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Abstract 

The established techniques of computational complexity can be applied to the 

new problems posed by very !urge-scale integrated (VLSI) circuits. This thesis 

develops a "VLSI model of computation" and derives upper and lower bounds on the 

silicon area and time required to snlve the problems of sorting and discrete Fourier 

transformation. In particular, the area (A) and time (T) taken by any VLSI chip using 

any algorithm to perform an N point Fourier transform. must satisfy AT2 > LN/8J2Jog2N. 

A more general result for both sorting and Fourier transformation is that 

AT2x :: ncNt+XIog 2 XN), for all X in the range 05x51. Also, the energy dissipated by 

a VLSI chip during the solution of either of these problems is at least n(N3121og N). 

The tightness of these bounds is ·demonstrated by the existence of nearly optimal• 

circuits. This thesis describes both a fast chip (T :: O(log3N), A = O(N2 /!og112N)) 

based on the shuffle-exchnnge interconnection pattern, and a slow chip 

(T :: O(N112 ), A = O(N log2N)) based on the mesh pattern. 
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Abstract 

The established techniques of computational complexity can be applied to the 

new problems posed by very large-scale integrated (VLSI) circuits. This thesis 

develops a "VLSI model of computation" and derives upper and lower bounds on the 

silicon area and time required to solve the problems of sorting and discrete Fourier 

transformation. In particular, the area (A) and time (T) taken by any VLSI chip using 

any algorithm to perform an N-point fourier transform must satisfy AT2 > LN/8J21og2N. 

A more general result for both sorting and Fourier transformation is that 

AT2x = f!(N1+Xtog2XN), for any x in the range 05x51. Also, the energy dissipated by 

a VLSI chip during the solution of either of these problems is at least f!(N312 tog N). 

The tightness of these bounds is demonstrated by the existence of nearly optimal 

circuits for both sorting and fourier transformation. This thesis describes both a 

fast chip {T = O(log3N), A = O(N2/Iog112N)) based on the shuffle-exchange 

Interconnection pattern, and a slow chip (T = O(N112), A = O(N log2N)) based on the 

mesh pattern. 

1 • Introduction 

Very large-scale integrated (VLSI) circuit technology has profoundly changed the 

size and speed of computing structures. A VLSI microcomputer occupies less than a 

square centimeter of silicon, yet it outperforms several cubic feet of 

twenty-year-old computer components. The circuit densities attainable with VLSI 

are already staggering, and further improvements lie on the horizon. Chips with one 

hundred thousand transistors are feasible today, and this figure may well Increase 

to ten or twenty million in the next decade [Mead 79]. 

The number of transistors on a chip is only one measure of its computational 

power. In fact, it Is a rather misleading one, for the organization of the chip's 
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circuitry will have astrong effect on its size and speed. This thesis explores the 

relation between the speed and size of VLSI circuits, using the methodology of 

complexity theory. The first step in this methodology is to devise an accurate and 

precisely-defined model of a VLSI chip. Theorems can then be proved, on the basis 

of the model, to show limits on what a chip can and cannot do. A sample of the 

latter type of result obtained in this thesis is that any chip that performs an N-point 

Fourier transform in time (T) must have an area (A) large enough to satisfy 

AT2 > lN/8J21og2N. The corresponding positive result shows that this lower bound on 

the AT2 product is tight: chips can be built that achieve this limiting performance to 

within a constant factor. 

The use of a new model of computation in this thesis is justified by the novel 

aspects of VLSI design. A VLSI chip containing millions of transistors will be 

organized quite differently from a conventional design of the same complexity, for 

the constraints in the two domains are so dissimilar. First of all, VLSI is a 

two-dimensional technology. Its transistors are laid out on the surface of a piece of 

silicon, and there are only a few layers of metal available for interconnections. 

conventional designs, on the other hand, make use of the "two-and-a-half 

dimensions" offered by printed circuit boards connected with backplane wiring. 

A second novel VLSI design constraint is the importance of communication costs 

relative to the costs of logical operations. The available bandwidth across the 

midline of a VLSI design is quite small in comparison with the amount of processing 

power available on either side. This fact is a consequence of the planarity of VLSI 

and the. size of transistors and wires. A small transistor can be formed in the area 

of one square wire-width. A chip that is w wire-widths on a side has room for w2 

transistors, but only w different signals can cross its midline at a time. Such 

"cross-chip" communications carry a double penalty in VLSI. A long wire uses up 

valuable chip area that could be used for other Wires, and its driver transistor 
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occupies even more area. These conceptual arguments for the primacy of 

communication costs are supported by practical experience: more surface area is 

devoted to wire than to transistors on today's VLSI chips. Scant attention has been 

paid to this type of communication cost in conventional computers, and rightfully so. 

