A Pipelined Architecture for Search Tree Maintenance

Michael J. Carey
Qark D. Thompson

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, CA 94720

ABSTRACT

A scheme for maintaining a balanced search tree on
O(lgN) parallel processors is described. O(lgN) search,
insert, and delete operations are allowed to run con-
currently, with each operation executing in O(lgN)
timesteps. The scheme is based on pipelined versions of
top-down 2-3-4 tree manipulation algorithms.

1. Introduction

This paper proposes a scheme for using a linear array of O(IgN)
processors to maintain a balanced tree structure for N items. The
scheme allows pipelined operation so that, while individual operations
require O(IlgN) time, O(lgN) operations may be at varying stages of exe-
cution at any point in time. Also, the scheme avoids excessive data
movement between processors. V

Similar work on VLSI "dictionary machines” has been reported in
recent years by Bentley and Kung EBen’?Q], Leiserson [Lei79], and Ott-
man, Rosenberg, and Stockmeyer Ott81]. The salient feature of the
scheme presented here is that O(lgN) processors are required. The
earlier schemes were based on the use of O(N) processors organized in
tree-like configurations.

2. Architecture

The architecture used here is a linear array of 0(lgN) identical pro-
cessing elements, each with their own private memory attached. Pro-
cessor P, has memory capable of storing a single tree node, and each
processor P;, 1 <i <k, has twice the amount of memory of its prede-
cessor P;_,. The last processor, Py, must have memory sufficient to
hold all of the data which is to be stored in the machine. Also, to

This work was supported by the Nationel Seience Foundation Grant ECS-8110684, &
Chevron U.S.A. Career Development Grant, a California NICRO Fellowship, the Air
Force Office of Scientific Research Grant AFOSR-78-3586, and the Naval Electronic
Systerns Command Contract NESC-N00039-81-C-0588.

ALGORITHMICALLY SPECIALIZED 37 Copyright © 1985, by Academic Press, Inc.
PARALLEL COMPUTERS Al rights of reproduction in any form reserved.

ISBN 0-12-664130 2

38 MICHAEL J. CAREY AND CLARK D. THOMPSON

provide for the processing of range queries, the me
must be dual-port for external accessibility.

The processors operate inde i
pro pendently, in an MIMD manner. The
f:ommum_cahon pfaths between processors are bidirectional. The result-
ing mgchme archltecture. similar to the heapsort machine architecture
of Armstrong [Arm78], is shown in Figure 1. In the figure, the architec-

ture is shown storing a 2-34 tree using the i i
hoxt octow ng scheme described in the

mory of processor P,

requests

P1 . M1

p2— O | |

P3 (“31

I
P4) e ua

N\ |
OO 0000 0060

replies
Figure 1: Parallel Architecture for Balanced Tree Maintenance,

3. Some Obeervations

Given the desiderata of parallel operation, minimal data movement,
and balanced operation, the following comments are in order:

(1) The data structures of choice are the 2-3 tree [Aho74] or the 2-3-4
tree [Gui78]. since balancing operations are quite simple for these
tree t{pes. More generally, the B+ tree [Com78], a variant of B-
trees Be'1y72] where data resides only in leaf nodes, would be per-
fectly suitable here. The 2-3 tree is a special case of the B+ tree
and the 2-3-4 tree is an extension of the 2-3 tree where four-nodes'
are allowed in addition to two-nodes and three-nodes.

ARCHITECTURE FOR SEARCH TREE MAINTENANCE 39

(2) Top-down tree operations [Gui78, Al1B0] are the only reasonable way
to maintain balance in this scheme, as pipelining would be very
difficult if node splits and merges were allowed to propagate
upwards in the tree as a result of lower splits and merges. Thus,
the 2-3-4 tree is the best choice, as this tree type lends itself to
simple top-down insertion and deletion algorithms [Gui7B].

(3) The obvious way to map the problem to the architecture is to store
one level of the tree with each processing element. The processor
storing the leaf nodes will contain the data, and the other proces-
sors will sirnply store index nodes containing keys and pointers.

