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Abstract. Classical approaches to global routing in gate-arrays involve maze-running or 
hierarchical decomposition. We present a completely different approach here based on an 
integer programming formulation of the problem. Furthermore, we describe an efficient 
procedure for approximately solving such integer programs. Our approximation is provably 
good in that we always find a solution close to the optimal one. Nets are routed simultaneous
ly rather than sequentially, with no backtrack. Experiments with our method were conducted 
on two industrial examples; in both cases our router took less than one minute to find a 
feasible routing. 
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1. INTRODUCTION 

Gate-arrays are .an important and popular framework for semicustom VLSI design. 
Logic gates or functional blocks are arranged in a rectangular array on a chip manufac
tured in volume. The gates in a customer's circuit are first mapped onto the gates on the 
array. This is known as the placement process, and it is followed by routing. In the 
routing phase, the gates on the array are to be interconnected electrically in such a 
manner as to realize the customer's circuit for the given placement. This is done by 
running wires through on the array joining the gates to be connected. A detailed 
description of the routing problem is deferred to the next section. 

Classical methods for routing fall into two major classes: the "Lee-type" [8] or 
maze-running routers and the hierarchical routers [1]. In the former, connections between 
gates are processed sequentially and routed whenever possible. When it is no longer 
possible to route a connection, a "rip-up-and-reroute" phase is entered in which some 
of the connections already laid out are removed and routed again along different paths. 
The performance of such routers is highly dependent on the order in which the connec
tions are processed, which routes are "ripped-up", and other such heuristic factors. Such 
routers will either take exponential time to find a difficult solution or, if rip-ups are 
limited, there is no guarantee of finding a good solution. 

Hierarchical routers employ a divide-and-conquer strategy in which the array is 
recursively partitioned into smaller sub-arrays; the smaller sub-problems are solved 
independently, followed by a "merge" step in which the routings for the sub-problems 
are joined at the interface. The problems here arise mainly from the divide and the 
conquer phases - there is no obvious way of deciding the best partition or the best 
sequence for merging the sub-problems. Hu and Shing's hierarchical LP router [3] offers 
no performance guarantee. The hierarchical routers of BURSTEIN [1] and of KARP et 
al. [5] do offer performance guarantees, but these guarantees are far too pessimistic to be 
of practical value. The guarantee offered by our method is considerably stronger. 

Simulated annealing [14] is a recent development in the field, and has stochastic 
guarantees of finding an optimal solution. There is, however, no useful bound on the time 
taken to find the optimum. 

We present here a completely novel approach to the routing problem. Our method 
consists of casting the problem as an integer linear program. An immediate advantage 
of such a formulation is that the problem instance is viewed in its entirety, and does not 
depend on any sequential ordering of the connections. Furthermore, we have been able 
to develop an efficient procedure for approximately solving such integer programs. The 
approximation produced by our method is provably good in that it finds a solution 
guaranteed to be close to the best possible. Finally, our procedure runs in polynomial 
time. There is no "rip-up-and-reroute" phase where some nets are removed and routed 
again. Our method permits us to control the routes chosen by the algorithm, so that we 
can avoid'routes that are undesirable from a practical standpoint (routes that are unduly 
circuitous or that have many bends). 

The theoretical bases for the algorithm and the performance guarantees are developed 
elsewhere [11,12,13]. For the sake of completeness, we include a brief but self contained 
description of the algorithm in Secti~m 2; proofs are omitted. In Section 3 we present an 
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implementation of our method, followed in Section 4 by experimental results on two 
gate-arrays from industrial sources. These experiments are extremely encouraging from 
several standpoints, as we show in Section 4. Our method could route both arrays 
successfully, with surprisingly short runtimes. 

2. THE LINEAR PROGRAMMING ALGORITHM FOR GLOBAL ROUTING 

In this section we provide an outline of our algorithm for global routing in gate-arrays. 
We begin by defining the terminology we will use for the remainder of the paper. Our 
description of gate-arrays below concentrates on their topological rather than functional 
aspects. 

