
When Is a Supercomputer No
Better Than a
Workstation?*

by

Clark D. Thomborson
James Fenno

June 1990

Technical Report 90-5

University of Minnesota
Duluth

Computer Science

When Is a Supercomputer No
Better Than a
Workstation?*

by

Clark D. Thomborson
James Fenno

June 1990

Technical Report 90-5

Department of Computer Science
University of Minnesota

Duluth, Minnesota 55812
U.S.A.

* Supported in part by the National Science Foundation, through its
Design, Tools and Test Program under grant number MIP. 87006139, and
by the Minnesota Supercomputer Institute.

\!Vhen Is a Supercomputer No Better Than a
vVorkstation?

Clark D. Thomborson*
James 1. Fenno*

Computer Science Department
University of Minnesota

Duluth, MN 55812

June 6, 1990

*Supported in part by the National Science Foundation, through its Design,
Tools and Test Program under grant number MIP 87006139, and by the Minnesota
Supercomputer Institute.

Abstract

Since a vector supercomputer costs about 2000 times as much as a work­
station, it should run programs at least 100 times faster. We discovered that
even a 30-fold speedup is optimistic, unless you are willing to invest heavily
in code optimization. Furthermore, supercomputers offer inferior floating
point precision and, often, no advantage in main memory size. vVe conclude
that few users - mainly cost-insensitive ones - should attempt to port
their workstation code to a vector supercomputer. To help you decide if you
should port your code, we pose five questions in a self-evaluation format.

When working with a program that is at, or reaching, the acceptable
limits of runtime on a workstation, the following question arises naturally:
Will the performance of my application increase when run on a supercom­
puter? In this article, we pose five additional questions to help you answer
the original question for yourself. If you answer 'no' to more than one of
our questions, it is probably not worthwhile for you to attempt porting your
code to a vector supercomputer.

vVe devote one section of this article to each of our five questions:

1. vVould you pay 60 times as much to solve your problem 30 times faster?

2. Can your code be easily vectorized?

3. Will your program be used enough to warrant hand-optimization?

4. Can you afford to retune your software's floating-point arithmetic?

5. · Is your application small enough for a supercomputer?

We developed our list of questions to save others from wasting time and
energy, as we did, trying to port code from a workstation to a supercomputer.

From 1986 to 1989, we believed we had a application that was well­
suited for running on a Cray supercomputer. We were running a series of
experiments on a promising new approach for deciding how to route the
microscopic wires on a semicustom integrated circuit known as a gate array.
Our approach is to generate a fairly large linear program (832 constraints)
for a small (12x15) gate array. The solution of the linear program indicates
how wires might be placed into the Manhattan-like channels between the
gates in the array (11].

Until February 1990, the cpu-intensive kernel of our wire-routing system
was Roy E. Marsten's XMP package for solving linear programs. This pack­
age of FORTRAN routines is running on many different computers, ranging
from PCs to supercomputers (8, page 3]. Recently, for the reasons outlined
below, we replaced the XMP linear program solver with a new package called
CPLEX (2].

Since our Sun-3 workstation took 100 seconds to solve our 832-constraint
problem using the XMP library, we feared that our system would not be
feasible for large gate arrays. To give you a sense of scale, a modern gate
array such as the 1 1im CMOS TGC118 has 18,620 sites in a 133x 140 array
(12]. Routing such a large array with our method would result in a linear
program approximately 100 times larger than our 12x15 example. Since
linear programming by the simplex method (as in x:MP and CPLEX) usually
runs in O(n3) time, Sun-3 runtime on a 133x140 array would be roughly
(100)3 times as long as in our 12x15 example - perhaps 108 seconds, or
about two years.

1

Since the Cray-2 typically runs at tens of MFLOPS, and our Sun-3 with
a 68881 co-processor typically runs at tens of KFLOPS, we naively hoped to
see our runtime decrease by a factor of 1000 after porting our program to a
Cray-2. With the expected 1000-fold speedup, we could route a full TGC118
array in a day of Cray-2 runtime.

