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Abstract 

We describe a framework for deciding whether an application 
will benefit from execution on a supercomputer. Our frame
work identifies, and in most cases gives quantitative measures 
for, five important parameters: runtime, difficulty of optimiza
tion, frequency of use, floating point precision, and working-set 
size. Using our framework, we find that our time-intensive FOR
TRAN program for wire-routing in gate arrays is better suited 
to a workstation than to the Cray-2 vector supercomputer. 



When working with a program that is at, or reaching, the acceptable 
limits of runtime on a desktop, the following question arises naturally: Will 
the performance of the application increase when run on a supercomputer? 
vVe pose five questions as a conceptual framework for determining whether 
or not it is worth porting code to a vector supercomputer: 

1. What is an acceptable runtime for solving my problem? 

2. Can my code be easily vectorized? 

3. Will my program be used enough to warrant hand-optimization? 

4. Is precision a factor in my computation? 

5. How large is my program's working-set? 

This article describes our experience in answering these questions for 
a wire routing program based upon linear programming [7). Our program 
generates a fairly large (832 constraints) linear program for a small ( 12x15) 
gate array. The cpu-intensive kernel of our code is Roy E. Marsten's XMP 
package for solving linear programs. His library of FORTRAN routines is 
running on many different computers, ranging from PCs to supercomputers 
[6, page 3). 

Since a Sun-3 desktop takes 100 seconds to solve our 832-constraint prob
lem using the XMP library, we fear that our system will not be feasible for 
large gate arrays. To give the reader a sense of scale, a state-of-the-art gate 
array such as the 1 µm CMOS TGC118 has 18,620 sites in a 133x140 array 
[4). Routing such an array with our method might result in a linear pro
gram approximately 100 times larger than our 12x15 example. Since linear 
programming by the simplex method (as in XMP) is generally assumed to 
run in average time 0( n3 ), a rough estimate of Sun-3 runtime on a 133x140 
array might take (100)3 times as long as our 12x15 example: 108 seconds, 
or about two years. 

Since the Cray-2 typically runs at tens of MFLOPS, and our Sun-3 with 
a 68881 co-processor typically runs at tens of KFLOPS, we naively hoped to 
see our runtime decrease by a factor of 1000 when we ported our program 
to a Cray-2. With the expected 1000-fold speedup, we hoped to route a 
full TGC118 array in a day of Cray-2 runtime. (While this would not be 
an economical use of a day of Cray-2 runtime, our wire-routing system is 
still in the developmental stage. Its runtime should improve greatly with 
algorithmic adjustment.) 

The purpose of this report is to warn its readership against a naive ex
pectation of a 1000-fold speedup of a Cray-2 over a Sun-3. On our code, 
we observe only a 6-fold speedup! vVe also generalize from our experience, 
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providing a conceptual framework for similar problems in porting from work
stations to vector supercomputers. Our framework is organized as a series 
of five questions, treated in turn below. 

1 What is an acceptable runtime for solving this 
problem? 

When working with large programs, an initial problem is to determine the 
longest acceptable runtime for the application. In our application, we believe 
an end-user would be willing to invest hours or days of desktop time, or up 
to an hour of supercomputing time, to obtain a solution for a large problem 
of 10,000 to 100,000 constraints. Such a problem would arise in the global 
routing of wires for a state-of-the-art gate array with perhaps 20,000 gates. 

We have timed our 832-constraint linear program on four different ma
chines: a Sun-3/160, a Sun-4/110, a DECstation 3100, and a Cray-2 super
computer. Figure 1 is a table of our results. 