2.1. The routing model 

A gate-array is a two-dimensional rectangular array of rectangular gates. Each gate 
has a left-channel and a bottom-channel, corresponding to its left and bottom boundaries. 
These channels are used for running wires to realize electrical interconnections between 
the gates in the array. A channel contains a number of tracks, where each track can 
accommodate one wire. The number of tracks in a channel is called its capacity, for 
obvious reasons. Each gate also has a number of terminals to which wires are to be 
connected. 

An instance of the global routing problem is specified by a list of nets, where a net is 
a collection of gates to be connected electrically by means of wires. Throughout this 
paper, we will be dealing with two-point decompositions of nets; i.e. we decompose each 
net into several pairs of gates to be connected (there is one exception to this - when there 
are four gates at the corners of a rectangle that are to be connected, we treat them as a 
box connection rather than decompose them into three two-point connections; more on 
this in Section 3). We call a two-point pair or box of gates a connection; when all the 
connections belonging to a net are realized, the interconnection pattern for that net is 
realized. The manner in which we decompose nets into connections is described in 
Section 3. 

A route is a "Manhattan" path between the gates to be connected; it may traverse 
severai other gates on the way, passing through their channels (a Manhattan path is one 
whose segments are all parallel to the sides of the gates). The number of routes passing 
through any channel may not exceed its capacity. A solution to the global routing 
problem consists of specifying a route for each connection, such that no channel-capacity 
is violated. 

2.2. Formulation as an integer linear program 

We now describe our formulation of the global routing problem as a 0-1 linear 
program (LP). Assume that we have decomposed the nets in a problem instance into a 
set of two-point connections (using guidelines similar to the ones in the next section). For 
each connection i in the problem, we pick a set of allowable routes. We wish to realize 
the connection by means of one of these routes. The choice of this set of allowable routes 
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affects both the quality of the routing and the running time of the router. In practice, it 
is undesirable to route a connection by means of an excessively circuitous route as this 
degrades circuit performance. Also, in manyJabrication t.echnologies, routes with a large 
number of bends decrease the reliability and performance of the circuit. On the other 
hand, complicated routes may sometimes be the only way of circumventing "bottleneck" 
regions on a gate-array (those with several congested channels). Our experiments de
scribed in Section 4 discuss several choices of allowable routes for a connection, and the 
resulting routings. 

We assign one indicator variable for each of the possible routes. (Indicator variables 
are integer variables that assume values of either 0 or 1). Thus, Xi; would represent the 
j-th route of connection i; Xi; = 1 would indicate route j was used to realize connection 
i and xij = 0 would indicate that it was not. Figure 1 gives a small example of such 
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Fig. 1. A 2 x 2 example array with two 2-point nets. 

indicator variables for two 2-point nets in a 2 x 2 gate-array. Net 1 connects the gate in 
the upper-left corner to the gate in the lower right corner, while net 2 connects th other 
two gates. Channel L22 denotes the left-channel of the gate at position 2,2. Channel BII 

denotes the bottom-channel of the gate at position 1,1. Note that in this case, the 
channels on the bottom and left edges of the gate-array are not used. Each net has two 
allowed L-shaped routes in this example. To ensure that each connection gets realized 
with exactly one possible route, we write the following constraints (for our example): 

Xii + X i2 = 1, i = 1, 2; xij = 0 or 1. (1) 

Given the positions of the gates to be connected and the topology of the route corres
ponding to any variable, it is easy to specify constraints that ensure that the number of 
routes through a channel does not exceed its capacity. In our example, if the capacities 
of channels L2h B\2, L22 , and B22 are respectively WI, W2, W3 , and W4 , then our LP 
becomes: 

Minimize E subject to equations (1) and 

X\2 + X22 - WI < E 
X\2 + X21 - W2 ~ E 
XII + X21 - W3 < E 
X II + X22 - W4 < E. 

(2) 
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Note that we have introduced a new variable E, which can be thought of as the excess 
over any channel's capacity. In other words, E is the maximum, over all channels, of the 
number of wires through a channel minus the capacity of that channel. The LP attempts 
to minimize E. In particular, if we can solve the above LP resulting in a value E < 0 
(meaning no channel capacity is violated), we have a feasible solution to the routing 
problem. Notice that our formulation allows for E to have negative values, corresponding 
to routings where every channel has at least one unused track. 