The "two-and-a-half dimensions" used in their construction diminishes the cost of 

cross-system communication. Once a signal is off a circuit board and into the 

backplane, it doesn't matter whether it goes to a nearby board or to the farthest 

one. 

A third novelty in VLSI design lies in the economics of production. The best 

conventional designs are the ones with the fewest chips or "active components," 

for these tend to be the cheapest to build. The cost of interconnecting the 

components on a circuit board is normally ignored, not because it is inexpensive, but 

because it increases monotonically with the component count. Thus component 

count emerges as the single most important metric of cost of a conventional circuit. 

This is not the case for VLSI designs. The production cost of a VLSI chip grows with 

the total area of its layout, and a design with smaller area and more transistors is 

generally preferable to one with a larger area but fewer transistors. That such 

design choices are available in VLSI chips is one of the messages of this thesis. In 

any event, it is the area of a VLSI circuit that should be optimized, rather than· the 

number of transistors in it. 

The VLSI model of computation developed in this thesis attempts to account for 

the true costs of con1putation in this technology. As indicated above, total circuit 

area is the most accurate metric of circuit size or production cost. The speed at 

which a circuit operates is also quite important, both from the standpoint of 

real-time constraints and as a measure of the incremental cost of a computation (if 

there is a large enough supply of problems, a faster circuit will eventually be 

cheaper than a slower one, regardless of initial costs). This thesis demonstrates 
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that production cost can be traded for incremental cost, i. e., that chip area can be 

decreased at the expense of chip speed, and vice versa. 

One of the main results of this thesis is the following area-time tradeoff. The 

product of chip area (A) with the square of the time (T) it takes to perform an 

N-point Fourier transform must satisfy AT2 > lN/8J21og2N. This lower bound is nearly 

the best possible, in the sense that there exist both a fast, large chip and a slow, 

small chip that nearly achieve these bounds. The slow chip performs a Fourier 

transform in time proportional to N112, using area proportional to N log2N. The 

optimality of this chip is Immediate, since it satisfies the lower bound quoted above 

to within a constant ·factor. A fast chip is also possible; it operates in log3N time, 

but occupies N2 /log112 area.1 

A more general result bounds the performance of any chip with area A that takes 

time T to solve an N-element sorting or Fourier transformation problem: 

AT2x = f!(N1+Xtog2xN), for all x such that O:Sx:S1 (that is, AT2x ;:>: cN1+XIog2xN for 

some fixed c > 0). The lower bound for Fourier transformation cited in the previous 

paragraph Is a special case (x=1) of this result. 

The general lower bound implies that a chip with performance A = O(N) and 

T = O(N112Jog N) would be optimal under any AT2X metric, O:Sx:S 1. A "slow" chip, 

based on the mesh interconnection pattern, comes quite close to this performance, 

solving an N-point sorting problem or an N-point Fourier transformation in T = O(N112) 

and A = O(N log2N). A "fast" design also exists for both problems, this one based on 

the shuffle-exchange interconnection pattern. It can solve an N-point problem in 

T = O(log3N) and A= O(N2/Iog112N), a nearly optimal performance under the AT2 

1 Preoarata and Vuillemin rPreoarata 791 have recentlv devised a lavout that outoerforms the "fast" chio 
describ~d above. Their layo~t ha's an area ~f N2/log2N and would take log3N time to co~pute a Fourier transfor~, 
if it were implemented with the rnultipl~add cells used in the upper bounds of this thesis. Their construction is thus 
within log2N of the lower bound on AT cost. 
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metric. 

2. The VLSI Model of Computation 

A. VLSI chip composed of transistors and interconnections is modelled by nodes 

and wires. A node represents a transistor or a small cluster of transistors; as such, 

it receives and transmits si~Jnals over its connecting wires. A node may also 

represent a wire junction, in which case it merely copies the signals it receives on 

any one of Its wires onto its other wires. Nodes and wires thus simulate the actions 

of transistors and wires on a VLSI chip at a very high level of detail. 

Nodes are capable of storing a limited amount of information. This enables them 

to model data storage elements on a VLSI chip. It also allows a collection of nodes 

and wires to be a complete, self-contained computing structure. The inputs to a 

computation are stored in a distinguished set of nodes called source nodes. (These 

correspond to the "input registers" on a VLSI chip.) The output values of a 

computation are collected in another set of nodes called sink nodes (the "output 

registers" on a chip). A collection of nodes and wires capable of solving a problem 

is called a communication graph. A communication graph is thus the formal analog of 

a VLSI chip. 

