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ABSTRACT

We prove upper and lower bounds on the area-time
complexity of the problem of selecting the /-th smallest
of n k-bit integers. When chip area is restricted to
©(n ), our O(klogn )-time circuit is provably area-time
optimal to within a factor of O (logn). We present
several circuit constructions having area other than 6{(n),
but these are typically a factor of O(!) from area-time
optimality. The development of tight upper and lower
bounds for /-selectors of nonlinear area is thus an open
problem.

1, Introduction

We present upper and lower bounds on the area-time complex-
ity of circuits that select the ! -th smallest of a set of integers. Our
lower bounds are trivial, but most of our upper bounds are interest-
ing on both theoretical and practical grounds. Indeed, some of our
VLsI algorithms mé.y have application in the design of cost-effective
database machines.

This work is the first to prove area-time bounds on the VLSI
complexity of /-selection. Aside from some very recent work on the
minimum area requirements for [ -selection in VLsI,% almost all previ-
ous work on this problem has been done in the context of serial
models of computation. On most such models, it is strictly easier to
select than to sort, The /-th smallest of n integers can be found in
O(n) time and O(n) space, whereas it takes {)(n logn) time and
)(n ) space to sort n integers.

In VLs1, we find it is also strictly easier to select than to sort,
for almost all n, k, and /. For example, when ¥ > 2logn, an area-
time product of nk Vnlogn is necessary and sufficient to sort n
k -bit integers.3 5 This area-time product for sorting is strictly larger
than our wupper bound on [!-selection (Theorem 3) of
AT == O(nklogn). Our circuit is about the same size, but much
faster, than Bilardi’s or Cole and Siegel’s area-time optimal sorting
circuits. In general, we can show that selecting is strictly easier than
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sorting in the AT sense for all n, !, and € > 0, when
k > (2+¢)loglogn .

2. Model of VLSI Computation’

We use the following standard assumptions to bound the area
and time complexity of VLSI circuits. The area of a circuit is the
sum of its gate, wire, and I/O pad areas. Each gate and I/O pad
occupies unit area. Each wire has unit width, and there are a con-
stant (greater than one) number of wiring layers.

We choose the simplest model of VLSI time, the unit-delay
model, despite the fact that it is unrealistic in the limit of large n .4
In the unit-delay model, each wire has unit bandwidth and unit
delay, regardless of its length. Gates and I/O pads also have unit
bandwidth and unit delay. No time penalty is assessed for excessive
fanout or fanin. Instead we restrict all our gates, wires, and 1/O
pads to have O (1) fanin and fanout.

Our I/O assumptions are also conventional. We assume chip
1/0 is semelective,® when-oblivious,” and where-oblivious.” By
“semelective’”, we mean that each input bit is read by the circuit
exactly once. The when- and where- oblivious assumptions mean that
the timing and location of I/O events are independent of the data
values. In particular, the circuit has no control over when and where
it reads its inputs.

3. Problem Definition

The problem of selecting the [—th smallest of a set of n
integers is of identical complexity as that of selecting the /~th larg-
est. Hence we can restrict our attention to the case that [ < n /2.

DEFINITION. A circuit is an {-selector if it is capable of outputting
the {-th smallest of a (multi)set of n k-~bit integers. Integers are
input and output in binary format on a semelective, where- and
when- oblivious I/O schedule. The parameters n, k, and / may be
fixed at the time of circuit construction.

4. Related Work

There has been a lot of recent activity in a closely related
topie, minimal-area sorting. Siegel proved the following tight bounds
on the area of when- and where--oblivious sorting circuits that read

their inputs r times:®
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S(logn + 2* (log% -k +1)), ifk < log—:-

A =

O(logn + i:-(k —log—':- +1)), ifk > log‘% and k¥ = O (logn)

The semelective case (r = 1) of this result was proved indepen-
dently.% 3 The semelective result was proved under slightly weaker
assumptions: it does not depend on Siegel’s where-oblivious restric-
tion nor on his ¥ = O (logn ) condition.

The area complexity of finding the /-th smallest of n k -bit
integers in a semelective, when-oblivious fashion was recently
evaluated:®

{ 6(2* (logl - ¥ + 1)), if k& < log!
A =\ 6(min{n, I(k -logl + 1)}), if k > log/

Thus it takes at least as much area to find a median (I = n /2) than
to sort, when k < logn. Sorting takes strictly more area than

median-finding, however, when k& > (1+e¢)logn .

Finally, note that the problem of finding the minimal element
(! = 1) has area complexity A = O(min{n, k}). Below we show
that area-time optimality is in fact acheivable for such minimum-

area l-selector circuits.

5. Lower Bounds

-It'is easy to show that the least-significant output bit of an
| —selector depends on all of its nk input bits. The following theorem
is then immediate from the unit bandwidth restriction on a circuit’s
unit-area I/O pads.

THEOREM 1, The area A and computation time T of any ! -selector
is bounded by AT > nk.

Since a circuit’s gates have constant fan-in, it takes

T = Qlognk ) time to compute any output depending on nk bits.