Using the highest level of compiler optimization, the Sun-3/160 ran the 
program in 101 seconds, the Sun-4/110 in 42.1 seconds, the DECstation 
3100 produced an error message, and the Cray-2 ran the program in 20.9 
seconds. After trying all combinations of optimization and vectorization, 
we found the best runtime for the Cray, 18.0 seconds, was obtained with no 

__.., E tff fill§ 
f frl<~U t/;l~tJJJiJ 

vectorization. 
The -03 compiler option for the DECstation apparently produces incor- / !{1 j/J~ '}Jr/)~ 

rect code. Accordingly, we use the -02 result of 19.9 seconds, as the best l · _ /,f<»Jr-{:ltfJ 1lJ ~ttf' 
result for the DECstation 3100. Note that the Cray-2 supercomputer is only-~·..Z~ (gff!Pl /)~ 
marginally faster than this workstation. I 1 A -~ 

Under the assumption that simplex codes, such as XMP, generally run Qetl.9J~ W}Jf;r-..1 
in 0( n3 ) time, we plotted a graph of the number of constraints in a problem 
versus the number of seconds needed to solve the problem. See Figure 2. In AS}'.'.-15-'0 11J 
view of the time limits developed above, we plotted the execution time of . ll~tXbU 
the Cray-2 to one hour and all of the workstations to seven days. We also( · f fJ~IJ 
included an extra line for the Cray-2 that assumes a factor of 10 increase VM vi'\ 
in speed for a hand-optimized program. This factor of 10 speedup is the ,/'/., r I 
limit for typical Cray XMP code [5, pages 6-7]. We presume that similar 
speedups can be achieved on the Cray-2. \ ,J 

With a factor of 10 speedup for hand-optimized code, Figure 2 implies '------Lt~ I #r/:J 
the Cray-2 could solve a problem of approximately 30,000 constraints in one -~iiQ;t~ M'~i;\N 1 
hour. The DECstation could solve the same size problem in 10 hours and a ,1 {Y\ \cJl..v•' ·J;I~ 
problem with 90,000 constraints in 7 days. . ~~(I~ 

Readers familiar with numerical codes know it is dangerous to extrapo- .y fl\-
late runtimes of floating point programs as we do in Figure 2. For one thing, 
our analysis is based on a naive 0( n3 ) model of runtime. More devastatingly, 
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Computer Compiler Compiler Page Real User System 
Options Faults Time Time Time 

Sun-3/160 f77 ·f68881 0 127.0 124.2 0.8 
• ver2.10 

•Sun UNIX 4.2 release 3.5 ·f68881 
•CPU: MC68020 ·fstore 0 127.0 124.2 0.8 
• FPC: MC68881 
• 16.7 MHz clock -f68881 
• 8MBmemory -0 0 103.0 101.0 0.6 
•2MIPS 

-f68881 
-0 
-fstore 0 113.0 111.3 0.7 

Sun-4/110 ME-8 f77 -01 0 59.0 58.8 0.3 
• ver 2.10 

• SunOS UNIX 4.0 -02 0 42.0 42.1 0.1 
• CPU: MB86900 32 bit SP ARC 
• FPU: Weitek 1164/1165 
• 14.28 MHz clock 
• 8MBmemory 
•7MIPS 

DECstation 3100 f77 -00 3 31.0 27.7 0.3 
• ver 1.31 

•UL TRIX-32 ver 2.0 rev 7.0 -01 3 27.0 24.0 0.3 
•CPU: MIPS R2000 
• FPU: MIPS R2010 -02 3 23.0 19.9 0.3 
• 16.67 MHz clock 
• 16 MB memory -03 
• 64 KB instruction cache The compiler produced 
• 64 KB write through data cache incorrect code. 
• 14.MIPS 

Cray-2 cft77 full 1 i 
• ver 3.lc nozeroinc -- 63.0 ' 20.9 0.16 

• UNICOS4.0 
•4CPU's full ' 
• 512 Mword memory zeroinc .. 27.0 :20.9 0.16 

I 
novector 
nozeroinc -- 46.0 18.1 0.12 

i 
novector 
zeroinc -- 43.0 1 ~.o 0.24 

i 
off ii 
nozeroinc -- 56.0 ~\ .o 0.14 

off ~1\0 zeroinc -- 38.0 0.18 

* -- 33.0 h\o 0.15 

** -- 37.0 ,;119.l 0.12 

* la05bd.f -e novector ,n ozeroinc vi 
all others -e full,nozeroinc 

** laos.f -e novector ,nozeroinc 
all others -e full,nozeroinc 

Figure 1: Timing results for a linear program with 832 constraints CP/ sl? 
';/If tf f' Y', 

