
  

UPDATE/PATCH MANAGEMENT SYSTEMS:  
a protocol taxonomy with security implications 

Andrew Colarik, Clark Thomborson, and Lech Janczewski 
The University of Auckland, New Zealand 

Abstract: Software fixes, patches and updates are issued periodically to extend the 
functional life cycle of software products. In order to facilitate the prompt 
notification, delivery, and installation of updates, the software industry has 
responded with update and patch management systems. Because of the 
proprietary nature of these systems, improvement efforts by academic 
researchers are greatly restricted. One solution to increasing our understanding 
of the underlying components and processes is architectural recovery. One 
contribution to recreating an architecture is the examination of design 
specification literature, such as patents. If a sizeable amount of similar and 
hopefully diverse patents can be examined, then some general conclusions 
about the components and processes of existing systems may be formulated. In 
this paper, we present an analytic framework consisting of a five-phase 
protocol taxonomy based on thirty-three software-based update and patch 
management system patents and patent applications. Furthermore, we present 
a decomposition of the security design provisions contained within the patent 
literature, and provide some general trends derived from the data. We suggest 
that this research may be used to improve the security services aspect of 
update and patch management system products. 

Key words: Architectural Recovery, Taxonomy, Patches, Updates, Patents, and Security 
Design Provisions. 

1. INTRODUCTION 

At the core of the maintenance phase of the software development life 
cycle are the issuance of patches (software fixes) and updates (a collection of 
fixes and improvements) to resolve system faults, flaws (bugs), and security 
holes in an attempt to extend the functional life of a software product. Due to 
the time and effort required to assess, locate, and acquire these updates, this 



2 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 
on-going effort is often delayed or over-looked by users and system 
administrators until some urgency or incident occurs that prompts a swift 
response. In recent years, software manufacturers have typically provided 
access to their product updates via the Internet (i.e. website, ftp, e-mail, 
bulletin boards and newsgroups). Interestingly, connectivity to the Internet 
has also created an additional burden to the issuance of updates and patches. 
The CERT Coordination Center maintains statistics on the number of 
vulnerabilities reported that can potentially be / have been exploited through 
malicious acts, virus infections, and self-replicating worms, among others. 
For the past three years, the vulnerabilities reported have continued to nearly 
double from the previous year. There were 1090 reported vulnerabilities 
reported in 2000, 2437 in 2001, and 4129 in 2002 [CE03]. The need for 
systematic notification, acquisition, and deployment of patches and updates 
has prompted the software industry to produce update and patch 
management systems. There are numerous producers and products of patch 
and update systems (see Table 1: Examples of Patch/Update System 
Products).  

Table 1: Examples of Patch/Update System Products 
Company Name Product 

BigFix Incorporated BigFix Patch Manager 
Bindview Corporation bv-Control 

Citadel Security Software Hercules 
ConfigureSoft Security Update Manager 

Ecora Corporation PatchMeister 
Gibraltar Software Everguard 
Harris Corporation STAT Scanner 
Hewlett-Packard Security Check Patch 
McAfee Security OilChangeOnline 

Microsoft Corporation Windows Update 
PatchLink Corporation Patchlink 
Ringmaster Software 

Corporation Ring Master 

Shavlik Technologies HFNetChkPro 
St. Bernard Software UpdateEXPERT 

Sun Microsystems Patch Management Module 
 
From a design and academic perspective, a primary problem emerges: 

How do we, as researchers, peel away the proprietary tendencies of 
organizations to hide the inner designs and processes of their products in 
order to better understand, communicate and hopefully improve the 
development of such systems? In the event that the original architectural 



Update/Patch Management Systems: 3
 
design literature is unavailable, one possible approach is to reverse engineer 
the architecture through the use of system code, views, and documentation 
[Ei98]. The authors of this paper propose a supplemental approach using the 
information disclosed by inventors in patents and patent application 
documents, and in particular when such resources are unavailable. 