In retrospect, our expectation of a 1000-fold speedup was naive. On our
code, we observed only a 20-fold speedup: a Cray-2 took 5 seconds to solve
our 832-constraint benchmark, as opposed to 100 seconds on a Sun-3.

After modernizing both software and hardware early in 1990, we still
see no reason to run our application on a supercomputer. Our new Sun-
4 runs about 2.5 times faster than our old Sun-3, on the Xi\IIP code. We
gain an additional factor of 15 by replacing the XMP code with the CPLEX
linear program solver. 'With CPLEX, our Sun-4 workstation solves our 832-
constraint benchmark in 2.5 seconds, a 40-fold improvement on our Sun-3
runtime with XMP. Using the O(n3) runtime extrapolation described above,
we might now be able to route the wires on a 133x 140 gate array in two or
three weeks of Sun-4 runtime. This is exciting, because we are now within
a factor of four or so of economic feasibility for our wire-routing system.

It would be interesting for us to use the CPLEX code to solve our 832-
constraint problem on a Cray, in order to complete the comparison. Un­
fortunately, our $500 CPLEX license covers only the Sun-4. According to
CPLEX promotional literature, however, their code runs only 10 to 14 times
faster on a Cray Y-MP than on a Sun-4, for five standard linear program­
ming problems of 1,554 to 16,170 constraints. vVe would expect to see a
similar 10- to 14-fold speedup on our 832-constraint problem.

In summary, neither our old or new experiments showed more than a
20-fold speed advantage in moving our programs to a Cray. This small
improvement does not justify either the cost of the port or the relative
expense of access to the Cray. Although we get our Cray cycles "for free"
(via a straightforward grant-writing process), we are interested in proving
the economic feasibility of our wire-routing method. Thus we view the 100-
fold increase in actual cost of rapidly solving a wire-routing problem on a
Cray, versus solving it 20 times more slowly on a workstation, as a deciding
factor in our comparison.

The discussion above has centered on speedup and cost ratios. These
are important, but by no means the sole factors in considering whether to
port code to a supercomputer. Below, we treat other important issues, in
addition to speedup, in our five-question framework for deciding "to port or
not to port?"

2

1. Would you pay 60 times as much to solve your
problem 30 times faster?

vVe obtained only a 10- to 20-fold speedup when we moved our workstation
code to a Cray. Your code may be more amenable to speedup than ours.
Still, we doubt you will see as much as a 30-fold speedup, without an ex­
pensive and time-consuming recoding. In the following section, we argue for
a 30-fold limit on speedups; if you accept this value for now, we can make
some broad-brush economic arguments.

A vector supercomputer costs between ten and twenty million dollars.
A workstation costs between five and ten thousand dollars. This 2000-fold
difference in purchase cost can be translated into a 2000-fold difference in
operating cost, if one assumes that yearly operating costs are 303 to 503 of
the purchase cost. Both workstations and supercomputers are functionally
obsolete within five years, so that yearly depreciation and finance charges
alone are 203 to 303 of the purchase cost. Yearly budgets for operating
personnel, software, and hardware maintenance each add another 53 to
103 of the hardware purchase cost to the yearly operating expense. Thus
a supercomputer costs about $1000 per hour to operate, and a workstation
costs about 2000 times less, or about $10 per day.

If you obtain a 30-fold speedup by using a supercomputer instead of a
workstation, then you will pay 2000-;- 30 = 66. 7 times as much to solve each
problem. In some applications, this is perfectly acceptable. Consider the
problem of weather prediction. If you developed a code that enables a Sun
workstation to predict tomorrow's weather in just 24 hours of runtime, your
code would have no commercial value. However, if your code ran in just 1
hour on a Cray, you could sell your weather predictions for a tidy profit,
even after paying $1000 per prediction for your Cray runtime.

Our advice, then, is for you to examine your the time-value of results
in your application, to see if you are able to accept a 30-fold speedup at a
60-fold increase in cost.