(4) When the root of the 2-3-4 tree is full, the height of the tree will
have to grow by one level. Similarly, when the root of the tree and
its sons are nearing the empty point, the height of the tree will have
to shrink by one level. Hence, the tree should be started off on pro-
cessor P, and allowed to grow upwards towards P, on root-splitting
insertions and back down towards P, on root-removing deletions.
Processors above the level of the actual tree root will store unary
nodes (nodes with a single tree pointer).

4. Operations for Tree Maintenance

In this section, the 2-3-4 tree manipulation operations will be
described. A 2-3-4 tree is a balanced search tree where two, three, or
four pointers appear in each internal (index) node, and all data items
appear in external (leaf) nodes. The tree manipulations described here
are basically just parallel versions of normal 2-3 or B+ tree searching
EBay'?Z. Aho74, Com78] and top-down 2-3-4 tree insertion and deletion

Gui78, AlIB0). Thus, in Lhe interest of brevity and clarity, the descrip-
tion will be somewhat informal, with actual pointer and key manipula-
tions omitted.

4.1. Searching

The SEARCH operation for the parallel 2-3-4 tree scheme is a sim-
ple, pipelined version of normal B+ tree searching [Com79]. Hence,
when processor P; receives a "SEARCH(key n, using pointer p)' mes-
sage, it should do the following:

Case #1 — P, contains an index node (i < k):

Follow the pointer p to the appropriate index node in local memory.
Use the key value n to select the appropriate pointer (p') to follow from
here. Send SEARCH(n.p') to Py,;.

Case §2 — P, contains a data node (i = k):

Given key n and pointer p, see if pointer p points at a data node
containing key n. If so, send the data to the outside world. If not, send
out a message indicating that the desired data was not found.

40 MICHAEL J. CAREY AND CLARK D. THOMPSON

4.2. Insertion

) The INSERT operation for the parallel 2-3-4 tree scheme is a pipe-
lined version of the top-down node-splitting insert algorithm of Guibas
and Sedgewick [Gui78, AllB0, McCB2]. When the search encounters a
node 'which is full, the transformation shown in Figure 2 is applied,
ensuring that future node splits will not cause upwardly propagating
splits. Note that the insertion transformation results in an increase in
the actual tree height when applied at the root node. The figure depicts
'the transformation in terms of 2-3-4 trees, with optional pointers drawn
in dotted lines and the search path pointer indicated via a small black
square. Though the figure shows the insertion path as being the left-
most path, the transformation applies in the obvious way regardless of
the path. The correctness of this transformation is proven in [Car82].

Figure 2: Insertion Transformation.

) Hence, when processor P; receives an "INSERT(key n, using pointer
p)" message, it should do the following:

Case §#1 — P, contains an internal index node (i <k-1):

Follow the pointer p to the appropriate index node in local memory.
Use the key value n to select the appropriate pointer {p') to follow from
here. Send !NSERT_TRANSFORM(}J') to P,y Py will apply the insertion
transformation if it is applicable, splitting the next node on the search
path for key n, and send INSERT_TRANSFORM_REPLY(m ,np) to P;. This
reply will inform Py of the new splitting key (m) and new oflspring
pointer (np) resulting from a node split if one occcurred, and P; will
insert.this information into its current index node. '

Now, once again use n to select the a i '
ppropriate path (p') to follow
from here. (The path may be diflerent if F;,, performed a node split in
;Desponse to the INSERT TRANSFORM message.) Send INSERT(n.p') to
141
Case #2 — P; contains the last index node (i = k—1):

Follow the pointer p to the appropriate index node in local memory.
Use the key value n to select the appropriate pointer (p') to follow from
here. Send INSERT(n.p’) to P.. P, will attempt the insertion, sending
back either a pointer to the newly inserted node or a nil pointer in an
INSERT REPLY(np) message. A nil pointer indicates that the key was a

ARCHITECTURE FOR SEARCH TREE MAINTENANCE 41

duplicate and no insert took place. If no error occurred, insert the key
and new pointer information into the current index node.
Case #3 — P; contains a data node (i = k):

If the indicated data item is not already present, install it in a new
deta node, send P,_, a pointer np to the new node in an
INSERT_REPLY(np) message. and send the outside world en ack-
powledgement. If the indicated data item is already present, send P,
an INSERT REPLY(nil) message, and send the outside world an error
response.

