
Computers and Artificial Intelligence, Vol. 6,] 987, No.3, 229-242

EXPERIMENTAL RESULTS FOR A LINEAR
PROGRAM GLOBAL ROUTER

1/ 1/ 31 Antony P-C NG ,Prabhakar RAGHAVAN- , Clark D. THOMPSON"'

Computer Science Division, 573 Evans Hall,
U. C. Berkeley, CA 94720, USA

229

Abstract. Classical approaches to global routing in gate-arrays involve maze-running or
hierarchical decomposition. We present a completely different approach here based on an
integer programming formulation of the problem. Furthermore, we describe an efficient
procedure for approximately solving such integer programs. Our approximation is provably
good in that we always find a solution close to the optimal one. Nets are routed simultaneous
ly rather than sequentially, with no backtrack. Experiments with our method were conducted
on two industrial examples; in both cases our router took less than one minute to find a
feasible routing.

3KcnepHMeHTaJlbHble pely JIb TaTbl .r.JlH r JlOOaJlbHOrO pyTcpa mmCHHOH nporpaMMbl

A. n.-K. HI', n. Pa,lI,)KaBaH, K. ,n:. TOMncoH

PC1IOMe. KJIaCCH'ieCKHe nO,[lXO,[lhI K rJI06aJIhHOM MapwpyTH3aUHH B MaCCHBax BeHTHJIeM
BKJIJO'IalOT nporoH JIa6HpHHTa HJIH HepapXH'iecKyJO ,[leKOMn03HUHJO. HaMH npe,[lJIaraeTCH
HHOM no,[lXO,[l, OCHOBaHHhIM Ha <P0PMYJIHpOBKe ,[laHHOM np06JIeMbI B BH,[le 3a,[la'iH ,[lHCKpeT
Horo nporpaMMHpOBaHHSI. BOJIee Toro, ,[laeTCSI onHcaHHe 3<p<peKTHBHoH npOue,[lypbl ,[lJIH
npH6JIH)KeHHOro peweHHSI TaKHX ,[lHCKpeTHhlx nporpaMM. ,lJ,oKa3aHo, "ITO npe,[lJIaraeMaH
annpOKCHMaUHSI HBJISleTCSI xopowe" B TOM CMhlCJIe, 'iTO BCer,[la HaXO,[lHTCSI peweHHe, 6JIH3-
Koe K OnTHMaJIhHoMY. eeTH TpaCCHpYlOTClI CKopee O,[lHOBpeMeHHo, "IeM nOCJIe,[lOBaTeJIhHO,
6e3 63KTpeKHHra. 3KcnepHMeHThI, oCHoBaHHhle Ha HaweM MeTO,[le, npOBO,[lHJIHCh B paMKax
,[lsyx npOMhIWJIeHHhlX npHMepOB, B 060HX CJIyqallX HaweMY pyTepy nOTpe60BaJIOCh MeHee
1 MHHyThI ,[lJIlI HaXQ)K,[leHHH ,[lOnycTHMoM MapwpyTH3aUHH.

11 Supported by California State MICRO (Mentor Graphics) and the National Computer Board
of Singapore.

21 Supported by an IBM Doctoral Fellowship and Semiconductor Research Corp. grant
82-11-008.

31 Supported by Semiconductor Research Corp. grant SRC 82-11-008.

ctho065
Text Box
This copy is posted here by the author, for your personal use, and is not authorised for redistribution. The definitive version may be obtained from the publisher http://www.cai.sk/.

230 A. P-C Ng-P. Radhavan-C. D. Thompson

1. INTRODUCTION

Gate-arrays are .an important and popular framework for semicustom VLSI design.
Logic gates or functional blocks are arranged in a rectangular array on a chip manufac
tured in volume. The gates in a customer's circuit are first mapped onto the gates on the
array. This is known as the placement process, and it is followed by routing. In the
routing phase, the gates on the array are to be interconnected electrically in such a
manner as to realize the customer's circuit for the given placement. This is done by
running wires through on the array joining the gates to be connected. A detailed
description of the routing problem is deferred to the next section.