cRP-7 >. i ;oV" 
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Figure 2: Size of a linear program solvable in x seconds 
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such an extrapolation i~nor !the problem of round-off error. With larger 
problems, we cannot be re that the results will be accurate or that the 
program will even compete. The extrapolation of Figure 2 is thus suggestive 
but certainly not definitive. 

~l<J.tmtvl/ c435L:si\>~ ('/'(O -.1 vri?tcotMp~ 
2 Ca the code be easily vectorized? ; 

In ge eral, code that was written for use on scalar machines will not take 
ad ntage of the specialized functi:~~s of a supercomputer. To gain -OJfi JDOO·fOLJ) 5fr;;djJ/J 
t '.e-fu±J.~n~. vEl I 11~ programs must be vectorized 
[5, page 81]. This can be accomplished in two ways. 

The simplest way to vectorize a program is merely to use a vectorizing 
compiler without making any modifications to the source code. Unfortu
nately, most programs contain constructs that inhibit a vectorizing compiler. 
In particular, any of the following constructs hamper the vectorization of p1¢j)tlf IJ 
loops: recursion, subroutine calls, I/O statements, assigned GOTO's, certain iJW'·rJ~ f" 
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nested if statements, GOTO's that exit the loop, backward transfers within (JfJ(iJiWfJ (){>. rJ5f; 
the loop, and references to non-vectorized external functions [5, page 90]. f2.K.>'1~t/(,~/!'1r c.JPY j> 
Even if the compiler is successful at vectorizing an inner loop, loops that are /•J Cl f>er'l> I W: ~t!fl./Jf~t:J 
iterated only a small number of times will run more slowly when executed .u. 0/l,v ff-/ ,.,,'f'fl..>(/t/tJ.Jf-.-' 
. d &1~(/f'lflf'\!l f'llf\..~d 
m vector mo e. vsf IJ, - iJ!P.fi>O -r/..fj1~) 

The second way to vectorize code is to have a programmer restructure If\ ~ /I)? ~11)1tl -1llt ~ 
the program. If the programmer is successful, the compiler will be able to f 

4 --r/~ 1 V~1l!l'fl. r CQ'['l/Jtt-tif1.J 
recognize code fra~ents which are vectorizable, resulting in a significan ~ ~ 
speedup over unmodified code. 1J!l»~1.f 5 occdefr'¢ j - > 

In our experiments, we found that the standard Cray FORTRAN com
piler, cft77, is unable to produce any vector code that will speed up the -4tM:') 

execution of the unmodified XMP solution routines. Upon investigation, we 
found that the inner loop of the XMP solver iterates just 1.8 times. This 
finding is su:ffi.cien\ ex&,anation for the failure of cft77 to obtain a speedup by 
~~ vye believe the only possibility for obtaining a vector 
speedup in the XMP solution of our linear programs is for a skilled program

er to make extensive revisions to the code, perhaps restructuring its sparse 
atrix calculation from a row-oriented to a block-oriented method. 

-----~ 

3 Will the program be used enn-11gh to warrant 
hand':otitimization? ""'~ 

As we noted in~~re eding section, global compiler dir~~ , '.1-re not 
alw~ys sufficient to give/ uch (or any) speedup. Hand-optimiza~~~~ec
essary to exploit the f'B> · al units of a supercomputer and gain its f~ 

t. 
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/)c.'Cl/fY?(;!'{'tfl// L 



~l~,"~J l!!'r,€ IS 111('fAS J'fjl5i iJI) /J 
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<::::f O(-Oc ~&i', c~vrw, R. "1 1~f\/tl ¥X l -r~ JJCJ.#!fi) Orrt1t'?<'. v0stf ?J tAJ 1l L _s rAe.ff1Jj 
sp~~d advantage over a scalar processor. The ti . e required to hand-optimize S/J011) /Y/«G-€: 
a program will depend upon the size of the utiliz d code [5, pages 6-7], the 
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style i~hich it was written, and the programmer familiarity with it. By 
style we ri'tean, "Does the program contain good co ents and descriptive 
variables?" ' f course, the expense of programmer-m ~iated optimization 
must be offset 'th the savings gained from the decrease\ 'n execution time. 