4.3. Deletion

The delete operation is a modified version of the Guibas and
Sedgewick top-down deletion algorithm [Gui78]. The modification is
based on the observation that old keys may be used to guide searches in
B+ trees [Com79), since all predecessors of a deleted key are predeces-
sors of its successor key, and all successors of its successor key are also
successors of the deleted key. Thus, it is not necessary to delete the
instances of a data item's key from the index portion of a 2-3-4 tree
when deleting the item.

The basic idea of top-down deletion is that, when a node with the
minimum allowable number of keys is encountered, a transformation
that adds keys must be performed to ensure that deletions cannot pro-
pagate upwards [Gui78. AllBO, McC82). No paper in the literature has
described these transformations in terms of standard 2-3-4 trees or B+
trees in a particularly comprehensible manner, so they will be described
bere in some detail. There are three such transformations, depicted in
Figures 3 through 5 for 2-3-4 trees. Note that deletion Lransformation /
can result in a decrease in the tree height when applied at the root
node. While the figures depict the deletion path as being the leftmost
path, the transformations apply in the obvious way regardless of the
path. The correctness of these transformations is proven in [Car82].

Figure 3: Deletion Transformation /.

Hence, when processor P; receives a "DELETE(key n, using pointer
p)" message, it should do the following:

42 MICHAEL J. CAREY AND CLARK D. THOMPSON

Figure 4: Deletion Transformation //.

Figure 5: Deletion Transformation J//.

Case #1 — P, contains an internal index node (i < k~1):

Follow the pointer p to the appropriate index node in local memory.
Use the key value n to select the appropriate pointer (p') to follow from
bere. Send DELETE_TRANSFORM(rm.,p',p"), where p" is the adjacent pat
pointer for p' and m is the splitting key for p' and p”, to Py,,. Py, will
apply a deletion transformation if one is applicable, either merging the
nodes indicated by p' and p” or moving one of the offspring of the p"”
node into the r node. P will then send
DELETE_TRANSFORM_REPLY(m',np) to P;. This reply will informn P, of
the new splitting key (m') resulting from a transformation il one
occurred, and the pointer value np will indicate p' or p” if one of these
nodes was deleted by the transformation. P; will use this information to
update its current index node.

Now, once again use n to select the sppropriate path (p') to follow
from here. (The path may be different it P,y did some key and pointer

rearranging in response to the DELETE_TRANSFORM message.) Send
DELETE(n.p') to Piyy.

Case §2 — P, contains the last index node (i = k—-1):
Follow the pointer p to the appropriate index node in local memory.

ARCHITECTURE FOR SEARCH TREE MAINTENANCE 43

Use the key value n to select the appropriate pointer (p’) to follow from

. bere. Send DELETE(n.p') to P,. P, will attempt the deletion, sending

back a sfafus flag in a DELETE REPLY(stafus) message, indicating
either success or failure. A failure indication would mean that the key
was a duplicate and no deletion took place. If no error occurred, delete

the appropriate key and pointer information from the current index
node. :

Case #3 — P, contains a data node (i = k):

If the indicated data item is already present, delete its data node,
send P,_, a DELETE_REPLY(no error) message, and send the outside
world an acknowledgement. If the indicated data item is not already
present, send P._; a DELETE_REPLY(error) message, and send the out-
side world an error response.

4 4. Range Queries

In order to handle range queries, two additional operations may be
provided: CEILING_SEARCH(n,p) and FLOOR_SEARCH(n.p). The handling
of these requests is identical to that of SEARCH(n.p) for all but proces-
sor P,. For this last processor, these operations cause a pointer to the
indicated data item to be returned in place of the data item itsell. (The
appropriate data item is the one with the smallest key m such that
m = n [or the CEILING_SEARCH operation and the one with the largest
key m such that m < n for the FLOOR_SEARCH operation.) If P, keeps
sequential data nodes linked together as a sequence set [Com79], then
sequentially executing these two search operations will be sufficient to
provide external access to all of the data items in the range delimited
by the two search queries.