Classical methods for routing fall into two major classes: the "Lee-type" [8] or
maze-running routers and the hierarchical routers [1]. In the former, connections between
gates are processed sequentially and routed whenever possible. When it is no longer
possible to route a connection, a "rip-up-and-reroute" phase is entered in which some
of the connections already laid out are removed and routed again along different paths.
The performance of such routers is highly dependent on the order in which the connec
tions are processed, which routes are "ripped-up", and other such heuristic factors. Such
routers will either take exponential time to find a difficult solution or, if rip-ups are
limited, there is no guarantee of finding a good solution.

Hierarchical routers employ a divide-and-conquer strategy in which the array is
recursively partitioned into smaller sub-arrays; the smaller sub-problems are solved
independently, followed by a "merge" step in which the routings for the sub-problems
are joined at the interface. The problems here arise mainly from the divide and the
conquer phases - there is no obvious way of deciding the best partition or the best
sequence for merging the sub-problems. Hu and Shing's hierarchical LP router [3] offers
no performance guarantee. The hierarchical routers of BURSTEIN [1] and of KARP et
al. [5] do offer performance guarantees, but these guarantees are far too pessimistic to be
of practical value. The guarantee offered by our method is considerably stronger.

Simulated annealing [14] is a recent development in the field, and has stochastic
guarantees of finding an optimal solution. There is, however, no useful bound on the time
taken to find the optimum.

We present here a completely novel approach to the routing problem. Our method
consists of casting the problem as an integer linear program. An immediate advantage
of such a formulation is that the problem instance is viewed in its entirety, and does not
depend on any sequential ordering of the connections. Furthermore, we have been able
to develop an efficient procedure for approximately solving such integer programs. The
approximation produced by our method is provably good in that it finds a solution
guaranteed to be close to the best possible. Finally, our procedure runs in polynomial
time. There is no "rip-up-and-reroute" phase where some nets are removed and routed
again. Our method permits us to control the routes chosen by the algorithm, so that we
can avoid'routes that are undesirable from a practical standpoint (routes that are unduly
circuitous or that have many bends).

The theoretical bases for the algorithm and the performance guarantees are developed
elsewhere [11,12,13]. For the sake of completeness, we include a brief but self contained
description of the algorithm in Secti~m 2; proofs are omitted. In Section 3 we present an

1

I
I
I
I

Results for a linear program global router 231

implementation of our method, followed in Section 4 by experimental results on two
gate-arrays from industrial sources. These experiments are extremely encouraging from
several standpoints, as we show in Section 4. Our method could route both arrays
successfully, with surprisingly short runtimes.

2. THE LINEAR PROGRAMMING ALGORITHM FOR GLOBAL ROUTING

In this section we provide an outline of our algorithm for global routing in gate-arrays.
We begin by defining the terminology we will use for the remainder of the paper. Our
description of gate-arrays below concentrates on their topological rather than functional
aspects.

2.1. The routing model

A gate-array is a two-dimensional rectangular array of rectangular gates. Each gate
has a left-channel and a bottom-channel, corresponding to its left and bottom boundaries.
These channels are used for running wires to realize electrical interconnections between
the gates in the array. A channel contains a number of tracks, where each track can
accommodate one wire. The number of tracks in a channel is called its capacity, for
obvious reasons. Each gate also has a number of terminals to which wires are to be
connected.

An instance of the global routing problem is specified by a list of nets, where a net is
a collection of gates to be connected electrically by means of wires. Throughout this
paper, we will be dealing with two-point decompositions of nets; i.e. we decompose each
net into several pairs of gates to be connected (there is one exception to this - when there
are four gates at the corners of a rectangle that are to be connected, we treat them as a
box connection rather than decompose them into three two-point connections; more on
this in Section 3). We call a two-point pair or box of gates a connection; when all the
connections belonging to a net are realized, the interconnection pattern for that net is
realized. The manner in which we decompose nets into connections is described in
Section 3.

A route is a "Manhattan" path between the gates to be connected; it may traverse
severai other gates on the way, passing through their channels (a Manhattan path is one
whose segments are all parallel to the sides of the gates). The number of routes passing
through any channel may not exceed its capacity. A solution to the global routing
problem consists of specifying a route for each connection, such that no channel-capacity
is violated.