 
In section two of this paper, the authors present a discussion on the 

contributions of a taxonomy towards reconstructing system architectures. In 
sections three and four, we present our patent search criteria, and provide a 
protocol phase taxonomy derived from 33 update and patch management 
system patents and patent applications. We then re-examine the patents for 
security design provisions by each phase of the taxonomy in section five, 
and present a discussion of the security design implications and limitations 
of our findings in section six. 

2. CONTRIBUTION OF A TAXONOMY 

Before a discussion on the significance of a taxonomy towards 
reconstructing software architectures may occur, some basic understandings 
of what comprises an architecture, and some of the issues in acquiring and 
documenting an architecture needs to occur. Shaw & Garlan (1996) state 
that:  

“The architecture of a software system defines that system in terms of 
computational components and interactions among those components. 
Components are such things as clients and servers, databases, filters, 
and layers in a hierarchical system. Interactions among components 
at this level of design can be simple and familiar.”  

 
As academics attempting to conceptually improve on existing systems, 

poorly documented or non-existent architectures (in documented form) pose 
a significant problem. Even when architectures do exist, they may no longer 
be valid because many systems simply have evolved beyond their original 
documentation due to in-process design development, and maintenance of 
existing code to adapt to changing conditions [Ka99]. Thus, reverse 
engineering and decomposition of existing systems becomes essential. The 
process begins at the lowest level of abstraction with an examination of the 
product’s source code and documentation. These are used to develop a set of 
software views with the use of domain knowledge by the researcher. 
Combining all these elements, in theory, should lead the researcher to 
developing a set of architectural elements that will be used to formulate the 
system’s architectural representation [Ei98].  



4 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 

 
The discovery process of re-creating a software’s architecture involves an 

assembly of disparate sources of information by interpretive means. It is a 
very subjective process that may result in substantial variation from one 
researcher’s interpretation to another. Because the researcher’s interpretation 
is based on available information and the researcher’s own understanding of 
the subject matter, the process can be prone to error. It would, therefore, be 
reasoned that any additional contribution to clarifying the components or 
subsystems that comprise an architecture adds to the accuracy and 
consistency of its reconstruction. We propose that a taxonomy is a useful 
tool in architectural reconstruction, and creating a common reference point 
for researchers to improve existing products and processes. 

 
The American Heritage Dictionary (2000) defines “taxonomy” as “the 

science, laws, or principles of classification”; and the “division into ordered 
groups or categories” [Jo00]. The significance to architectural discovery 
provided by a taxonomy lies within the context of the ordered groups. The 
contributions provided by a taxonomy towards understanding an underlying 
architecture are: 

• Additional domain knowledge by which a researcher may interpret 
other aspects of accumulated design documentation and coding 
decomposition analysis [Ei98], 

• Provide a visual representation as to how the components detailed 
are organized [Ka99] [Pa00],  

• Explicitly/implicitly ask who, what, where, when, and how 
questions in order to provide abstractions to the corresponding 
categories of the taxonomy [So92], and 

• Provide a means for defining what data are to be searched for and 
recorded, as well as a means for a comparison between specimens 
[La94].  

 
In the following sections, we present our patent search criteria, the 

proposed, developed taxonomy, and apply the taxonomy phases to the 
security design provisions contained within the patent documents. 

3. SEARCH CRITERIA 

The original focus for this line of research was to add to our 
understanding of the fundamental design components and specifications that 
are predominant in the updating systems environment by providing a 
representative sample of global patents. Thus, our intention was to review 



Update/Patch Management Systems: 5
 
the patent literature that represented complete, software-driven systems for 
the purpose of studying the interconnecting processes. To be eligible for our 
review, the literature had to involve the update of operational and/or 
application code excluding firmware (i.e. not processors, modems, etc). The 
emphasis of the search was placed on “method of” instead of “apparatus for” 
in order to reduce the amount of hardware dependence in the specification. 
Where appropriate, patent applications were also included. Lastly, due to the 
popularity of English regarding end-user targeted markets, and commercial 
development centres, our emphasis was placed on patents filed in English.  