THEOREM 2. The area A and computation tim.e T of any ! -selector
is bounded by AT® = Q(nk (lognk )**), for any a > 1.

8. Circuit Constructions

We divide our constructions into four categories. First come
our best algorithms for general n, k, and [. Next, we treat the case
of algorithms with small area. Then we describe algorithms which
are good for small {. Finally, we interpret a result of Stout, obtan-
ing the fastest known !-selector that is within n ¢ of being area-time

optimal, for any ¢ > 0.

8.1. Algorithms for the General Case

Our first circuit operates on a ‘“radix select” principle, con-
structing the MSB of its output from the MSBs of its inputs.5

THEOREM 3. The !-th smallest of a set of n k -bit integers can be
foundin A = O(n)and T = O(klogn).

Proof sketch. From the most~-significant bit of each input, the
circuit is able to compute the most-significant bit of the output. The
next-most significant output bit is computed next, on the basis of
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n + O (logn ) bits of circuit state and n more bits of circuit input.
Successively less significant bits are computed In an analogous
fashion.

We can implement this algorithm using the H-tree layout of a
parallel counter tree. The area of the circuit is thus 4 = O(n).
The parallel counter tree generates the binary representation of the
number of ‘0’ in the current set of # input bits in time O (logn ).
Since we need k iterations of this calculation, the algorithm takes
O (klogn) time. (J

Since sorting n k-bit integers takes AT =— Qfmin{n 2¥/2,
n®2 | 1+k-logn | }),5 selecting is strictly easier than sorting for
k- > (2+e€)loglogn . Of course, selection is never harder than sorting,
since we can build a selector from a sorter.

A slight generalization of Theorem 3's circuit yields a speedup
of O (loglogn ) at an area penalty of O (loglogn ). Our second circuit
is thus preferable to the first whenever & > 1 in the optimization cri-
terion AT,

The idea is to reduce the number of iterations by processing
loglogn bits of each input at once. We perform 1-counting computa-
tions on an H-tree, as before. Each leaf of the tree holds loglogn bits
in binary format. It sends its value up the tree in unary format, in
O (logn ) time. An internal node of the H-tree, at level i, sends the
sum of two (f~1)-bit integers as a {-bit result to its parent. This
can be done in unit time, if a redundant carry-save notation is
employed. Thus we have the following theorem.

THEOREM 4. The /-th smallest of a set of n k —bit integers can be
found in A = O (nloglogn ) and T = O (klogn /loglogn ).

6.2. Algorithms for small /

For | = 1, namely the problem of finding the minimum ele-
ment, we have an /-selection algorithm that is AT -optimal for all
n, k, and /. This algorithm is also AT%optimal for all « > 1,
when k = O (logn ).

THEOREM 5. The smallest of a set of n & -bit integers can be found
in A = O(nk/(k+logn)) and T == O (k-+logn).

Proof sketch. We divide the input integers into nk /(k +logn )
groups. Each group thus consists of (k+logn }/k k-bit integers.
We process these integers in (k +logn )/k batches. We read the first
batch of integers, serially, into a binary tree of serial comparators.
After log(nk /(k +logn )) = O (logn ) time, the MSB of the smallest
integer in the first batch appears at the root of the tree. We store
this value in a serial shift register at the root. We pipeline this
minimum-finding operation, starting the second batch of integers as
soon as the LSB of the first batch has cleared the comparators at the
leaves. As new values emerge from the root, they are compared in a
bit-serial fashion with the value saved in the root’s serial shift regis-

ter. [J

We can generalize the algorithm above, by using merge ele-

ments instead of bit-serial comparators at the internal nodes of the
tree.




THEOREM 8. The /—th smallest of a set of n k-bit integers can be
found in A = O (nkl /(k +logllogn )) and T = O (k +logllogn ).

Proof sketch. Once again, we organize the computation in the
form of an H-tree. This time the tree has nk /({(k+logllogn))
leaves, and we read the integers in (k +logllogn )/k batches. Each
leaf reads [ k-bit integers from each batch through { I/O ports, bit-
serially, in O{k) time, Each leaf is equipped with an O ({%)-area
bitonic sorter, so that it can sort its input with O (log®/) latency.12
The internal nodes of the tree are responsible for merging the pipe-
lined data from the leaves, discarding the largest ! integers and send-
ing the smallest ! integers up the tree. Each such internal node is
thus implemented as an odd-even merge network of latency O (logl)
and area O (I%). At the root of the tree, we have an additional merg-
ing node and a k X{-bit shift register. The root merges the / smal-
lest integers of each batch with the / smallest integers from all previ-
ous batches. The height of the tree is log{nk /(I (k + logllogn)) =
O(logn ), so the total latency through the tree is O (k + logilogn ).
O

We note, in passing, that many variations on Theorem 6 are
possible. We could have made the sorters and mergers faster, by
making them word-parallel instead of bit-serial. Indeed, the whole
network could be reduced to O(lognk) depth, by using an

O (logn )-depth sorting circuit.! However, such a circuit would be far -

from AT -optimal, since its area would be O(n?). Indeed it is easy
to see that this line of attack is doomed for large {. Any ! -selector
that uses !-sorters on n /I sets of { k-bit integers must have an
area-time product in excess of nkv7 . For I = O (n), this is much
worse than the area-time product of the [-selectors of Theorems 3
and 4.