2.2. Formulation as an integer linear program

We now describe our formulation of the global routing problem as a 0-1 linear
program (LP). Assume that we have decomposed the nets in a problem instance into a
set of two-point connections (using guidelines similar to the ones in the next section). For
each connection i in the problem, we pick a set of allowable routes. We wish to realize
the connection by means of one of these routes. The choice of this set of allowable routes

232 A. p-e Ng-P. RaJlull'l/1/ C. lJ. lholllp.I()/l

affects both the quality of the routing and the running time of the router. In practice, it
is undesirable to route a connection by means of an excessively circuitous route as this
degrades circuit performance. Also, in manyJabrication t.echnologies, routes with a large
number of bends decrease the reliability and performance of the circuit. On the other
hand, complicated routes may sometimes be the only way of circumventing "bottleneck"
regions on a gate-array (those with several congested channels). Our experiments de
scribed in Section 4 discuss several choices of allowable routes for a connection, and the
resulting routings.

We assign one indicator variable for each of the possible routes. (Indicator variables
are integer variables that assume values of either 0 or 1). Thus, Xi; would represent the
j-th route of connection i; Xi; = 1 would indicate route j was used to realize connection
i and xij = 0 would indicate that it was not. Figure 1 gives a small example of such

--¥
~ W1 I--~---- --- -- X 11

~JZ$: EZZJ W1

.* i
~ W)

)(:22 ._.r- 0 w"

Fig. 1. A 2 x 2 example array with two 2-point nets.

indicator variables for two 2-point nets in a 2 x 2 gate-array. Net 1 connects the gate in
the upper-left corner to the gate in the lower right corner, while net 2 connects th other
two gates. Channel L22 denotes the left-channel of the gate at position 2,2. Channel BII

denotes the bottom-channel of the gate at position 1,1. Note that in this case, the
channels on the bottom and left edges of the gate-array are not used. Each net has two
allowed L-shaped routes in this example. To ensure that each connection gets realized
with exactly one possible route, we write the following constraints (for our example):

Xii + X i2 = 1, i = 1, 2; xij = 0 or 1. (1)

Given the positions of the gates to be connected and the topology of the route corres
ponding to any variable, it is easy to specify constraints that ensure that the number of
routes through a channel does not exceed its capacity. In our example, if the capacities
of channels L2h B\2, L22 , and B22 are respectively WI, W2, W3 , and W4 , then our LP
becomes:

Minimize E subject to equations (1) and

X\2 + X22 - WI < E
X\2 + X21 - W2 ~ E
XII + X21 - W3 < E
X II + X22 - W4 < E.

(2)

Results for a linear program global router 233

Note that we have introduced a new variable E, which can be thought of as the excess
over any channel's capacity. In other words, E is the maximum, over all channels, of the
number of wires through a channel minus the capacity of that channel. The LP attempts
to minimize E. In particular, if we can solve the above LP resulting in a value E < 0
(meaning no channel capacity is violated), we have a feasible solution to the routing
problem. Notice that our formulation allows for E to have negative values, corresponding
to routings where every channel has at least one unused track.

A number of algorithms are available for solving LP problems, but none of them can
efficiently find solutions in which every variable xli has an integer value (0 or 1). (What
we have here is actually an integer linear program, for which there is no known efficient
algorithm). We therefore solve a relaxation of the above integer program - one in which
each of the variables xi} is allowed to take on any fractional value in the interval [0, I].
Although not physically meaningful, a fractional route is not without significance. For
instance, if in the example above WI = W2 = W3 = W4 = 1, the optimal LP solution
would be E = 0 (no excess over capacity) and XII = XI2 = X21 = X22 = 0.5. This may be
thought of as routing one-half of each connection along one of the two possible routes,
so that the "flux" through any channel does not exceed its capacity. This intuitively
appealing concept also illustrates why theLP optimum value for E is a lower bound on
the best integer solution. By restricting the variables to 0-1 values, we can do no better
than the LP relaxation (a proof of this statement is straightforward). Also, if the
fractional LP optimum contains the values Xii = 0.9 and Xi2 = 0.1, this suggests that
connection i should probably be routed by route 1 rather than by route 2.

