

Case H 1 - P, contains an internal index node (i < k-1): 

Follow lhe pointer p lo the appropriale index node in local memory. 
Use lbe key value n lo selecl lhe appropriate pointer (p') lo follow from 
here. Send DELETEJRANSFORM(m,p' ,p"), wherep" is lhe adjacent palh 
pointer for p' and m is lhe splilling key for p' and p", lo P01• P01 will 
apply a deletion lransformalion if one is applicable, either merging the 
nodes indicated by p' and p" or moving one of the offspring of the p" 
node into the p' node. PHt will then send 
DELETE_TRANSFORM,JlEPLY(m' ,np) lo P,. This reply will inform P, of 
lbe new splilting key (m') resulting from a transformation if one 
occurred, and the pointer value np will indicate p' or p" if one or these 
nodes was deleted by lhe transformation. P, will use this information lo 
updale its current index node. 

Now, once again use n lo select lhe appropriate palb (p') lo follow 
tr-om here. (The path may be different if PHI did some key and pointer 
rearra~ing in response lo the DELETEJRANSFORM message.) Send 
DELETE(n.p') lo P,+1· 
O!ise N2 - P, contains the last index node (i = k-1): 

Follow the pointer p lo the appropriate index node in local memory. 
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Use the key value n lo selecl lhe appropriale pointer (p") to follow from 
. here. Send DELETE{n,p') to Pt· Pt will attempt the deletion, sending 

back a status flag in a DELETE_REPLY(sfofus) message, indicating 
either success or failure. A failure indication would mean that lhe key 
was a duplicate and no deletion took place. If no error occurred, delete 
lbe appropriate key and pointer information from the current index 
node. 

Case f/3 - P, contains a data node (i = k ): 
Ir the indicated data item is already present, delete its data node, 

send P1c-i a DELETE_JIBPLY(no error) message, and send the outside 
world an acknowledgement. Jr lhe indicated data item is nol already 
present, send P.,_1 a DELETE_REPLY(error) message, and send the out­
side world an error response. 

4.4. Range Queries 
In order lo handle range queries, two additional operations may be 

provided: CEILING_J>EARCH{n,p) and FLOOR_J>EARCH(n.p). The handling 
of these requesls is identical to that of SEARCH(n,p) for all but proces­
sor P.,. For this last processor, these operations cause a pointer ~o the 
indicated dala item to be returned in place or the dala ilem itself. (The 
e.ppropriate data item is the one with the smallest key m such lhal 
m ~ n for lhe CEILING_J)EARCH operation and the one "lfilh the largest 
key m such that m ~ n for the FLOOR_J>EARCH operation.) Jr P., keeps 
sequential data nodes linked together as a sequence sel [Com79], then 
sequentially executing lhese lwo search operations will be sufficient lo 
provide external access lo all of lhe data ilems in the range delimiled 
by the lwo search queries. 

5. Some Implementation and Performance IBSUes 
There are several possible schemes for implementing tree transfor­

mations. Our approach, where transformation messages and replies 
carry all of the relevant keys and pointers, minimizes the amounl of 
information that a parent node needs lo store about each of its offspring 
nodes. With this scheme, a processor receiving a lransformation 
request message decides for itself which transformation lo apply, send­
ing a reply notifying the requeslor (its parent) of any new key and 
pointer information. The overall struclure or the code executed by 
index processors P 1 lhrough P.,_2 is sketched out in rigure 6. The code 
for index processor P.,_1 is similar, differing only in lhal Pt-I does nol 
send transformation messages lo processor P.,. The structure or the 
code for data processor P., is also similar, except lhal lhe operations 
performed by P., in response lo request messages from P.,_, are the 
actual data lookups, insertions, and deletions, and P., sends response 
messages lo the outside world. Details or the code for the last two pro­
cessors may be found in [CarB2]. 

This proposal allows SEARCH, INSERT, and DELETE operations lo 
occur in O(lgN) time. More specifically, since lhe mode or operation or 
the pipeline is e. based on e. requesl/reply paradigm, ball of lbe proces­
sors in lhe array can be processing requests al any given point in lime. 
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while true do 
Receive reqMsg from Pi-I; 
C83e MsgType(reqMsg) of 

SEARCH: 
'begin 

Perform path selection; 
Send SEARCH(n.p') lo PH 1; 

end; 
INSERT: 

begin 
Perform palh selection; 
Send INSERTJRANSFORM(p') lo Po 1; 

Receive INSERTJRANSFORMJIBPLY(m,np) from P01; 
if ( np "rt nil ) then 

Insert np and m into current index node; 
fl; 
Send INSERT(n,p') lo Pu 1; 

end; 
DELETE: 

begin 
Perform palh selection; 
Send DELETE.JRANSFORM(m ,p' ,p") to P0 1; 