In order to prove meaningful lower bounds, the VLSI model of computation must be 

complete, in the sense that a communication graph must exist for every VLSI chip. 

Otherwise, a negative result for communication graphs would not imply a 

corresponding negative result (non-existence proof) for VLSI chips: the VLSI chip 

whose existence disproves the result might not correspond to any communication 

graph. Chapter 2.2 of the thesis gives a correspondence scheme by which a 

communication graph can be drawn for every VLSI chip. In brief, a grid of "unit 

squares" is drawn on the surface of the chip. Each square is small enough that it 

holds at most one transistor, and at most one wire crosses each unit-length edge. 
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Nodes are drawn as points in the center of each transistor, and a wire is drawn in 

the communication graph for each wire on the chip. 

Another requirement of the VLSI model of computation is that it be accurate: that 

the area and time performance of a VLSI chip be predictable from the area and time 

performance of its communication graph. To this end, the following scheme of area 

and time costs Is proposed for communication graphs. 

Both nodes and wires have unit width. A node occupies a unit square, and only 

one wire can cross each edge of a unit square. Since interconnections can cross 

over each other to a limited extent on a VLSI chip, two wires of a communication 

graph are allowed to cross over each other in any unit square. A communication 

graph can thus be visualized as a collection of the "tiles" of,figure 2-1. This figure 

shows all possibie wire tiles, and one of the many different node tiles. (The node in 

the last tile has two incoming and one outgoing wires; it could compute the "and" 

function of the signals it receives on the incoming wires, sending the result out on 

the ?utgoing wire.) Each node can have up to four wires. This limitation on node 

degree is not unreasonable, for the level of detail in the communication graph/VLSI 

chip correspondence is such that a node is drawn for each transistor or wire 

junction. Since a transistor has only three connections, four wires per node are 

certainly sufficient to model any VLSI circuit. 

Figure 2-1 : Tiles. 

·The unit of time for a communication graph is obtained from the maximum 
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bandwidth attained by any wire on the VLSI chip being modelled. One unit of time is 

thus just sufficient to send one bit of information down a wire. 

The total area of a communication graph is the number of squares occupied by its 

wires and nodes. The total time taken by a communication graph to solve its 

problem is the number of time units that elapse between its initial state, in which 

only the source nodes have any information about the problem inputs, to its final 

state, in which the sink nodes have collected enough information to determine the 

problem output values. 

The astute reader may have noticed that the VLSI model described above is not 

suitable for proving upper bounds. There is no assurance that a VLSI chip of 

comparable area and time performance can be derived from any communication 

graph (the correspondence needed for lower bounds is the reverse one, from chips 

to graphs). In fact, no such correspondence exists unless a set of restrictions is 

placed upon communication graphs. A communication graph obeying these 

restrictions is called admissible, and corresponds to a feasible MOS chip. Admissible 

communication graphs are used to prove upper bounds in the VLSI model of 

computation. 

The applicability of the lower and upper bound models of computation is 

summarized by the Venn diagram of Figure 2-2. The universe being studied is that 

of "all computational structures 11 that fit in area A and solve an N-point problem P in 

time T. A (possibly empty) set of communication graphs achieving this area-time 

performance may be constructed in accordance with the definitions of the lower 

bound model of computation (see Section 2.1 of the thesis). This set is denoted as 

"(A,T,P,N)-communication graphs." 

The correspondence scheme desctibed in Section 2.2 of the thesis constructively 

demonstrates that a communication. graph can be obtained from any VLSI chip. Thus 
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All computational structures with performance (A,T,P,N} 

Admissible 
(A,T,P,N)­

communication 
graphs 

Figure 2-2: Domains of the lower and upper bound models. 

PAGE 8 

the set of "(A,T,P,N)-VLSI chips" (actually, the set of (A,T,P,N)-communication 

graphs correspondin{l to VLSI chips) is a subset of all (A,T,P,N)-communicatlon 

graphs. The generalized MOS process adopted for upper bound proofs is of course 

only one way of building VLSI chips, so that "(A,T,P,N)-MOS chips" is a proper subset 

of "(A,T,P,N)-VLSI chips." Finally, the class of "admissible (A,T,P,N)-communication 
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graphs" defined by the upper bound model of computation (see Section 2.3 of the 

thesis) form a subset of "(A,T,P,N)-MOS chips." 