Since a fractional solution does not correspond to a physically meaningful routing, it
is necessary to "round" the fractional values delivered by the LP to integer solutions
corresponding to routings. While there is no general procedure for rounding the fraction
al values of a linear program to integer solutions, it is possible to use a technique which
we call randomized rounding for this purpose. Before describing this technique, we note

, that although the LP solution is not guaranteed to be integral, several of the variables
in a solution may be assigned integer values (thus, some of the connections may be
assigned fixed routes in the LP solution). This does happen quite often in practice, as our
experimental results in Section 4 will demonstrate. We thus have to round only those
variables xi} that are non-integral in the LP solution.

2.3. Randomized 'rounding

For each variable xi}' let xi} be the optimum value determined by the LP. Define
random variables x~ as follows:

Probability x~ = 1 = xi}
Probability x~ , 0 = 1 - xi}'

(4)

We solve our routing problem by setting xi} = x~ independently for all i, and mutually
exclusively for all j for any i. Thus exactly one of the allowed routes is chosen for each
connection. The probabilistic choice is readily implemented using a random-number
generator (see Section 3.3). This rule has the intuitively appealing property that if an LP
variable has a fractional value close to 1, it is more likely to be set to 1. We have shown

-

234 A. P-C Ng-P. i<udhatJanC. D. Iholl1pso/l

that the above rule produces results that are provably close to the best possible routing.
We reproduce here the main theorem from [13].

Let Xi be the sum of the Xjk appearing in the ith line of equations (2). Thus Xi counts
the number of wires passing through one channel. Let Xi and XiR be the analogous sums
of LP-optimal Xjt and random variables x~, respectively. Note that if E* is the optimum
value of E, then Xi - Wi < E*, for all i. Let C be the total number of channels in the
array. Finally, let sbe any positive constant less than un,ity. The following theorem places
an upper bound on the number of wires our algorithm will place in the ith channel.

Theorem 1. If Wi ~ In (Cjs) for all i, 1 < i:S;; C, then randomized rounding results in a
solution in which all

I I

Xi < XF+ (e - 1)(XtIn ~)' < Wi + E* + (e - \)(xtln ~)' (5)

with probability at least 1 - s.

Proof sketch. The Xi are sums of independent Bernoulli trials. Applying Chernoff's bound
to the right tail of such a distribution, we find that each Xi exceeds the bound (5) with
probability at most sjC.

A complete proof appears elsewhere [12, 13], along with some extensions.
The significance of the theorem is that not many more than X~ wires are likely to pass

through channel i. We are thus guaranteed at least a 50-50 chance of finding a feasible
routing (E < 0) if

I

E* < - (e - 1) (X; In2Cl

In practice, we do much better than this guarantee. We routinely find feasible routings
with E* at or near O. See Section 4.

If randomized rounding fails to find a feasible routing, we can repeat the rounding
procedure hundreds or even thousands of times. This is important, since solving the LP
is the most computationally intensive portion of our method; in comparison, the time
taken for a rounding is very small.

Of course, there is no guarantee that we will obtain a feasible solution from a given
LP optimum, after any fixed number of roundings. When we are unable to obtain a
feasible solution (as in example A of Table 3), we can add more routes to the LP in an
effort to decrease E*. Normally this should increase our chance of finding a feasible
solution, and it certainly cannot increase E*. It is important to note, however, that the
chance of finding a feasible solution depends on both the value of E* and on the number
of integral xt. Thus adding too many routes to the LP can actually make it more difficult
to find a feasible rounding, if one's LP solver produces more non-integral Xu for a more
degenerate problem (one with more routes). Example B3 of Tables 2 and 3 will illustrate
this behaviour.

The reader may wonder, why not use a deterministic rounding procedure? OUf answer
is that we know of none that will do better than our randomized rounding procedure

Results for a linear program global router 235

(however, a deterministic procedure can do as well as randomized rounding [12]). In
particular, routing net i by choosing the largest Xu is a poor idea. If each net can be routed
i.n four different ways, the resulting integer solution can have 4Xt wires running through
channel i.