 
The first step was to search the patent databases’ abstracts for 

occurrences of “patch”, “update”, “dissemination”, etc. in order to initially 
narrow the volume of potential systems. This initial step reduced the 
possible systems to approximately 2,000. After appraising the remaining 
abstracts, 100 patent and patent applications were selected for detailed 
examination by applying the search criteria. This process resulted in 24 
patents and 9 patent applications from which we formulated a better 
understanding of the state-of-the-art in update and patch management 
systems.  

 
Because our goal is to develop a technological understanding of update 

and patch management systems, we examined only the descriptive matter 
and diagrams of each patent. We did not analyze the claims of any patent for 
their novelty, originality, or specificity. Such matters are of vital importance 
in legal proceedings, but were not a factor in our development of the 
taxonomy.  

4. TAXONOMY PHASES PRESENTED 

During the detailed examination of the patent documents, we discovered 
that the patents contained a sequence of communication steps for initiating a 
communication session, performing some exchange of information regarding 
updates, performing some determination as to the requirement to deliver an 
update, transporting the update, and initiating an installation. Within each of 
these protocol phases, there emerged distinct categories as to the means or 
methods to facilitate each phase. It is these phases and categories that we 
base the following taxonomy (see Table 2: Updating / Patch Management 
Systems Protocol Taxonomy). 

 
 
 



6 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 

Table 2: Updating / Patch Management Systems Protocol Taxonomy (5 sub-taxonomies) 
Activity Phase Category Count Patents (see references) 

User Defined 19 
A2, A4a, A7a, A8a, A9a, P1, P2, P3, 

P7, P8a, P9, P12a, P13, P14, P15, P16, 
P20, P22a, P24a Client 

System 
Defined 19 

A4b, A5, A6, A7b, A8b, A9b, P4, P5a, 
P6, P8b, P10, P11a, P12b, P17, P18, 

P21, P22b, P23, P24b 
User Defined 2 A3a, P11b 

Server System 
Defined 6 A1, A3b, A7c, A8c, P5b, P22c 

Contact 

Integrated / 
Combined 1 P19 

Client to Server 20 
A2, A4, A5, P2, P3, P4, P5, P7, P8, P9, 
P10, P12, P14, P15, P16, P17, P18, P20, 

P23, P24 

Server to Client 10 A3, A6, A7, A8, A9, P6, P11, P13, P21, 
P22 

Integrated / 
Combined 2 A1, P19 

Selection  

No Exchange 1 P1 

Index / Manifest / 
Table 28 

A1, A2, A3, A4, A5, A6, A7, A8, A9, 
P1, P2, P3, P5, P6, P7, P9, P11, P12, 
P13, P14, P15, P16, P18a, P19, P20, 

P21a, P22, P23 
State Change 3 P10, P18b, P21b 

Determination 

Configuration 
Information 4 P4, P8, P17, P24 

Client Pull 25 

A1a, A2, A3a, A4, A5, A6, A7a, A8a, 
A9, P1, P4a, P6, P9, P10, P11, P13, 

P14, P15, P16, P17, P18, P20a, P21a, 
P22a, P24a 

Push 11 P2, P3, P4b, P5, P7, P8, P12, P19, 
P20b, P21b, P23 

Transport 

Server 
Reference 
Location 6 A1b, A3b, A7b, A8b, P22b, P24b 

Manual 11 A1, A2a, A5, A6a, P1a, P2a, P3a, P7a, 
P12a, P16a, P20a 

User Enabled 19 
A2b, A6b, A7a, A8a, P1b, P2b, P3b, 
P4a, P5a, P7b, P9, P11a, P12b, P13, 