5. Some Implementation and Performance I1gsues

There are several possible schemes for implementing tree transfor-
mations. Our approach, where transformation messages and replies
carry all of the relevant keys and pointers, minimizes the amount of
information that a parent node needs to store about each of its oflfspring
nodes. With this scheme, a processor receiving a transformation
request message decides for itself which transformation to apply, send-
ing a reply notifying the requestor (its parent) of any new key and
pointer information. The overall structure of the code executed by
index processors P, through P, , is sketched out in Figure 8. The code
for index processor P,_, is similar, differing only in that P, _, does not
gend transformation messages to processor P,. The structure of the
code for data processor P, is also similar, except that the operations
performed by P, in response to request messages from P,_, are the
actual data lookups, insertions, and deletions, and P, sends response
messages to the outside world. Details of the code for the last two pro-
cessors may be found in [Car82].

This proposal allows SEARCH, INSERT, and DELETE operations to
occur in O(lgN) time. More specifically, since the mode of operation of
the pipeline is a based on a request/reply paradigm, balf of the proces-
sors in the array can be processing requests at any given point in time.

44 MICHAEL J. CAREY AND CLARK D. THOMPSON

while true do
Receive reqMsg from P;_;;
case MsgType(reqMsg) of
SEARCH:
"begin
" Perform path selection;
Send SEARCH(n..p') to FPyyy:
end;
INSERT:
begin
Perform path seleclion;
Send INSERT.TRANSFORM(p') to Fy,q;
Receive INSERT_TRANSFORM_REPLY(m ,np) Irom P, ;
if (np # nil) then
Insert np and m into current index node;
fi;
Send INSERT(n.,p') Lo P4y
end;
DELETE:
begin
Perform path selection;)
Send DELETE_TRANSFORM(m.,p' ,p") to P,y
Receive DELETE_TRANSFORM_REPLY(m',np) Irom P;41;
Replace old splitting key with m';
M (np # nil) then
Delete np from current index node;

f;
Send DELETE(n,p’) to P4y
end;
INSERT.TRANSFORM:
begin
Perform insertion transformation if applicable;
S:nd INSERT_TRANSFORM_REPLY(m. ,np) to P;_,;
end:
DELETE_TRANSFORM:
begin

Perform a deletion transformation if applicable;
Send DELETE_TRANSFORM_REPLY(m',np) to Py_,;
end;
esac;

od;

Figure 6: Code for Processor P, 1 = 1,2, ..., ,k-2.

The reason for this factor of two is that, until a processor P receives its
reply from Py,,, the keys and/or pointers in P, may be incorrect. Thus,

;he attainable level of concurrency in a k processor configuration is
/2.

The number of levels required for storing N elements is easily
determined as follows: In the worst case, every node is almost empty,
containing only two pointer flelds. In this case, the 2-3-4 tree is purely
binary. Thus, the worst case number of tree levels required (including
the data level) is k = [lgN] + 1. With a processor per level arrangement,

ARCHITECTURE FOR SEARCH TREE MAINTENANCE 45

this calls for O(lgN) processors, as originally stated.

Instead of storing between two and four keys per index node, the
number of keys per node could be allowed to range between d and 2d.
This is simply a generalization of the 2-3-4 tree scheme, a variant of B+
trees [Com79] where 2d (instead of 2d — 1) is the allowed maximum
numnber of keys. The corresponding insertion and deletion transforma-
tions are fairly obvious. The advantage to choosing d > 2 is that fewer
tree levels are needed for a fixed data set size N, reducing the number
of processors required and reducing the response time per query. On
the other hand, small values of d such as d = 2 offer the best con-
currency and throughput rates, as more processors are available to pro-
cess portions of queries. Thus, a tradeofl exists, and the best choice for
d is application-dependent.