A number of algorithms are available for solving LP problems, but none of them can 
efficiently find solutions in which every variable xli has an integer value (0 or 1). (What 
we have here is actually an integer linear program, for which there is no known efficient 
algorithm). We therefore solve a relaxation of the above integer program - one in which 
each of the variables xi} is allowed to take on any fractional value in the interval [0, I]. 
Although not physically meaningful, a fractional route is not without significance. For 
instance, if in the example above WI = W2 = W3 = W4 = 1, the optimal LP solution 
would be E = 0 (no excess over capacity) and XII = XI2 = X21 = X22 = 0.5. This may be 
thought of as routing one-half of each connection along one of the two possible routes, 
so that the "flux" through any channel does not exceed its capacity. This intuitively 
appealing concept also illustrates why theLP optimum value for E is a lower bound on 
the best integer solution. By restricting the variables to 0-1 values, we can do no better 
than the LP relaxation (a proof of this statement is straightforward). Also, if the 
fractional LP optimum contains the values Xii = 0.9 and Xi2 = 0.1, this suggests that 
connection i should probably be routed by route 1 rather than by route 2. 

Since a fractional solution does not correspond to a physically meaningful routing, it 
is necessary to "round" the fractional values delivered by the LP to integer solutions 
corresponding to routings. While there is no general procedure for rounding the fraction
al values of a linear program to integer solutions, it is possible to use a technique which 
we call randomized rounding for this purpose. Before describing this technique, we note 

, that although the LP solution is not guaranteed to be integral, several of the variables 
in a solution may be assigned integer values (thus, some of the connections may be 
assigned fixed routes in the LP solution). This does happen quite often in practice, as our 
experimental results in Section 4 will demonstrate. We thus have to round only those 
variables xi} that are non-integral in the LP solution. 

2.3. Randomized 'rounding 

For each variable xi}' let xi} be the optimum value determined by the LP. Define 
random variables x~ as follows: 

Probability x~ = 1 = xi} 
Probability x~ , 0 = 1 - xi}' 

(4) 

We solve our routing problem by setting xi} = x~ independently for all i, and mutually 
exclusively for all j for any i. Thus exactly one of the allowed routes is chosen for each 
connection. The probabilistic choice is readily implemented using a random-number 
generator (see Section 3.3). This rule has the intuitively appealing property that if an LP 
variable has a fractional value close to 1, it is more likely to be set to 1. We have shown 

-
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that the above rule produces results that are provably close to the best possible routing. 
We reproduce here the main theorem from [13]. 

Let Xi be the sum of the Xjk appearing in the ith line of equations (2). Thus Xi counts 
the number of wires passing through one channel. Let Xi and XiR be the analogous sums 
of LP-optimal Xjt and random variables x~, respectively. Note that if E* is the optimum 
value of E, then Xi - Wi < E*, for all i. Let C be the total number of channels in the 
array. Finally, let sbe any positive constant less than un,ity. The following theorem places 
an upper bound on the number of wires our algorithm will place in the ith channel. 

Theorem 1. If Wi ~ In (Cjs) for all i, 1 < i:S;; C, then randomized rounding results in a 
solution in which all 

I I 

Xi < XF+ (e - 1)( XtIn ~)' < Wi + E* + (e - \)( xtln ~)' (5) 

with probability at least 1 - s. 

Proof sketch. The Xi are sums of independent Bernoulli trials. Applying Chernoff's bound 
to the right tail of such a distribution, we find that each Xi exceeds the bound (5) with 
probability at most sjC. 

A complete proof appears elsewhere [12, 13], along with some extensions. 
The significance of the theorem is that not many more than X~ wires are likely to pass 

through channel i. We are thus guaranteed at least a 50-50 chance of finding a feasible 
routing (E < 0) if 

I 

E* < - (e - 1) (X; In2Cl 

In practice, we do much better than this guarantee. We routinely find feasible routings 
with E* at or near O. See Section 4. 

If randomized rounding fails to find a feasible routing, we can repeat the rounding 
procedure hundreds or even thousands of times. This is important, since solving the LP 
is the most computationally intensive portion of our method; in comparison, the time 
taken for a rounding is very small. 