In our case, we are not able to justify the increased cost of a Cray
computation. We believe that our end-user population would not be willing
to spend more than about $1000 for a solution to a wire-routing problem,
nor would they be willing to wait more than a week for the results. One week
of Sun-4 time will solve about 18 times as many problems as one thousand
dollars (one hour) of Cray time, even assuming an optimistic 20-fold speedup
for our application.

3

2. Can your code be easily vectorized?

By following the advice in this section, you should be able to determine if you
would obtain more than a 30-fold speedup if you moved your workstation
code to a supercomputer.

In a nutshell, the difficulty with using a supercomputer efficiently is
that code written for use on scalar machines, such as a workstation or a
mainframe, will not take full advantage of the specialized functional units of
a supercomputer. To gain the potential 100- to 1000-fold speed advantage
of a vector supercomputer, programs must be vectorized [7, page 81]. This
can be accomplished in two ways.

The simplest approach is to compile your unmodified source code on a
supercomputer's vectorizing compiler. The second, and much more expen­
sive, method of vectorization is to employ a skilled programmer to rewrite
portions of the source code. We discuss the use of vectorizing compilers in
this section, deferring code restructuring to the next section.

Despite major advances in compiler technology, any of the following pro­
gramming constructs hamper the vectorization of loops: recursion, subrou­
tine calls, I/O statements, assigned GOTO's, certain nested if statements,
GOTO's that exit the loop, backward transfers within the loop, and refer­
ences to non-vectorized external functions (7, page 90]. Such constructs are
common but relatively innocuous, outside of inner loops. ·when they appear
in an inner loop, howver, that loop will not be vectorizable.

Code that is not vectorizable will not run much faster on a supercom­
puter than on a workstation. Modern workstations execute about 10 million
instructions per second. Vector supercomputers run at about the same speed
whenever the operands and the machine instructions cannot be prefetched.
In either case, the limiting factor is the 100 nanoseconds or so it takes to
fetch an arbitrary operand from semiconductor memory (RA:M).

Even when a supercomputer's compiler is successful at vectorizing an
inner loop, loops that are iterated only a small number of times will not be
accelerated appreciably: they may even run more slowly when executed in
vector mode!

A final warning: if your workstation spends less than 80% of its time
executing your code's inner loops, you will not see a large speedup if you
move this code to a supercomputer. This prediction is based on classic work
by G. Amdahl[l]; here is a brief explanation of how Amdahl's Law applies in
this scenario. The code outside your inner loops is unlikely to be accelerated
much, due to its use of non-vectorizable constructs. Even if this code were
accelerated by a factor of six, and even if your inner loops were executed
instantaneously, your total speedup can be no more than 6/(20%) = 30, if
20% of your workstation runtime is due to non-inner loop computations.

4

If you are able to identify the inner loop of your source code, you may be
able to estimate its speedup. The idea is to find speedup data for a similar
loop, in a book[7] or some other published source[5, 9]. The iteration count
of the loop is a critical parameter[6]. We present some illustrative data
below.

On a Cray Y-MP in single processor mode, the three loops A, B and
C all run at about 5 MFLOPS when the iteration count n is 10, at 33 to
60 MFLOPS when n = 100, and at 33 to 220 MFLOPS when n = 1000.
Loops A and B are therefore amenable to vectorization, running in excess
of 100 MFLOPS when n > 100. Loop C's indirect addressing limits it to 33
MFLOPS, even for large n.

Loop A: do 1 i=l,n
1 s=s+a(i)*b(i)

Loop B: do 2 i=2,n
do 2 j=l,i-1

2 a(i)=a(i)+b(i,j)*a(i-j)
Loop C: do 3 i=l,n

3 a(ia(i)) = b(ia(i)) + c(ia(i))

By way of contrast, all three loops run at 1 to 3 MFLOPS on a Sun-4
workstation, for any n > 2.

Summarizing our discussion of speedup analysis, we assert that unless
you have simple arithmetic statements in your inner loops, unless your vector
lengths are longer than 100, unless you have no indirect addressing in your
inner loops, and unless your inner loops account for the vast majority of
your program execution time, you surely will not observe a speedup greater
than 30 when moving from a workstation to a supercomputer.