Receive DELETE.....TRANSFOR.\LREPLY(m' ,np) from PH1; 
Replace old splitting key wllh m'; 
lf (np "rt nil) then 

Delete np from current Index node; 
fl; 
Send DELETE(n,p') lo P01 ; 

end; 
INSERTJRANSFORM: 

begin 
Perform insertion lraruiformalion if applicable; 
Send INSEHTJRANSFORM-REPLY{m,np) lo P,_1; 

end; 
DELETE....:rRANSFORM: 

begin 
Perform a deletion transformation if applicable; 
Send DELETE.JRANSFORM..REPLY{m' ,np) lo P,_1; 

end; 
esac; 

od; 

Figure 6: Code for Processor P,. i = 1,2, ... , k-2. 

The reason for lhis factor of lwo is lbe.l, until a processor P, receives ils 
reply from Po 1• the keys and/or pointers in Pi may be incorrect. Thus, 
lhe attainable level of concurrency in e. k processor configuration is 
k/2. 

The number of levels required for storing N elements is easily 
determined as follows: In the worst case, every node is almost empty, 
c~mlaining only lwo poinler fields. In this case, the 2-3-4 lree is purely 
binary. Thus, lhe worst case number of lree levels required (including 
lhe dale. level) is k = rlgN] + 1. With a processor per level arrangement, 
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lb.is calls for O(lgN) processors, as originally staled. 

Instead of storing between lwo and four keys per index node, the 
number of keys per node could be allowed lo range between d and 2d. 
This is simply a generalization of lhe 2-3-4 tree scheme, a variant of B+ 
trees [Com79] where 2d (instead of 2d - 1) is the allowed maximum 
number of keys. The corresponding insertion and deletion lransforma­
lions are fairly obvious. The advantage lo choosing d > 2 is lhat fewer 
tree levels are needed for a futed dala sel size N, reducing lhe number 
of processors required and reducing the response lime per query. On 
lhe olher hand, small values of d such as d = 2 offer lhe besl con­
currency and lhroughpul rates, as more processors are available lo pro­
cess portions of queries. Thus, a lradeofI exists. and lhe besl choice for 
d is application-dependent. 

8. Summary and Fu.lure Research 
A 2-3-4 tree maintenance scheme using O(lgN) processors has been 

described. Il requires O(lgN) lime for lree operations. but achieves 
0(1) throughput by allowing O(lgN) concurrency on all tree operations. 
The extension or lhis scheme from 2-3-4 trees lo the more general B+ 
tree structure is trivial. This scheme could be a U!1eful component for 
index maintenance in a machine architecture specialized for informa­
tion storage and retrieval. 

Several avenues seem appropriate for future research along these 
lines. First, il would be useful lo determine the worst-case memory 
requirements for processors in lhe array based on the possible tree 
structures allowed by lhe lop-down algorilhms. Second, it would be 
inleresling lo see if lhe level of attainable concurrency can be improved 
from k/2 lo k. The work of Lehman and Yao on B-Unk trees [LehBl] 
mighl be applicable here. Finally, il would be inleresling lo investigate 
other classes of search problems for which a linear, pipelined array of 
O(lgN} processors mighl be applicable. 
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Al the Purdue WACO conference, a queslion arose regarding the 
ability of the archileclure lo slore all possible 2-3-4 trees of N dala 
items. This addendum will show that, with the memories configured as 
described in Section 2, the architecture can indeed store all such trees. 
Let Ms be the size (in nodes) of lhe memory of processor Ps: For 2-3-4 
trees, if the last processor (Pl::) is lo store N data nodes, the memory 
requirements are: 

Ml::~N. M1::-i:>.!:_l.N12]. Ml:-2 ~ll.N/2]/2J, ... 

Since llN I 2•]1 ~ = lN I 2H 1j (both are equal lo the binary value of N 
right-shifted by i+l bits), these memory requirements can be reslaled 
in more general terms as: 

Ms~ lN I ~-J }. 1 s j ~ k 

1n Section 5 we found that k = kgM + 1. Subst.iluling this value for k 
yields: 

M1 ~ l(N;2livN1) zt-1J. l~j -5.k 

Since NI 2ltr.NI s: 1, the memory requirement is seen lo be: 

Ms ~ tz1-1 J. 1 ~ j ~ k 

Thus, it is clear that the memory configuration of Section 2, where 
M1 = zt-1, ls sufficient. Hence, the architecture can indeed store all 
possible 2-3-4 trees or N data items. 