3. DETAILS OF ALGORITHM IMPLEMENTATION

The implementation of the algorithm can be broken down into three parts - (l) the
decomposition of nets into connections, (2) the generation of the LP from the decom
position, and (3) the rounding of the LP solution.

3.1. Decomposition of nets

Each net in the gate-array is decomposed into connections usmg the following
heuristics due to HANAN [2].

There are four different types of connections, dependent on the relative position of the
gates to be connected. If the gates lie on the same row, they are connected with a row
connection. Similarly, if they lie on the same column, they are connected with a column
connection. If the gates do not share a common row or column, then they are connected
by a two-bend connection. In the special event that there are four gates on the corners of
a rectangle to be connected, a box connection is used.

3.1.1. Decomposition heuristics

The decomposition phase reduces all nets to four types of connections (see Fig. 2).
Nets with two terminals are trivially decomposed, since a two-point net is either a row,

a column, or a two-bend connection. '.

)(-----~

f
I
I
I
I
I
I

1<

r------¥
I
I
I
I

)t(

Row Column 2-Bend

)(-.,..----~
I
I
I
I
I
I
I
I

~_.L __ ?(

Box

Fig. 2. Types of connections.

Nets with three terminals are differentiated into two separate cases (see Fig. 3). The
median-point is the point whose coordinates are the median values of the three row and
three column coordinates. If a terminal exists at the median-point, then the median-point
is routed to the other two terminals by two-bend connections. Otherwise, a Steiner point
is introduced at the median-point and the three terminals are connected to the Steiner
point by two-point connections.

Four terminal nets are decomposed by considering the 4-corner rectangles (see Fig. 4).

236 A. p-e Ng-P. Radhavan-C. D. Thompson

Each corner rectangle (labelled C) is decomposed by connecting all terminals in it to the
nearest corner of the inner rectangle (labelled I). The inner rectangle is then decomposed
as either a two-bend or a box connection. .

Nets with five or more terminals are decomposed by finding a minimum spanning tree
[7]. Each edge of the tree connects two terminals and is a row, column, or two-bend
connection.

Median-PI >f. X Terminal

/ m\- ~ Two-Bend Route

Row I Col Roule
Sieiner PI

Fig. 3. Decomposition of three-point nets.

x Terminal

a Stein.r Point
Row / Col Route

~ Two -Ben d ROIIh~

D Box hute

--T------I
I I
, I
I I
I ' I I -----1

I I

: I :
I ~ I I I :------- . _.-*
~ I. (I

L _____ -1 __ ~-----J

r--f-----,..- -----..

l «: i I «: I
I. I I

: I: 1--- _____ ~

• I
I I
~. I

: (: (' L __ l. _______ _

Fig. 4. Decomposition of four-point nets:

There is no restriction on the locations of the terminals of a net; in particular,
terminals can lie on the same row or column. Two cases should be mentioned. The first
is when a supposed two-bend routing is actually a row or column route. It is handled by
converting all such two-bend routes into the corresponding row or column routes. The
second is when the two terminals to be routed are coincident, in which case no routing
is emitted.

3.2. Linear program generation

The LP is generated from the connection list produced by decomposing the nets. Each
connection is realized in a number of different physical routing configurations. We
introduce a SPAN parameter which governs the size of the LP. A large value of SPAN
produces a large number of configurations for row and column connections. These
connections can be displaced on either side from the minimum distance connection by
up to SPAN channels, yielding 2 (SPAN) + 1 configurations for each row or column
connection.

Two-bend connections are realized by considering all the possible minimum distance

Results for a linear program global router 237

two-bend routings. Box connections are realized by joining adjacent corners of the
rectangle with a pair of parallel routes. A third route then joins the first two (see Fig. 5).

3.3. Rounding of LP solution

The LP returns fractional solutions for the configurations of each connection. Since
the fractional solutions for each connection sum to 1, they can be viewed as intervals

Random

1
r'-i-'"'!
Ir----,I . 3 "
~---4---* .L __ ,~r

L.i.-.J
Row Routes
Span ... 2

rf'l
11 \2 j3
1 : .
L~,J

Col umn Routes
Sp.tn =1

-1r~s
Two-Bend Routes

DnklUe]
Box Routes

Fig. 5. Configurations for various connections.