You may be uninterested in learning enough about vectorizing compilers
to estimate the speedup possible on your code. As a simpler alternative, we
suggest you merely compile your code on a supercomputer, then run it on
a representative set of test data. Most supercomputer centers are willing to
let a potential client make a test run of this form, with little bureaucratic
overhead.

vVe made a test run on several different workstations and supercomput­
ers, timing how long each takes to solve our 832-constraint linear program
with the XMP code. Here are our results. A Cray X-MP acheived

• a 30-fold speedup over a Sun-3,

• a 12-fold speedup over a Sun-4,

• a 6-fold speedup over a DECstation 3100, and

• a 1.5-fold speedup over a Cray-2.

5

The actual runtimes were

• 101 seconds on our Sun-3/160,

• 42.1 seconds on our Sun-4/110,

• 19.9 seconds on a DECstation 3100,

• 5.1 seconds on a Cray-2, and

• 3.4 seconds on a Cray X-MP.*

Leaving the obsolescent Sun-3 out of the comparison, the largest speedup
observed when moving from a workstation to a Cray is 12. Thus, the $10-
per-day workstations will solve the same set of problems about 200 times
more cheaply than a $1000-per-hour supercomputer, albeit 10 times more
slowly.

We made more than a dozen runs on the Cray-2, trying all combinations
of the compiler flags that affect vectorization. None had a significant effect
on the runtime of the XMP source code, for our test data. This implies that
the code is not vectorizable. Upon further investigation, we found that the
inner loop of the XMP code iterates, on average, just 1.8 times per entry.
This is sufficient explanation for its non-vectorizability.

As mentioned in the introduction, we recently switched to a better lin­
ear program solver, CPLEX. It is superior not only in runtime, but in the
number of iterations and in the number of integers in its solution vector.

When we mounted CPLEX on the Sun-4, we found it could solve our
832-constraint problem in just 2.5 seconds. This is twice as fast as the Cray-
2 running the inferior XMP linear program package! Unfortunately, a license
to run CPLEX on a supercomputer is very expensive, so we are unable to
directly measure its speedup, on our problems, on a supercomputer. How­
ever, according to its supplier's data, CPLEX runs only 10 to 14 times faster
on a Cray Y-MP than it does on a Sun-4, indicating that CPLEX, like x:rvIP,
is not effectively vectorizable.

We note, in passing, that the next generation of workstations will have
vectorized floating point units. Already, one can buy a floating-point ac­
celerator board for a Sun workstation, boosting its peak performance to 80

•All workstations had floating point chips and at least 8 MBytes of memory. The
Sun-3/160 is rated at 2 MIPS; it was running Sun UNIX 4.2 release 3.5. The Sun-4/110
is rated at 7 MIPS; it was running SunOS Unix 4.0. The DECstation 3100 is rated at
14 MIPS; it was running an early version of its operating system, ULTRIX-32 ver 2.0 rev
7.0. The Cray-2 is rated at 1800 MFLOPS (peak); it has 4 processors and 512 MWords
of memory; it was running UNICOS 4.0 at the time of our experiments. The Cray X­
MP has 4 processors, 16 MWords of primary memory, and 128 MvVords of semiconductor
secondary memory; it was running UNICOS 5.0. We used the CFT77 compiler on the
Crays, and the FORTRAN-77 compiler supplied by each workstation's manufacturer.

6

MFLOPS. This development will greatly reduce the maximum speedups ob­
served when moving from a workstation to a supercomputer. Paradoxically,
it may also expand the use of supercomputers, since code optimized for a
vectorized workstation will probably run efficiently on a supercomputer.

3. Will your program be used enough to warrant
hand-optimization?

As noted in the preceding section, global compiler directives are not often
sufficient to give much (if any) speedup. Hand-optimization is necessary for
efficient use of the functional units of a supercomputer, in order to approach
its full speed advantage over a scalar processor.