8.3. Algorithms with small area
For completeness, we present a few [-selectors with area sub-
linear in n . These circuits are not close to being AT ~optimal, how-

ever, unless { and/or k are very small.

THEOREM 7.8 The {-th smallest of a set of n k-bit integers can be
foondin A = O (k) and T = O(n+k).

Proof sketch. We build the first [ stages of a word-parallel n-
comparator bubble sorter.12 The depth of the circuit is O(l). The

1/O time is O (n -+k ), due to the skewed word-parallel input format.

0

Cole and Siegel’s AT-optimal n —sorter for ¥ > 2logn offers an
immediate asymptotic improvement on Theorem 7, for a restricted
range of K.

THEOREM 8. The [-th smallest of a set of n k& -bit integers can be
fond in - A = O(k) and T = Of(nViegl /VT), if
logl < k < gVitest

Proof sketch. A circuit of O(lk) area can sort 2/ k-bit
integers in O(m) time, if logl < k < 2Vilosl | We sequen-
tially use this circuit n /! times, merging groups of ! input integers
with the [ smallest integers previously encountered. The lower
bound on ¥ is due to the fact that the circuit keeps track of logl -bit

1/ o port addresses. The upper bound on & is explained by Bilardi’s
AT /logA lower bound on sorting circuits for extremely long
wordlengths.3 (]

When k& or [ is small, we can use data compression to obtain a
smaller circuit:

THEOREM 9.8 The I——-th smallest of a set of n k-bit integers can be
found in A = O (min{2*, {}(| & -logl | + 1)) and T = O (nk).

Once again, Cole and Siegel provide us with an improvement
for some k.

THEOREM 10. The /-th smallest of a set of n k-bit integers can be
found in A = O(2*(log! ~ k)) and T == O (n2*/%/(logl k), if
2loglogl < k < logl-2loglogl .

Proof sketch. We build a circuit that can sort 2/ k-bit integers in
T = O (I /(2*log(2! /k))). Tt retains the smallest | integers
encountered thus far in O (2¥log(2! /k)) area. (O

8.4. Stout's selector

None of our circuits thus far has used the “recursive filtering”
concept of the O (n)}-time serial selection algorithm. This concept,
while quite efficient in a serial or parallel computer with random
memory access, is difficult to use efficiently in a VLSI model. For
example, any implementation of a ‘“big switch” giving n processors
random access to an nk —bit shared memory with nk -bandwidth car-
ries an AT? cost of ((n%k?). Quentin Stout has finessed this
difficulty, developing an [-selection algorithm!® !l for an n-node
pyramid computer that runs in time O ((logn )losloss}/2),

THEOREM 11. The [-th smallest of a set of n k-bit integers can be
found in A = O (nk?/(logk )*) and T = O (logk (logn )ioslosn)/2),

Proof sketch. We build the fastest possible VLSI implementa-
tion of Stout’s algorithm. Each of his n processors is realized as a
fully-parallel k-bit processor of O (k%/log?) area. Elementary
k—bit operations on such processors take O (logk ) time. (J

We think it is possible to improve on Stout’s algorithm for gen-

eral [, although at present we only have an improvement for the case
Il =n?p8<1

7. Conclusions

Our unrestricted results are summarized in the following table.
In addition, we have an excellent circuit for minimum-finding
(Theorem 5), as well as improvements on Theorems 7 and 9 for res-
tricted ranges of k.

Area . Time
Thm 3. n klogn
1 Thm 4. n loglogn klogn /loglogn
Thm 6. nkl /(k +logllogn ) k +logl logn
Thm7. K n+k
Thm 8.  min{2*, 1 }(] k-log! | + 1)) nk
Thm 11. nk?/(logk )? logk (logn )lostosn /2

Table 1. Area-time performance of various ! —selectors.




- The selectors of Theorems 3, 4, and 11 are within O (n% ) of
area-time optimality, for all n k,! and for any ¢>0. Theorems 3
and 4 are our best.results for the general case, coming within a factor
of logn of the trivial AT = Q(nk ) lower bound.

Our nearly tight results, Theorems 3 and 4, are circuits of
approximately O(n) area. Our only selection circuits with
significantly non-linear area (Theorems 6, 7, and 9) are area-time
non-optimal by as much as a factor of I. To put this remark into
perspective, note that ! = n /2 for median-finding. In many cir-
cumstances, therefore, the best known [-selector is an [-sorter
(Theorems 8 and 10) with an area-time performance that is min{VT ,
) VaF } worse than our area-time lower bound on /-selection.

Of course we would like to close the gap between our upper
and lower bounds. This closure will be difficult, judging from the
AT = O(nk) performance that is possible for / = 1 (Theorem 5),
Theorems 7 and 9 indicate that AT = nk performance can be
obtained for | = O(1). Thus a tight area-time bound will depend
critically, in some unknown fashion, on the relative sizes of n, k,
and {.
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