·whenever poss· le, of course, one looks for similar code hat has already 
been vectorized. For ample, we are aware of the existence IS>f packages for 
solving large linear pro ams efficiently on the Cray supercomp\i.ters; we are 
now investigating their su \ability in our application. \ 

A final, a~d relatively in\~pensive, alter.native to the us: of a ~c~_or su
percomputer is to run unmodifi~d, unvectonzed code on a high performance 
scalar processor such as a DECs~tion 3100. 

*'~ 
~ ~ ~\ 4 Is precision a factor in the computation? 
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~ ~ (~ #( ,311\)6- l ~;ft~~)J vvv 
~ ~ (t \ Our fourth question is pointed at the relative imple~n of ~ floating 
~ ;§: ~ .Point arithmetic on the Cray-2. T-~~.fr+h~BGst<rt-i<inL--AVv Y'llM@lt"fi/ NA(-!.1PJJJ!$ 
~ :J~ \follow the IEEE 754 floating point standard, The Cray-2 does not. 
~ \ The Cray floating point storage format has 1 sign bit, 15 exponent bits, t -:S h_~ ,_J J nd 48 mantissa bits. Floating point numbers have the most significant 
~ ~ ~ fB~it in the leftmost mantissa bit, giving 48 bits of precision [1]. The IEEE-
~ ~ -..:> ~ s~andard double-precision storage format has 1 sign bit, 11 exponent bits, 
~ 9 @ ~afd 52 mantissa bits. Here, the most significant bit is implied, giving the 

..s!.~ ~ urr 53 bits of precision [2, page 1-9], fully 5 bits more storage precision 

~ ~ ~ t!.an is available on the Cray-2. 
~ ~ ~ The Cray multiplication algorithm uses 56 bits of precision [1]. This is 

t ~ ~ ~ si i:fi.cantly less than the intermediate format of the IEEE standard, which 
~ '-\ ~ha~ 64 bits of precision [2, page 1-9]. The 56-bit Cray result is not an 

-~ ~~ ~ inti\ rmediate format in the IEEE sense, since it is not available after the 
~ :X:.J:., ..:.:::.mu tiplication is complete. Thus, for example, inner-product accumulations 
~ ~I ~ are done with at most 48 bits of precision on the Crw, whereas the IEEE 
. '--~:;:.c.r: stahdard provides 64 bits. ~{i:wVO.if'LJ _ ())fj /If~ nV AA;1~,t/. 
t ~ ~ ~1We yonclude ~h, all of the;workstatiofs e teste~re supxior }p th~ 1W( fllbfJ~,p1-t:csr@ 
S? ~~~'-Cr y-2/in .respect o the .p:ecj10~ of their:~flo ting po~nt. arith~ ~c : .. ~o r 11 

fl'lff/C.. u A~l_t.OA~ 
~ ~ ......_ cas Al.oatmg!l nt prec1s1of. is important: our preh mary I est1 a on IJ/l.)~IJ 'f'.Y..s11Jf7#/J/#'-

l~ ~ "<'.' ~ sh s the Cr -2 is incapr ole of solving 2,000-con .raint problem u i 1g f)).) ,;7 ~· (.at. 1,!./JJV 
-; { ~ ~'.S the untuned -;, MP code. rxrJ- 'Y /J ~.t£!Pll flf1v 
~ !ff, ~ Wf{,UJ;J?.:J 1D p~! -

~ :i ~ t ~ :17/'l~ (Ylffl/{),,t1 (.'-'=~""""' '..,,-0 
~ 1 -?i ~ , ~ ~~ IA4?ff<ot f'~fteflJRC.f.Fwfi~ ?r;; 
"-- ~ ~\ ~ ,d. -re.::. F<N- -rv£1Ce 4.~ ~ 
~ ~~~ ·~~~fljft~- /JfJFUstv</J. 