The time required to hand-optimize a program will depend upon the size
of the utilized code [7, pages 6-7], the style in which it was written, and the
programmer's familiarity with it. By style we mean, "Does the program
contain good comments and descriptive variables?"

Of course, the expense of programmer-mediated optimization must be
offset with the savings gained from the decrease in execution time. In the
worst case, it will take months or years to hire and train programmers to
rewrite, document, and test a few thousand lines of code. In the best case,
one's supercomputer center consultants may be able to point out a simple
modification to your inner loop, achieving a factor-of-ten speedup in a matter
of days.

In our case, examination of the XMP source code showed its inner loop
to be a prime example of "dusty deck" FORTRAN. Effective vectorization is
infeasible, since the entire XMP program is built around a data structure (a
row-oriented sparse matrix) that will not support vectorization in matrices,
like ours, with only a few non-zeros per row. If we completely restructured
the program, storing our matrix by blocks or by sparse diagonals [4], we
might do better, but this would take tens of programmer-years. We are not
skilled in such work, and we know of three linear-programming development
projects in progress at other sites right now.

A final bit of advice: before rewriting your own code, we strongly rec­
ommend you make a thorough search for similar code that has already been
vectorized. Should this search be successful, you stand to save a lot of time,
money, and aggravation.

7

4. Can you afford to retune your software's floating­
point arithmetic?

Our fourth question is pointed at the profound differences between, and
general inferiority of, floating-point arithmetic on a Cray versus that on a
workstation. All modern workstations follmy the IEEE 754 floating-point
standard. Supercomputers do not.

In general, you should expect to encounter little difficulty when port­
ing your code from one IEEE-standard workstation to another. If, however,
your code is at all sensitive to floating-point roundoff errors, you should be
prepared to "retune" and revalidate your code upon moving it to a super­
computer.

The Cray floating point storage format has 1 sign bit, 15 exponent bits,
and 48 mantissa bits. Floating point numbers have the most significant
bit in the leftmost mantissa bit, giving 48 bits of precision [3]. The IEEE­
standard double-precision storage format has 1 sign bit, 11 exponent bits,
and 52 mantissa bits. Here, the most significant bit is implied, giving the
user 53 bits of precision (10, page 1-9], fully 5 bits more storage precision
than is available on the Cray-2. Furthermore, the IEEE standard specifies
a roundoff algorithm to be employed when storing a floating-point number;
Crays do some form of truncation.

The Cray multiplication algorithm uses 56 bits of precision [3]. This is
significantly less than the intermediate format of the IEEE standard, which
has 64 bits of precision [10, page 1-9]. The 56-bit Cray result is not an
intermediate format in the IEEE sense, since it is not available after the
multiplication is complete. Thus, for example, inner-product accumulations
are done with at most 48 bits of precision on the Cray, whereas the IEEE
standard provides 64 bits.

In computations where precision is not crucial, workstation users may
employ the single-precision IEEE-standard floating point storage format. In
this format, a floating point number occupies only 32 bits of storage, but
its range and precision are limited. Computations on single-precision num­
bers proceed at about the same speed as double-precision numbers, unless
bandwidth to and from workstation memory is a bottleneck.

We note, in passing, that very-high-precision floating point arithmetic
is available on some workstations (such as the DECStation 3100) and the
Cray supercomputers, for users willing to pay a substantial time penalty.
It takes four to ten times as long to run a program with about 100 bits of
precision, as opposed to the 48- to 64-bit precision of the standard floating
point arithmetic.

In summary, although there is a slight time penalty for storing a floating
point number in double precision on a workstation, floating point arithmetic

8

on a workstation is always performed at a higher level of precision than on
a Cray.

In addition to the precision advantage outlined above, the IEEE standard
provides a straightforward method for handling exceptional operations, such
as dividing by 0 or taking the square root of a negative number. These ex­
ceptional operations yield results that, when printed, are easily understood.
The alternative method of handling exceptions, seen on Crays (and on older
mainframes) is an easily-lost or misinterpreted error message, or, possibly,
an abnormal termination of your job. The latter is irritating, to say the
least, when the exceptional operation would not have affected the major
results of your run.