3. lower Bounds 

The lower bounds of this thesis are all obtained from the analytical technique of 

"bisecting" a computation. Consider any communication graph (or indeed, any other 

representation of a VLSI circuit) that Is able to evaluate a given function. Now cut 

enough wires so that it falls apart into two pieces, each containing half of the 

source nodes (or input registers). The severed wires are said to bisect the graph; 

each graph has some minimum bisection width which is the smallest number of cuts 

needed to bisect it. The thesis contains a proof that the area (A) of any 

communication graph is bounded by A~ w2 /4, where w is its minimum bisection width. 

In general, a bisected communication graph will be unable to perform its 

computation, since each side of the graph has access to only half of the input 

values. Sbme information about these input values must cross the bisection; the 

amount of necessary information flow across any bisection of a function f is called 

its informational complexity, H(f). The thesis evaluates the informational complexity 

of the N-point Fourier transformation and sorting problems, proving that these have 

H(f) = f!(N log N). 

A lower bound on the time required to compute a function f on a communication 

graph may be obtained from H(f) and w, that is, from the informational complexity of 

the function and the minimum bisection width of the graph. The available bandwidth 

across the minimum bisection of a graph is proportional to w, the number of wires 

crossing it. At least H(f) bits must cross this bisection, by the definition of 

informational complexity. Thus the time T to compute f on a graph of width w is 

bounded by T = !l(H(f)/w). 
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The area result mentioned above, A~ w2!4, and the time result T = f!(H(f)/w) 

combine immediately to form AT2 = fl(H(f)2). For sorting and Fourier transformation, 

H(f) = f!(N log N), yielding AT2 = S1(N21og2N). 

Since there are N source nodes (input registers) in a graph computing an N-input 

function, the area bound A > N is immediate. Coupling A = f!(N + w2 ) with 

T = f!(N log N)/w, and choosing the w that minimizes the product AT2x, the general 

lower bound AT2x = fl(N1+XIog2XN) may be obtained for any x in the range O:Sx:S 1. 

4. Upper bounds 

The upper bound constructions of the thesis are implementations of the bitonic 

sort and the fast Fourier transform (FFT) algorithms. Highly parallel versions of 

these algorithms have been developed elsewhere [Satcher 68, Stevens 

71, Thompson 77] for mesh-connected and shuffle-exchange computers. These 

versions solve an N-point problem on a parallel computer with N processing 

elements, and can be used as the basis for VLSI implementat~ons. 

There are two novel aspects to the upper bound constructions of this thesis. 

first of all, the shuffle-exchange interconnection pattern must be laid out on the 

surface of a VLSI chip. This Is proved to require at least f!(N2/Iog2N) area, and an 

explicit layout is shown that requires only O(N2/Iog112N) area. These are the best, 

and indeed the only reported results for the problem of embedding the 

shuffle-exchange graph.2 The second contribution of the upper bound proofs is a 

precise characterization of the VLSI area, time, anci functionality of the processing 

elements used In a parallel implementation of an FFT or a bitonic sort. 

2Quite recently, Dan Hoey and Charles Leiserson have obtained an O(N2/Iog N) area embedding of the 

shuffle-exchange graph. 
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5. Contributions of the Thesis 

The main contributions of this thesis fall into four areas. 

1. A new model of computation is developed, suited to the study of the 
area and time performance of VLSI chips. 

2. A lower bound is obtained on the area (A) occupied by a graph when 

embedded in the plane, in terms of its minimum bisection width w. For a 

k-level planar embedding, A> w2/4k2• 

3. The informational complexity of a function is defined, determining the 
difficulty of computing that function on a VLSI chip. 

4. Nearly tight upper and lower bounds are derived on achievable 

area-time performance for sorting and Fourier transformation, as 
summarized in the list and table below . 

.. An N-element sorting or Fourier transformation problem can be 

solved on a chip of area A = O(N log2N) and time T = O(N112), 
using a mesh-based interconnection scheme. This performance 

is optimal under the AT2 metric, and it is near-optimal for any 

AT2X metric, 05x:S1. 

- An N-element sorting or Fourier transformation problem can be 

solved on a chip of area A = O(N2/Jog112N) and time T = O(log3N), 

using an interconnection scheme based on the 
shuffle~exchange graph. This performance is nearly optimal 

under the AT2 metric. 

AT~ AT~: 

Upper bounds 

Mesh-based designs O(N21og2N) O(Nl+XIog2N) 

Shuffle-exchange designs O(N21og1112N) O(Nl+ x 109(sX-1 )12N) 

Lower bounds 

(For any design) fl(N21og2N) fl(Nl+XIog2XN) 

PAGE 11 
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[Satcher 68) 

[Mead 79) 

[Preparata 79] 

[Stevens 71) 

[Thompson 77] 
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