6. Surnmary and Future Research

A 2-3-4 tree maintenance scheme using O(lgN) processors has been
described. It requires O(lgN) time for tree operations, but achieves
0(1) throughput by allowing O(IlgN) concurrency on all tree operations.
The extension of this scheme [rom 2-3-4 trees to the more general B+
tree structure is trivial. This scheme could be a useful component for
index maintenance in a machine architecture specialized for informa-
tion storage and retrieval.

Several avenues seem appropriate for future research along these
lines. First, it would be useful to determine the worst-case memory
requirements for processors in the array based on the possible tree
structures allowed by the top-down algorithms. Second, it would be
interesting to see if the level of attainable concurrency can be improved
from k/2 to k. The work of Lehman and Yao on B-link trees [Leh81]
might be applicable here. Finally, it would be interesting to investigate
other classes of search problems for which a linear, pipelined array of
O(lgN) processors might be applicable.

References

[Aho74] Aho, A., Hopcroft, J., and Ullman, J., "The Design and Analysis
of Computer Algorithms”, Addison-Wesley Publishing Co.,
1974.

[Aus0] Allchin, J., Keller, A, and Wiederhold, G., "FLASH: A
Language-Independent, Portable File Access System”,
Proceedings of the ACM SIGMOD International Conference on
the Management of Data, 1980.

[Arm78] Armstrong, P., U.S. Patent 4131947, issued December 28,
1978.

[Bay72] Bayer, R, and McCreight, E., "Organization and Maintenance
of Large Ordered Indices”, Acta Informatica 1(3), 1972.

[Ben79] Bentley, J., and Kung. H., “Two Papers on a Tree-Structured
Parallel Computer”, Report CMU-CS-79-142, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, 1979.

46 MICHAEL J. CAREY AND CLARK D. THOMPSON

[CarB2] Carey, M., and Thompson, C., “An Efficient Implementation of
Search Trees on O(lg N) Processors”, Report No. UCB/CSD
82/101, Computer Science Division (EECS), University of Cali-
fornia, Berkeley, April 1982.

[Com79] Comer, D., "The Ubiquitous B-Tree”, Computing Surveys
11(2), June 1979.

[Gui78] Guibas, L., and Sedgewick, R., "A Dichromatic Framework for
Balanced Trees”, Proc. 19th Symposium on the Foundations
of Computer Science, 1978.

[Len81] Lehman, P., and Yao, S., "Efficient Locking for Concurrent -
Operations on B-Trees”, ACM Transactions on Database Sys-
tems 6(4), December 1981.

[Lei79] Leiserson. C.. "Systolic Priority Queues”, Report CMU-CS-79-
115, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 1979.

[McC82] McCord, R, Personal Communication.

[ottB1] Ottman, T., Rosenberg, A, and Stockmeyer, L., "A Dictionary
Machine (for VLSI)", Report RC 9080 (#39615), Mathematical
Sciences Department, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1981.

Addendum

At the Purdue WACO conference, a question arose regarding the
mbility of the architecture to store all possible 2-3-4 trees of N data
iterns. This addendum will show that, with the memories configured as
described in Section 2, the architecture can indeed store all such trees.
let M; be the size (in nodes) of the memory of processor F;. For 2-3-4
trees, if the last processor (F,) is to store N data nodes, the memory
requirements are:

My=N, M._,2INs2l, Myo=1IN/s2)/2 ..

Since |{N/2')/ g =|N/2!*Y} (both are equal to the binary value of N
right-shilted by 1+1 bits), these memory requirements can be restated
in more general terms as:

M,alN/z""]. 1sj=<k

In Section 5 we found that k = ilgN + 1. Substituting this value for k
yields:

My = l(N/ 2lsM) a'-']. 1sj<k
Since N/ 2"'”‘ < 1, the memory requirement is seen to be:
My = l?l“]. 1<j<k
Thus, it is clear that the memory configuration of Section 2, where

M, = 227, is sufficient. Hence, the architecture can indeed store all
possible 2-3-4 trees of N data items.