In our application, we observed that the XMP linear program package
was unable to solve a 1500-constraint problem when it was compiled and run
on a Cray-2. The identical XMP source code was able to solve this problem
when compiled and run on the Sun-3, the Sun-4, and the DECstation 3100.
vVe surmise that the loop termination conditions in the X:tvIP package were
tuned for IEEE-standard arithmetic, and would require some modification
to work adequately on the Cray-2. If we were still interested in porting Xi\!IP
to a Cray, we would contact its supplier for advice on modifying the code.

We conclude that the peculiarities and relative imprecision of supercom­
puter floating-point arithmetic could pose severe difficulties when porting
code from a workstation to a supercomputer.

5. Is your application small enough for a super­
computer?

Most people would assume that a supercomputer can handle much larger
programs and datasets than would fit on a workstation. Indeed, this was
true in the recent past, but the differences in memory size between super­
computers and workstations is generally small, and decreasing rapidly.

The Cray-2 is the only member of the Cray line that can be configured
with thousands of megabytes of primary memory. By contrast, it is a rare
workstation or modern supercomputer that has more than a few tens of
megabytes. If you need more main memory than this, you probably belong
on a mainframe.

The importance of matching application size to primary memory space
can not be overstated. If your program frequently accesses a data structure
that is larger than its main memory, its runtime will be limited by your
computer's disk transfer time. A slowdown for this reason is called "disk
thrashing." In the worst case, your program might make random accesses
of single words in a data structure stored on its disk. If this occurs, your
workstation could run 100,000 times more slowly than if its data structure

9

fit into its primary memory: a random access to fast semiconductor RAM
takes about 100 nanoseconds, while a random access to a fast disk takes
about 10 milliseconds.

On a supercomputer, disk thrashing has more severe economic conse­
quences than it does on a workstation. A $1,000-per-hour Cray Y-MP can
do only a few more disk accesses per second than can a $10-per-day work­
station. Also, the cost of a disk access on a workstation can be mitigated by
multiprogramming, a technique whereby another task (or another user) can
use the workstation's CPU(s) while the first task is awaiting disk service.
It takes only a millisecond or two to switch tasks. By contrast, a multipro­
grammed Cray processor also takes a millisecond or two to switch tasks -
but this millisecond of "wasted CPU time" costs 2000 times as much as on
a workstation!

Note that the Cray X-MP and Y-MP architectures include a large semi­
conductor "secondary memory" designed to allow rapid block-level accesses
to a 1000-megabyte dataset. There is thus some hope of efficiently running
large programs on these machines. Still, we believe that any application
which is too big to fit on a workstation belongs on a mainframe or a Cray-2.
If it is too big to fit on these, it belongs on a workstation, because an inex­
pensive CPU can keep its disks busy much more cost-effectively than can a
Cray.

In order to estimate your program's space requirements, we suggest ask­
ing your computation center's consulting staff for help. If you give them a
copy of your code and a sample dataset, they should be able to measure (or
tell you how to measure) your program's use of the system's disk drives and
virtual memory. A bit of analysis and examination of source code documen­
tation will be in order as well, in order to extrapolate how your program
would behave on a worst-case set of input data.

Alternatively, you might try to calculate the maximum total size of your
program's data and code area. You can then use this as a worst-case estimate
of your program's memory requirements. Most programs will not thrash if
limited to a small fraction of their total memory area, since at any given
time, they will access only a small part of their data and code. The actively­
referenced part of a program's data and code space is called its "working
set."

In our application, a linear program with 1000 constraints uses 0.5
MBytes of memory for data storage on the workstations, or 0.7 MBytes of
memory on the Cray-2. The difference between the Cray-2 and the worksta­
tion is a result of the use of 4-byte integers on the workstations, as opposed
to the 8-byte Cray-2 integers. On both machines, the space required for
the linear program solution code space quickly becomes irrelevant as the
problem size increases.