P14, P15a, P16b, P19, P20b 
Client 

Automated 13 A2c, A3, A6c, A9, P5b, P6, P12c, P15b, 
P16c, P17, P20c, P21, P23 

User Enabled 3 P8a, P11b, P24a 

Pr
ot

oc
ol

 

Installation 

Server 
Automated 12 A4, A7b, A8b, P2c, P3c, P4b, P7c, P8b, 

P10, P18, P22, P24b 
 
The above activity phases can best be thought of as answering the 

following questions: 



Update/Patch Management Systems: 7
 

• Contact: When is contact initiated and by whom? 
• Selection: Where is the exchanged information compared? 
• Determination: What is the basis for the determination of an update? 
• Transport: How is the update acquired? 
• Installation: Who has control of the installation? 

 
Within each phase, there are self-explanatory categories identifying the 

methods discussed in the patent literature. However, we would like to clarify 
several categories within the Contact, Selection and Determination phases. 
In the Contact and Selection phases, “Integrated / Combined” designates that 
the processes are a combination of communications and transfers of 
information between the client and the server (much more than a 
handshake). In the Determination phase, “Index / Manifest / Table” refers to 
a software data list that is used for comparison with a master list. “State 
Change” refers to the status-data of the software. When a given state change 
is detected between two systems (client/server), the master system (server) 
restores or updates the software of the servant (client) to the new state.  

 
It should be noted that within each patent there were variations and 

multiple embodiments of the claims presented. This allowed an inventor to 
assert variations on the approaches/methods claimed. Thus, in Table 2 there 
are multiple category entries within each phase for the same patent. For 
instance, patent P8 describes an embodiment in which a client permits the 
user to initiate the communication manually (P8a: user defined) or the client 
contacts the server on a timely/periodic basis (P8b: system defined). 

5. SECURITY PROVISIONS 

The term “secure” carries with it a multitude of subjective implications 
and exceptions. Before a software product can be identified as secure, the 
security objectives, i.e. “a statement of intent to counter identified threats 
and/or satisfy identified organization security policies and assumptions” 
[Co99], must be considered with regards to standard security fundamentals. 
Because these security objectives are either confidential, poorly documented 
or non-existent, we needed a way to examine each phase of the protocol 
taxonomy so that any security provisions contained within the design 
documentation (i.e. the patent) could be identified and classified. Our 
purpose was to facilitate the emergence of any potential design trends 
[Pa00]. 

 



8 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 

Therefore, utilizing the The Open Group Architectural Framework 
(TOGAF) Security Services guidelines as a basis for considering any design 
considerations contained within the patents, we re-examined the 
documentation by each phase of the protocol. These guidelines are based on 
the Technical Architecture Framework for Information Management 
(TAFIM), developed by the US Department of Defence, and are used in the 
development of an IT architecture. The guidelines are outlined in Table 3.  

Table 3: TOGAF Security Services Guidelines [Op03] 
Service Criteria 

 Identification, accountability and audit of users and their actions 
 Use of authentication and account data 
 Protection of authentication data 
 Active user status information 

Identification 
and 

authentication 
 Password authentication mechanisms 
 Security-aware warning to unauthorized users 
 Authentication of users 
 Information about login attempts 

System entry 
control 

 User initiated locking of a session 
 Authorized control and protection of the audit trail 
 Recording of security-relevant events Audit 
 Audit trail control, management and inspection 
 Access control attributes for subjects and objects 
 Enforcement of rules of access control attributes 
 Enforcement of access controls Access control 

 Control of object creation and deletion, including reuse of objects 

Non-repudiation  Proof that a user carried out an action, or sent or received some 
 information, at a particular time 
 Secure system set-up and initialization 
 Control of security policy parameters 
 Management of user registration data and system resources 

Security 
management 

 Restrictions on the use of administrative functions 

Trusted recovery  Recovery facilities in ways that do not compromise security 
 protection 