Variable

Number 6en. Value's ~ 0.587 0.937
..

Xil

t t
I I"

• Xi2

0.7 0.8 1.0
• • * Xi2 X i3 Xi4

• Xi) ..
X i4

0.0 0.5

Fig. 6. Randomized rounding of net i.

Value

0.5

0.2

0.1

0.2

along the [0, 1] number line. The relative positions of the intervals are not important.
Independently, for each connection, we generate a random number in [0, 1] and deter
mine which interval it lies in. The configuration corresponding to this interval is then
chosen to realize the connection. For instance, if the pseudo-random number generator
returned 0.587, configuration 2 would be selected (Xi2 = 1 and Xi) = Xi2 = X i4 = 0). If
0.937 were returned instead, configuration 4 would be selected (see. Fig. 6). The gate array
is routed when all the connections have been rounded and realized.

3.4. Problems arising from net decomposition

Two problems arise from the decomposition style of routing. Both problems occur

2J~ A. P-C Ng-P. Radlzavan-C. D. Thompson

because it is not possible to specify within the context of the LP which net the connections
belong to.

When two connections pass through the same channel, they occupy two tracks. If they
belong to the same net, then the physical route will only need to occupy one track. This
phenomenon is referred to as track sharing (see Fig. 7). Since the LP attempts to minimize
the excess E, if track sharing occurs in a channel that is "tight" (i.e. a channel with
Xi = ',Vi + E), the counting of the extra connection will cause E* to assume a higher
value. rhere may thus be channels in the gate array that seem crowded only because of
track sharing. In reality, these may be easily realized without exceeding the channel
capacities.

Track Sharing i
<) I
"'----_J -._.,

.
I

*

X-'-'-'l
I

·---t---l
I CyclE'
~. __ -I *

Fig. 7. Track sharing and cycles.

A cycle occurs when, in a physical realization of a net, two of its routed connections
overlap (see Fig. 7). Again this means counting unnecessary routes which by the same
argument will cause the excess E to be above the actual value.

3.5. Coding

A collection of programs for decomposition, LP generation, and rounding were
written in the C programming language and run on a VAX 11/785 running Berkeley 4.3
BSD UNIX. Processing time on the VAX is short enough to allow interactive usage of
the various modules. In particular, once the LP is solved, one rounding operation on all
the nets can be solved in about 1 VAX CPU second. The LP is run using MPSX [9], an
implementation ~f the simplex algorithm for linear programming, on an IBM 3081
running IBM/CMS.

4. EXPERIMENTAL RESULTS

This section describes the performance of the LP router on two gate-arrays from
industrial sources; we call them example A and example B. Table la gives basic data on
the two examples, such as array size, number of nets and statistics on the net sizes.
Example B has over twice as many gates as example A. While B does not have twice as
many nets as A, it contains several very large nets (including a 21-point net) and thus a
larger average net size. Larger nets lead to more 2-point connections, non-minimal
distance routings, and problems with track-sharing and cycles (see Section 3.4). Table 1 b
contains information about the examples after their nets have been decomposed into

Results for a linear program global router 239

Table la. Input data for the two examples.

No. of No. of No. of No. of No. pts.
Average

Size Number no. of
Example

(gates) of nets
2-pt. 3-pt. 4-pt.): 5-pt. largest

pts.
nets nets nets nets net·

in a net

A 15 x 12 285 III 152 19 3 5 2.6
B 17 x 23 449 257 88 29 75 21 3.64

Table 1 b. Decomposition statistics.

No. of
No. of No. of No. of No. of

Example row column 2-bend box
connections

connections connections connections connections

A 506 154 238 109 5
.B 1266 481 440 341 4

2-point connections as described in the previous section. Notice that although B did not
have twice as many nets as A, it has over twice as many connections - this is, as we noted
above, due to the more complex nets in B.

For example A, four LPs were generated for four values of the variable SPAN -
corresponding to varying extents of freedom for the row and column routes. Three values
of SPAN were tried with example B - these sufficed to give us satisfactory results. Tab
le 2 gives information on the LP - number of constraints (rows), variables (columns),
the number of simplex iterations to feasibility and optimality, the IBM 3081 runtime in
seconds and the optimal value of the objective function E*.