Of course, there is no guarantee that we will obtain a feasible solution from a given 
LP optimum, after any fixed number of roundings. When we are unable to obtain a 
feasible solution (as in example A of Table 3), we can add more routes to the LP in an 
effort to decrease E*. Normally this should increase our chance of finding a feasible 
solution, and it certainly cannot increase E*. It is important to note, however, that the 
chance of finding a feasible solution depends on both the value of E* and on the number 
of integral xt. Thus adding too many routes to the LP can actually make it more difficult 
to find a feasible rounding, if one's LP solver produces more non-integral Xu for a more 
degenerate problem (one with more routes). Example B3 of Tables 2 and 3 will illustrate 
this behaviour. 

The reader may wonder, why not use a deterministic rounding procedure? OUf answer 
is that we know of none that will do better than our randomized rounding procedure 
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(however, a deterministic procedure can do as well as randomized rounding [12]). In 
particular, routing net i by choosing the largest Xu is a poor idea. If each net can be routed 
i.n four different ways, the resulting integer solution can have 4Xt wires running through 
channel i. 

3. DETAILS OF ALGORITHM IMPLEMENTATION 

The implementation of the algorithm can be broken down into three parts - (l) the 
decomposition of nets into connections, (2) the generation of the LP from the decom
position, and (3) the rounding of the LP solution. 

3.1. Decomposition of nets 

Each net in the gate-array is decomposed into connections usmg the following 
heuristics due to HANAN [2]. 

There are four different types of connections, dependent on the relative position of the 
gates to be connected. If the gates lie on the same row, they are connected with a row 
connection. Similarly, if they lie on the same column, they are connected with a column 
connection. If the gates do not share a common row or column, then they are connected 
by a two-bend connection. In the special event that there are four gates on the corners of 
a rectangle to be connected, a box connection is used. 

3.1.1. Decomposition heuristics 

The decomposition phase reduces all nets to four types of connections (see Fig. 2). 
Nets with two terminals are trivially decomposed, since a two-point net is either a row, 

a column, or a two-bend connection. '. 
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Fig. 2. Types of connections. 

Nets with three terminals are differentiated into two separate cases (see Fig. 3). The 
median-point is the point whose coordinates are the median values of the three row and 
three column coordinates. If a terminal exists at the median-point, then the median-point 
is routed to the other two terminals by two-bend connections. Otherwise, a Steiner point 
is introduced at the median-point and the three terminals are connected to the Steiner 
point by two-point connections. 

Four terminal nets are decomposed by considering the 4-corner rectangles (see Fig. 4). 
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Each corner rectangle (labelled C) is decomposed by connecting all terminals in it to the 
nearest corner of the inner rectangle (labelled I). The inner rectangle is then decomposed 
as either a two-bend or a box connection. . 

Nets with five or more terminals are decomposed by finding a minimum spanning tree 
[7]. Each edge of the tree connects two terminals and is a row, column, or two-bend 
connection. 

Median-PI >f. X Terminal 

/ m\- ~ Two-Bend Route 

Row I Col Roule 
Sieiner PI 

Fig. 3. Decomposition of three-point nets. 
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Fig. 4. Decomposition of four-point nets: 

There is no restriction on the locations of the terminals of a net; in particular, 
terminals can lie on the same row or column. Two cases should be mentioned. The first 
is when a supposed two-bend routing is actually a row or column route. It is handled by 
converting all such two-bend routes into the corresponding row or column routes. The 
second is when the two terminals to be routed are coincident, in which case no routing 
is emitted. 

3.2. Linear program generation 

The LP is generated from the connection list produced by decomposing the nets. Each 
connection is realized in a number of different physical routing configurations. We 
introduce a SPAN parameter which governs the size of the LP. A large value of SPAN 
produces a large number of configurations for row and column connections. These 
connections can be displaced on either side from the minimum distance connection by 
up to SPAN channels, yielding 2 (SPAN) + 1 configurations for each row or column 
connection. 

Two-bend connections are realized by considering all the possible minimum distance 
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two-bend routings. Box connections are realized by joining adjacent corners of the 
rectangle with a pair of parallel routes. A third route then joins the first two (see Fig. 5). 