Encryption  Ways of encoding data such that it can only be read by an 
 appropriate key or other secret information 
 A secure way for communicating parties to authenticate 
 themselves without the risk of masquerading 
 A secure way of generating and verifying check values for data 
 integrity 
 Data encipherment and decipherment 
 A way to produce an irreversible hash of data for support of 
 digital signature and non-repudiation functions 

Trusted 
communication 

 Generation, derivation, distribution, storage, retrieval and 
 deletion of cryptographic keys 

 
Each patent was re-examined with regards to the TOGAF security criteria 

(see Table 3). An allocation to an appropriate phase was assigned if the 



Update/Patch Management Systems: 9
 
patent provided some account of a security service or mechanism that 
matched at least one of the TOGAF Security Services’ qualifications. An 
example would be that at the installation phase, a given inventor states that a 
digital certificate would be included with the update file to ensure the file’s 
integrity and source of origin. The patent would be allocated to the non-
repudiation and trusted communication provisions of the installation phase. 
Table 4 summarizes the results. 

 
What we have attempted to provide is a classification of the assertions 

made in the body of patents and applications, with regards to any security 
design provisions that the inventor has proposed to include in their particular 
invention. What we have not provided in this research is any evaluation of 
the feasibility, reliability or efficiency of any of the specified mechanisms or 
systems.  Such evaluations would be a fruitful, albeit difficult, subject for 
future research. 

 
Our analysis of the patent literature is summarized in Table 4.  We 

observe that inventive activity has focused mostly on the provision of 
security in the installation phase (75 counts in Table 4), with relatively little 
attention being paid to the selection and determination phases (24 and 17 
counts).  Frequent use was made of audit and trusted communication, but 
very little mention was made of security management and access control. 

 
Overall, the patents and applications take a reasoned approach to 

providing security in update and patch management systems. Even so, the 
empty cells in Table 4 reveal security provisions that are not discussed in the 
patent literature we reviewed, but which we believe must be addressed at 
some point in the development of a truly secure patch management system. 

• System Entry and Control Services, in the Determination phase (0 
counts).  The patent literature reveals no provision for authenticating 
users or objects. This may become a problem if the data to be 
compared is encapsulated as an object. 

• Access Control, in the Transport phase (0 counts): no provision for 
privilege management. This function could be used as a push 
distribution point for malicious code in the same sense that viruses 
exploit E-mail address books to distribute themselves. 

• Non-Repudiation, in the Contact phase (0 counts): no proof of 
identity, even though transactions may be audited. In the 
Determination phase (0 counts): a lack of non-repudiation may be a 
limiting factor in secure deployments where it is important to 
establish proof of origin, original content, delivery, and/or original 
content received. 



10 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 

Table 4: Number of Patents with Various Security Provisions, by Phase 

Activity 
33 Patents Total 

Contact Selection Determination Transport Installation

Total 
Counts

Identification 
and authentication 

12 (E1) 5 (E2) 2 (A4, P8) 6 (E3) 8 (E4) 33 

System entry control 
services 

7 (E5) 1 (P8)  1 (P21) 2 (P8, P21) 11 

Audit 6 (E6) 4 (E7) 4 (E8) 13 (E9) 18 (E10) 45 

Access control 1 (P8) 2 (P8, P13) 2 (P8, P13)  3 (E11) 8 

Non-repudiation  1 (P8)  2 (P13, P17) 9 (E12) 12 

Security management 2 (P8, P17) 1 (P8)   4 (E13) 7 

Trusted recovery   1 (P21) 2 (P17, P21) 17 (E14) 20 

Encryption 6 (E15) 4 (E16) 3 (E17) 10 (E18) 4 (E19) 27 

Se
cu

rit
y 

Pr
ov

is
io

ns
 

Trusted communication 6 (E20) 6 (E21) 5 (E22) 12 (E23) 10 (E24) 39 

 Total Counts 40 24 17 46 75 202

 
Entries with more than 2 patents or applications 
E1:  A3, A7, A8, A9, P4, P5, P8, P10, P18, 