( 
~ ~ ~ 39·:. 2~, ?27(/flfl!Jft9

6 
71J77JC S#@l(CrAf'IJMI), - / 1f1'ii!; 

~~ ~ <t I ti~ ,. I! ---~ ff,'bff,,, £ , 
~~ _v ~VVV) !Y)fJrl1'11 ro l?t~i1%~ ~ nJ(f2f) QMf(~ 4 ,YV(;.~5I' l~ 
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Figure 3: Data space required for a problem with x constraints 

5 How large is the program's working-set? 

Cray-2 

10,000,000 

A significant advantage of the Cray-2 is that it can be configured with hun
dreds of megabytes of fast RAM. By contrast, it is a rare workstation that 
has more than a few tens of megabytes. Thus, if your program has a work
ing set in excess of, say, 20 megabytes, but less than 500 megabytes, it will 
execute much more rapidly on a vector supercomputer - even if your code 
is not vectorizable. 

As indicated in Figure 1, our workstations' memory ranges from 8 to 16 
MBytes. Of this, at most 12 MBytes is available for a program's workspace. 
In contrast, the memory limit for the Cray-2 is 64 MWords interactively 
and 450 MWords when using the batch queuing system [3, page 59]. A 
Cray-2 word is 8 bytes, giving the user a 1000-fold advantage in size over a 
workstation. 

In our application, a linear program with 1,000 constraints uses 0.5 
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MBytes of memory for data storage on the workstations, and 0.7 MBytes of 
memory on the Cray-2. The difference results from the use of 4-byte integers 
on the workstations, as opposed to the 8-byte Cray-2 integers; we have no 
need of the extra integer precision. 

The workstations thus provide enough memory for problems up to ap
proximately 60,000 constraints, according to the linear extrapolation of Fig
ure 3. The Cray-2 memory line extends far to the right, up to more than a 
million constraints. The "+" on the Cray-2 line indicates the point (30,000 
constraints) at which our Cray-2 runtime reaches one hour. Due to run
time limitations, then, we will probably be unable to take advantage of the 
Cray-2's vast memory capacity. 

6 Conclusions 

To determine if it is worthwhile to run a program on a supercomputer, we 
suggest you answer five questions. 

First, you should determine an acceptable runtime limit for solving your 
problem. In our case, we believe that up to one hour of supercomputing, 
or up to seven days of desktop execution, is acceptable for large linear pro
grams. 

Second, determine if your code can be easily vectorized. Sometimes, the 
compiler on a supercomputer will produce a significant decrease in execution 
time without extensive code modification. In all other cases, a programmer 
must restructure the code. In our application, restructuring for effective 
vectorization would take a considerable amount of effort and a high level of 
expertise. 

Third, if the vectorization achieved with compiler directives will not be 
sufficient, you should decide if the program will be used enough to warrant 
hand-optimization. 

Next, consider the issue of floating point precision. The Sun-3, Sun-4, 
and DECstation follow the IEEE 754 floating point standard, while the Cray-
2 does not. This gives the workstations five more bits of precision in stored 
floating point numbers and sixteen more bits of precision in inner-product 
accumulations. This lower level of precision for the Cray-2 may limit the 
size of problems that it can solve. 

Finally, consider the size of your program's working-set. Will it fit on 
a workstation without excessive paging activity? In our case, we expect to 
encounter runtime limits before we have trouble with paging. 

In view of our answers to the questions above, we conclude it is not 
worthwhile to port our XMP-based wire routing software to the Cray-2. We 
are now investigating other packages of linear program solution routines to 
see which, if any, are suitable for our application. 
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