3.3. Rounding of LP solution 

The LP returns fractional solutions for the configurations of each connection. Since 
the fractional solutions for each connection sum to 1, they can be viewed as intervals 

Random 
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Two-Bend Routes 
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Fig. 5. Configurations for various connections. 
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Fig. 6. Randomized rounding of net i. 
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along the [0, 1] number line. The relative positions of the intervals are not important. 
Independently, for each connection, we generate a random number in [0, 1] and deter
mine which interval it lies in. The configuration corresponding to this interval is then 
chosen to realize the connection. For instance, if the pseudo-random number generator 
returned 0.587, configuration 2 would be selected (Xi2 = 1 and Xi) = Xi2 = X i4 = 0). If 
0.937 were returned instead, configuration 4 would be selected (see. Fig. 6). The gate array 
is routed when all the connections have been rounded and realized. 

3.4. Problems arising from net decomposition 

Two problems arise from the decomposition style of routing. Both problems occur 
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because it is not possible to specify within the context of the LP which net the connections 
belong to. 

When two connections pass through the same channel, they occupy two tracks. If they 
belong to the same net, then the physical route will only need to occupy one track. This 
phenomenon is referred to as track sharing (see Fig. 7). Since the LP attempts to minimize 
the excess E, if track sharing occurs in a channel that is "tight" (i.e. a channel with 
Xi = ',Vi + E), the counting of the extra connection will cause E* to assume a higher 
value. rhere may thus be channels in the gate array that seem crowded only because of 
track sharing. In reality, these may be easily realized without exceeding the channel 
capacities. 

Track Sharing i 
< ) I 
"'----_J ...... -._., 

. 
I 

* 

X-'-'-'l 
I 

·---t---l 
I CyclE' 
~. __ -I * 

Fig. 7. Track sharing and cycles. 

A cycle occurs when, in a physical realization of a net, two of its routed connections 
overlap (see Fig. 7). Again this means counting unnecessary routes which by the same 
argument will cause the excess E to be above the actual value. 

3.5. Coding 

A collection of programs for decomposition, LP generation, and rounding were 
written in the C programming language and run on a VAX 11/785 running Berkeley 4.3 
BSD UNIX. Processing time on the VAX is short enough to allow interactive usage of 
the various modules. In particular, once the LP is solved, one rounding operation on all 
the nets can be solved in about 1 VAX CPU second. The LP is run using MPSX [9], an 
implementation ~f the simplex algorithm for linear programming, on an IBM 3081 
running IBM/CMS. 

4. EXPERIMENTAL RESULTS 

This section describes the performance of the LP router on two gate-arrays from 
industrial sources; we call them example A and example B. Table la gives basic data on 
the two examples, such as array size, number of nets and statistics on the net sizes. 
Example B has over twice as many gates as example A. While B does not have twice as 
many nets as A, it contains several very large nets (including a 21-point net) and thus a 
larger average net size. Larger nets lead to more 2-point connections, non-minimal 
distance routings, and problems with track-sharing and cycles (see Section 3.4). Table 1 b 
contains information about the examples after their nets have been decomposed into 
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Table la. Input data for the two examples. 

No. of No. of No. of No. of No. pts. 
Average 

Size Number no. of 
Example 

(gates) of nets 
2-pt. 3-pt. 4-pt. ): 5-pt. largest 

pts. 
nets nets nets nets net· 

in a net 

A 15 x 12 285 III 152 19 3 5 2.6 
B 17 x 23 449 257 88 29 75 21 3.64 

Table 1 b. Decomposition statistics. 

No. of 
No. of No. of No. of No. of 

Example row column 2-bend box 
connections 

connections connections connections connections 

A 506 154 238 109 5 
.B 1266 481 440 341 4 

2-point connections as described in the previous section. Notice that although B did not 
have twice as many nets as A, it has over twice as many connections - this is, as we noted 
above, due to the more complex nets in B. 