P21, P22, P24 
E2:  P5, P8, P17, P21, P24 
E3:  P2, P3, P5, P7, P8, P21 
E4:  A7, A8, P8, P15, P16, P21, P22, P23 
E5:  A7, A8, P4, P5, P8, P21, P22 
E6:  A7, A8, P8, P10, P18, P22 
E7:  A7, A8, P4, P22 
E8:  A7, A8, P4, P22 
E9:  A2, A7, A8, P5, P6, P9, P13, P14,  P15, 

P16, P20, P21, P22 
E10: A2, A7, A8, P2, P3, P4, P5, P6, P7, P8, 

P9, P13, P14, P15, P16, P17, P20, P22 
E11: P9, P13, P15 
E12: P8, P9, P13, P14, P15, P16, P17, P20, 

P23 

E13: P2, P3, P7, P16 
E14: A2, A7, A8, P2, P3, P6, P7, P8, P9,  P11, 

P14, P15, P16, P17, P19, P20, P22 
E15: A7, A8, P8, P10, P18, P22 
E16: A2, P8, P10, P18 
E17: P10, P18, P21 
E18: A2, P5, P9, P10, P14, P15, P16, P18, 

P20, P21 
E19: A9, P10, P16, P21 
E20: A2, A7, A8, P8, P10, P18 
E21: A2, P8, P10, P13, P17, P18 
E22: A1, P10, P17, P18, P21 
E23: A1, P9, P10, P13, P14, P15, P16, P17,     

P18, P20, P21, P23 

E24: A7, A8, P10, P14, P15, P16, P17, P18, P22, P23 

 



• Security Management, in the Determination (0 counts) and 
Transportation phases (0 counts): we interpret this as an 
insufficiency in requirements specification, rather than as a defect in 
design.  These forms of security are easily provided by underlying 
network protocols and operating systems. 

• Trusted Recovery in the Contact (0 counts) and Selection phases (0 
counts): no secure method is proposed to authenticate, generate and 
verify integrity check values. We interpret this as another 
insufficiency in requirements specification, rather than in design. 

 
Our summary matrix (Table 4) can also be used to generate research 

questions.  For instance, as noted above, we found no provision for non-
repudiation in the contact phase. Two questions that come to mind are 
“Would there be any benefit to the server if the client initiated contact in a 
non-refutable manner?” and “Would there be any benefit to the client if the 
server initiated contact in a non-refutable manner?” We believe that the 
answers are “yes”, and that enquiry along these lines would lead to 
improvements in the design, requirements specification, and other 
documentation for update and patch management systems. 

A detailed examination or study of the subjectivity involved in 
conducting this research may be of value for establishing parameters for 
future academic research that attempts to draw conclusions about a 
technological field by examining the patent literature. 

6. SUMMARY 

In this paper, we have argued that taxonomies can be a valued 
contribution in the understanding and the reconstruction of system 
architectures, and that they may be effective in organizing system(s) design 
documentation. We developed an analytic framework for describing and 
characterizing update and patch management systems. The framework was 
developed from a consideration of the systems disclosed in the bodies of 
thirty-three (33) patents and patent applications. Our analytic framework has 
the following elements: a generalized update process, a decomposition of the 
update process into five (5) phases, several alternative methods for 
accomplishing each phase of the protocol, and a consideration of the security 
services that may be provided by each phase. We have established that when 
a taxonomy is combined with industry design specifications (our 5 phase 
protocol & TOGAF), useful trends may be inferred, and additional research 
questions may be developed for pursuing the improvement of system 
architectures [Co03]. 



12 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 
REFERENCES 

[CE03] CERT Coordination Center Statistics, http://www.cert.org/stats/cert_stats.html, 2003. 
[Co99] Common Criteria Management Committee, “Common Criteria for Information 

Technology Security Evaluation, Part I: Introduction and general model, Version 2.1”, 
August 1999. 