The last column of Table 2 shows a surprising phenomenon; it Was found that many
of the variables in the LP solution had already been assigned integer values (0 or 1), and
thus did not have to be rounded. Integral-valued variables correspond to routed connec
tions, and the last column in Table 2 indicates the percentage of such connections in each

Table 2. LP statistics for four cases for each example.

LP
Number Number Iterations Iterations

Runtime
Optimal % of

solution
SPAN ofLP ofLP to to

(sec.)
value integer

rows columns feasibility optimality of E* solutions

Al 1 840 1774 497 514 25.10 0.0 77%
A2 2 840 2435 402 474 32.93 0.17 75%
A3 3 840 3050 0 145 15.63 0.17 92%
A4 4 840 3600 0 146 19.74 0.17 92%

Bl I 2009 5570 126 203 38.23 0.00 ' 100%
B2 2 2009 7270 133 187 42.98 0.00 100%
B3 3 2009 8875 135 179 47.05 0.00 99%

24U A. P-C Ng-P. Radlwu{lll--c. D. Thompson

Table 3. Results of 51 roundings of LP solutions.

No. of violations Freq uency of
Example

best solution average best

Al 27.61 19 2%
A2 22.92 14 4%
A3 2.73 0 4%
A4 3.53 0 8%

BI 0 0 100%
B2 0 0 100%
B3 0.76 0 38%

of the cases. The most interesting result here is that in example B, for the cases Bland
B2, all 1266 connections were routed deterministically (100% integer solutions). Further
more, this was with an objective function E* = 0; in other words, the LP had found a
perfect routing! For example B, increasing SPAN to 3 produced no reduction in the
objective function, although some of the variables now took on fractional solutions.

The LPs for example A did not directly yield a routing with all the solutions integral,
so that randomized rounding was necessary. However, E* did attain negative values for
A2, A3 and A4. Interestingly, the versions with SPAN = 3 and 4 (more freedom allowed)
reached the optimum with fewer simplex iterations and thus decreased runtime. Thus,
increasedfiexibility in the routes means an increase in the size of the LP but not
necessarily an increase in runtime. Also, the versions A3 and A4 had sufficient freedom
that MPSX [9] found a feasible basis without any iterations.

Where necessary, the fractional variables from the LP were converted to integer (0-1)
solutions using randomized rounding, to produce physically meaningful routings. For
each of the cases AI, A2, A3, A4 and B3, fifty-one independent randomized roundings
were performed (no rounding was necessary for Bl and B2 since the LP solution in these
cases was perfectly integral). Table 3 summarizes the results of rounding.

In each case, we list the number of channel capacities violated by the rounded solution
(the routing); a value of zero corresponds to a feasible routing to the problem. Note that
feasible solutions were found in the cases A3, A4, and Bl through B3 (the column "Best" t

under "No. of violations" .gives the minimum number of channel-capacity violations
among the 51 roundings). Notice also that the trend for the cases Al through A4 under
"average number of violated channels" shows that as the freedom (SPAN) is increased,
we proceed closer to a feasible routing. This is also confirmed by the frequency with
which the best solution occurs - A3 produced a feasible routing only 2 times out of 51
roundings (4%), while A4 yielded a routing 4 times out of 51 (8%). Our results suggest
that SPAN = 3 is necessary to successfully route example A (SPAN = 2 could not even
come close to a routing). Notice also that B3, with more freedom than Bl and B2, gave
a routing only 19 times out of 51 (due to its fractional routes that required rounding
- recall that Bl and B2 had perfectly integral LP solutions).

Results for a linear program global router 241

5, CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

The algorithm that we have presented differs from classical ones in several respects.
The nets in a problem instance are not processed sequentially as in most other routers.
Instead the problem is viewed in its entirety. Therefore, unlike sequential routers, there
is no need to backtrack ("rip up and re-route"). Heuristics involving backtrack search
rarely yield performance guarantees - our algorithm, on the other hand, is provably
good in light of Theorem 1. Moreover, our experience to date is encouraging - we have
successfully routed two industrial examples. We are currently investigating several other
data sets.