10

Since we are using linear programming code based on sparse matrices,
our working set will grow with the number of non-zeros in the constraint
matrix. In our problems, we expect the number of non-zeros per row to be
essentially independent of the number of constraints. We thus extrapolate
linearly, finding that 40 MBytes of working set should be enough to handle
the 80,000-constraint linear program arising from using our method to route
the wires in a modern gate array. Thus a memory-rich workstation, or for
that matter, a Cray X-MP or Y-MP, should be able to solve a wire routing
problem for even the largest current gate arrays. Gate arrays are expected
to become larger in the future, but so are workstation memories.

We conclude that our program's working set is small enough to fit on
any supercomputer or well-configured workstation.

6. Summary

We have posed five questions to help you decide whether or not to port your
application to a supercomputer:

1. Would you pay 60 times as much to solve your problem 30 times faster?

2. Can your code be easily vectorized?

3. Will your program be used enough to warrant hand-optimization?

4. Can you afford to retune your software's floating-point arithmetic?

5. Is your application small enough for a supercomputer?

If you answer "no" to the first question, but you think you could obtain a
speedup greater than 30 with a vectorizing compiler alone (question two), or
with hand-optimization followed by vectorized compilation (question three),
then porting your code may well make economic sense. A negative answer
to either question four or five, however, is a sure indication of trouble. Sim­
plifying, we thus assert that if you answer any two of our questions "no,"
your application does not belong on a supercomputer.

Our application scored four "no" answers: in hindsight, it is strange
that we ever considered porting our sparse linear-programming code to a
supercomputer!

Acknowledgements

Many of the experiments described in this article were performed by Stephen
Thomas of UMD. The wire-routing application was developed by Antony P­
C Ng and Prabhakar Raghavan, while they were members of Thomborson's
research group at UC Berkeley.

11

We would also like to thank Roy Mars ten, John Gregory, and the staff
of the Minnesota Supercomputer Institute for their assistance in technical
questions arising in the course of this research.

12

Bibliography

[1] G. Amdahl. The validity of the single processor approach to acheiving
large scale computing capabilities. In AFIPS Conference Proceedings,
volume 30, 1967.

[2] CPLEX Optimization, Inc., 7710-T Cherry Park, Suite 124, Houston
Texas 77095. CPLEX Performance Characteristics, 1989.

(3] Cray Research, Inc. Cray-2 Computer System Functional Description.
Manual HR-02000-0D, 1989.

(4) Jocelyne Erhel. Sparse matrix multiplication on vector computers.
Technical Report 1101, Institut National de Recherche en Informa­
tique et en Automatique, Domaine de Voluceau Rocquencourt, B.P.
105, 78153 Le Chesnay Cedex, France, October 1989.

[5] John T. Feo. An analysis of the compuational and parallel complexity
of the livermore loops. Parallel Computing, 7:163-185, 1988.

[6] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam
Hilger, 1988. ISBN 0-85274-812-4.

[7] John M. Levesque and Joel W. Williamson. A Guidebook to FORTRAN
on Supercomputers. Academic Press, Inc., 1989. ISBN 0-12-444760-0.

[8] Roy E. Marsten. XMP Technical Reference Manual. XMP Software,
Inc., July 1987.

[9] Frank McMahon. The livermore fortran kernels: a computer test of nu­
merical performance range. Technical Report UCRL-53745, Lawrence
Livermore National Laboratory, 1986.

[10) Motorola, Inc. MC68881/MC68882 Floating-Point Coprocessor User's
Manual, first edition, 1987.

[11] Antony P-C Ng, Prabhakar Raghavan, and Clark D. Thompson. Ex­
perimental results for a linear program global router. Computers and
Artificial Intelligence, 6(3):229-242, 1987.

13

[12) Texas Instruments, Inc. TGCJOO Series Jµm CMOS Gate Arrays Data
Manual SRGS001, 1989. Manual SRGS007.

14