[Co03] Colarik, Andrew, “A Secure Patch Management Authority”, PhD Thesis, University 
of Auckland, November 2003. 

[Ei98] Eixelsberger et al., “Recovery of Architectural Structure: A Case Study”, Proceedings 
of Second International ESPRIT ARES Workshop, LNCS 1429, pp. 89-96, 1998. 

[Jo00] Johnson, Samuel, “American Heritage Dictionary of the English Language, Fourth 
Edition”, Houghton Mifflin Company, 2000. 

[Ka99] Kazman, Rick, and Carriere, S. Jeromy, “Playing Detective: Reconstructing Software 
Architecture from Available Evidence”, Automated Software Engineering, 6, pp.107-138, 
1999. 

[La94] Landwehr et al., “A Taxonomy of Computer Program Security Flaws”, ACM 
Computing Surveys, 26(3), September 1994. 

[Op03] Open Group, “The Open Group Architectural Framework Version 7”, 
http://www.opengroup.org/togaf/p3/trm/tx/tx_secur.htm, 2003. 

[Pa00] Payne, Christian, “The Role of the Development Process in Operating System 
Security”, Proceedings of the Third Information Security Workshop, LNCS 1975, 2000. 

[Sa96] Shaw, Mary, and Garlan, David, Software Architecture: Perspectives on an Emerging 
Discipline, Prentice Hall, 1996. 

[So92] Sowa, J.F., and Zachman, J.A., “Extending and formalizing the framework for 
information systems architecture”, IBM Systems Journal, 31(3), 1992. 

 
Patent Applications 
 
[A1] US 2002/0004402 A1, Suzuki, Naoya, Assignee: None, “Update notification system, 

update monitoring apparatus, mobile communication terminal, information processing 
apparatus, contents acquisition instructing method, contents acquiring method, and 
program storing medium”, January 10, 2002. 

[A2] US 2002/0016956 A1, Fawcett, Phillip, Assignee: Microsoft Corporation, “Method and 
system for identifying and obtaining computer software from a remote computer”, 
February 7, 2002. 

[A3] US 2002/0016959 A1, Barton et al., Assignee: Network Associates Technology, Inc., 
“Updating computer files”, February 7, 2002. 

[A4] US 2002/0100035 A1, Kenyon et al., Assignee: None, “Asynchronous software update”, 
July 25, 2002. 

[A5] US 2002/0112230 A1, Scott, C., Assignee: None, “Software update management system 
with update chronology generator”, August 15, 2002. 

[A6] US 2002/0184619 A1, Meyerson, M., “Intelligent update agent”, December 5, 2002. 
[A7] US 2003/0046675 A1, Cheng et al., Assignee: None, “Automatic updating of diverse 

software products on multiple client computer systems”, March 6, 2003. 
[A8] US 2003/0046676 A1, Cheng et al., Assignee: None, “Automatic updating of diverse 

software products on multiple client computer systems”, March 6, 2003. 
[A9] US 2003/0070087 A1, Gryaznov, D., Assignee: None, “System and method for 

automatic updating of multiple anti-virus programs”, April 10, 2003. 



Update/Patch Management Systems: 13
 
Patents 
 
[P1] US 5,577,244, Killebrew, Alice, and Mann, Charles, Assignee: International Business 

Machines Corporation, “Methods of applying software modifications”, November 19, 
1996. 

[P2] US 5,586,304, Stupek, Jr. et al., Assignee: Compaq Computer Corporation, “Automatic 
computer upgrading”, December 17, 1996. 

[P3] US 5,588,143, Stupek, Jr. et al., Assignee: Compaq Computer Corporation, “Automatic 
computer upgrading”, December 24, 1996. 

[P4] US 5,619,716, Nonaka et al., Assignee: Hitachi, Ltd., “Information processing system 
having a configuration management system for managing the software of the information 
processing system”, April 8, 1997. 