Perhaps the most remarkable results of our experiments are the runtimes; it takes less
than one minute to solve the linear programs for each of the problem instances. Since
linear program optimization is the most computationally intensive part of our algorithm,
our technique compares very favourably with other routers.

Although we have been using the simplex method for linear programming in our
experiments so far, it would be interesting to apply recent developments in the field.
A polynomial-time algorithm for linear programming [4, 61 could be used to ensure that
our algorithm runs in polynomial time. This is in marked contrast to classical maze-style
routers which may take exponential time.

The nature of our algorithm allows us to restrict the choice of routes. This permits us
to control the quality of the routing - in particular we can avoid routes that are long
or have many bends. This capability is not easily achievable in other routers.

Our solution to the routing problem does not make allowances for subsequent
detailed routing. In the event that a detailed router cannot complete the routing of a
channel, the rounding process can be rerun. Failing this, the entire global routing can be
redone with larger numbers of choices of routes for each connection.

The linear programming technique does not restrict us to 2-point decompositions of
nets. We could specify a set of possible routings for an entire net without decomposing
it. Each such routing would be a Steiner tree spanning the terminals in the net. We are
currently developing a language that generates Steiner tree configurations in a systematic
manner [10]. We are now implementing this style of router.

REFERENCES

[I] BURSTEIN, M.-PELAVIN, R.: Hierarchical wire routing. IEEE Transactions on Computer- \
-Aided Design, Vol. CAD-2, October 1983. No.4, pp. 223-234.

[2] HANAN, M.: On Steiner's problem with rectilinear distance. SIAM Journal of Applied Math.,
Vol. 14, 1966, No.3, pp. 255-265.

[3] Hu, T. C.-SHING, M. T.: A decomposition algorithm for circuit routing. MathematIcal
Programming Study, Vol. 24, 1985, pp. 87-103.

[4] KARMARKAR, N.: A new polynomial-time algorithm for linear programming. Proceed,ings of
the Sixteenth ACM Symposium on Theory of Computing, ACM, New York 1984,

[5] KARP, R. M.-LEIGHTON, F. T.-RIVEST, R. L.--THOMPSON, C. D.--VAZIRANI, U.-VAZIRA-

242 A. P-C Ng--P. Radhavan--c. D. Thompson

NI. V.: Global wire routing in two-dimensional arrays. Proc. 24th Annual Symp. on Founda
tions of Computer Science. October 1983. pp. 453-459.

[6] KHACHIAN. L. G.: A polynomial algorithm for linear programming. Soviet Math. Doklady,
Vol. 20. 1979. pp. 191-194.

[7] KRUSKAL, J. B.: On the shortest spanning subtree of a graph. Proc .. Amer. Math. Soc .• Vol. 7.
1956, pp. 48-50.

[8] LEE. C. Y.: An algorithm for path connections and its applications. I RS Transactions on
Electronic Computers, Vol. EC-lO. 1961. pp. 346---365.

[9] International Business Machines. I BM Mathematical Programming System Extended/370
Program Reference Manual. White Plains. New York. Dec. 1979.

[10] P-C NG. A.-RAGHAVAN. P.-THOMPSON. C. D.: A language for describing rectilinear Steiner
tree configurations. Proc. 1986 ACM Design Automation Conference, July. 1986, pp. 659-
662.

[11] RAGHAVAN. P.-THOMPSON. D.: Provably good routing in graphs: regular arrays. Proceedings
of the Seventeenth ACM Symposium on Theory of Computing. ACM, New York, May 1985.

[12] RAGHAVAN. P.: Randomized rounding and discrete ham-sandwich theqrems: provably good
algorithms for routing and packing problems. Ph. D. Dissertation, Computer Science Division.
U. C. Berkeley. August 1986.

[13] RAGHAVAN, P.-THOMPSON. c.: Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. To appear, Combinatorica, 1986.

[14] VECCHI. M. P.-KIRKPATRICK. S.: Global wiring by simulated annealing. IEEE Transactions
and Computer-Aided Design. Vol. CAD-2, October 1983, No.4, pp. 215-222.

Received April 22. 1986 - revised version December 19. 1986