[P5] US 5,694,546, Reisman, Richard, Assignee: None, “System for automatic unattended 
electronic information transport between a server and a client by a vendor provided 
transport software with a manifest list”, December 2, 1997. 

[P6] US 5,732,275, Kullick, Steven, and Titus, Diane, Assignee: Apple Computer, Inc., 
“Method and apparatus for managing and automatically updating software programs”, 
March 24, 1998. 

[P7] US 5,809,287, Stupek, Jr. et al., Assignee: Compaq Computer Corporation, “Automatic 
computer upgrading”, September 15, 1998. 

[P8] US 5,835,911, Nakagawa, Toru, and Yuji, Takada, Assignee: Fujitsu Limited, “Software 
distribution and maintenance system and method”, November 10, 1998. 

[P9] US 5,845,077, Fawcett, Phillip, Assignee: Microsoft Corporation, “Method and system 
for identifying and obtaining computer software from a remote computer”, December 1, 
1998. 

[P10] US 5,919,247, van Hoff et al., Assignee: Marimba, Inc., “Method for the distribution of 
code and data updates”, July 6, 1999. 

[P11] US 5,933,647, Aronberg et al., Assignee: Cognet Corporation, “System and method for 
software distribution and desktop management in a computer network environment”, 
August 3, 1999. 

[P12] US 5,974,454, Apfel et al., Assignee: Microsoft Corporation, “Method and system for 
installing and updating program module components”, October 26, 1999. 

[P13] US 5,999,740, Rowley, David John, Assignee: International Computers Limited, 
“Updating mechanism for software”, December 7, 1999. 

[P14] US 6,049,671 Slivka, Benjamin, and Webber, Jeffrey, Assignee: Microsoft 
Corporation, “Method for identifying and obtaining computer software from a network 
computer”, April 11, 2000. 

[P15] US 6,073,214, Fawcett, Phillip, Assignee: Microsoft Corporation, “Method and system 
for identifying and obtaining computer software from a remote computer”, June 6, 2000. 

[P16] US 6,256,668 B1, Slivka, Benjamin, and Webber, Jeffrey, Assignee: Microsoft 
Corporation, “Method for identifying and obtaining computer software from a network 
computer using a tag”, July 3, 2001. 

[P17] US 6,263,497 B1, Maeda, Tetsuji, and Mori, Toshiya, Assignee: Matsushita Electronic 
Industrial Co., “Remote maintenance method and remote maintenance apparatus”, July 17, 
2001. 

[P18] US 6,272,536 B1, van Hoff et al., Assignee: Marimba, Inc., “System and method for 
the distribution of code and data”, August 7, 2001. 

[P19] US 6,308,061 B1, Criss, Mark, and Cowan, Paul, Assignee: Texlon Corporation, 
“Wireless software upgrades with version control”, October 23, 2001. 



14 Andrew Colarik, Clark Thomborson, and Lech Janczewski
 
[P20] US 6,327,617 B1, Fawcett, Phillip, Assignee: Microsoft Corporation, “Method and 

system for identifying and obtaining computer software from a remote computer”, 
December 4, 2001. 

[P21] US 6,341,373 B1, Shaw, Robert, Assignee: Liberate Technologies, “Secure data 
downloading, recovery and upgrading”, January 22, 2002. 

[P22] US 6,457,076 B1, Cheng et al., Network Associates Technology, Inc., “System and 
method for modifying software residing on a client computer that has access to a 
network”, September 24, 2002. 

[P23] US 6,493,871 B1, McGuire et al., Assignee: Microsoft Corporation, “Method and 
system for downloading updates for software installation”, December 10, 2002. 

[P24] WO 0190892, McCaleb, Jed, and Rive, Russell, Assignee: Everdream Inc., “Intelligent 
patch checker”, November 29, 2001. 

 