For example A, four LPs were generated for four values of the variable SPAN -
corresponding to varying extents of freedom for the row and column routes. Three values 
of SPAN were tried with example B - these sufficed to give us satisfactory results. Tab
le 2 gives information on the LP - number of constraints (rows), variables (columns), 
the number of simplex iterations to feasibility and optimality, the IBM 3081 runtime in 
seconds and the optimal value of the objective function E*. 

The last column of Table 2 shows a surprising phenomenon; it Was found that many 
of the variables in the LP solution had already been assigned integer values (0 or 1), and 
thus did not have to be rounded. Integral-valued variables correspond to routed connec
tions, and the last column in Table 2 indicates the percentage of such connections in each 

Table 2. LP statistics for four cases for each example. 

LP 
Number Number Iterations Iterations 

Runtime 
Optimal % of 

solution 
SPAN ofLP ofLP to to 

(sec.) 
value integer 

rows columns feasibility optimality of E* solutions 

Al 1 840 1774 497 514 25.10 0.0 77% 
A2 2 840 2435 402 474 32.93 0.17 75% 
A3 3 840 3050 0 145 15.63 0.17 92% 
A4 4 840 3600 0 146 19.74 0.17 92% 

Bl I 2009 5570 126 203 38.23 0.00 ' 100% 
B2 2 2009 7270 133 187 42.98 0.00 100% 
B3 3 2009 8875 135 179 47.05 0.00 99% 
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Table 3. Results of 51 roundings of LP solutions. 

No. of violations Freq uency of 
Example 

best solution average best 

Al 27.61 19 2% 
A2 22.92 14 4% 
A3 2.73 0 4% 
A4 3.53 0 8% 

BI 0 0 100% 
B2 0 0 100% 
B3 0.76 0 38% 

of the cases. The most interesting result here is that in example B, for the cases Bland 
B2, all 1266 connections were routed deterministically (100% integer solutions). Further
more, this was with an objective function E* = 0; in other words, the LP had found a 
perfect routing! For example B, increasing SPAN to 3 produced no reduction in the 
objective function, although some of the variables now took on fractional solutions. 

The LPs for example A did not directly yield a routing with all the solutions integral, 
so that randomized rounding was necessary. However, E* did attain negative values for 
A2, A3 and A4. Interestingly, the versions with SPAN = 3 and 4 (more freedom allowed) 
reached the optimum with fewer simplex iterations and thus decreased runtime. Thus, 
increasedfiexibility in the routes means an increase in the size of the LP but not 
necessarily an increase in runtime. Also, the versions A3 and A4 had sufficient freedom 
that MPSX [9] found a feasible basis without any iterations. 

Where necessary, the fractional variables from the LP were converted to integer (0-1) 
solutions using randomized rounding, to produce physically meaningful routings. For 
each of the cases AI, A2, A3, A4 and B3, fifty-one independent randomized roundings 
were performed (no rounding was necessary for Bl and B2 since the LP solution in these 
cases was perfectly integral). Table 3 summarizes the results of rounding. 

In each case, we list the number of channel capacities violated by the rounded solution 
(the routing); a value of zero corresponds to a feasible routing to the problem. Note that 
feasible solutions were found in the cases A3, A4, and Bl through B3 (the column "Best" t 

under "No. of violations" .gives the minimum number of channel-capacity violations 
among the 51 roundings). Notice also that the trend for the cases Al through A4 under 
"average number of violated channels" shows that as the freedom (SPAN) is increased, 
we proceed closer to a feasible routing. This is also confirmed by the frequency with 
which the best solution occurs - A3 produced a feasible routing only 2 times out of 51 
roundings (4%), while A4 yielded a routing 4 times out of 51 (8%). Our results suggest 
that SPAN = 3 is necessary to successfully route example A (SPAN = 2 could not even 
come close to a routing). Notice also that B3, with more freedom than Bl and B2, gave 
a routing only 19 times out of 51 (due to its fractional routes that required rounding 
- recall that Bl and B2 had perfectly integral LP solutions). 
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5, CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK 

The algorithm that we have presented differs from classical ones in several respects. 
The nets in a problem instance are not processed sequentially as in most other routers. 
Instead the problem is viewed in its entirety. Therefore, unlike sequential routers, there 
is no need to backtrack ("rip up and re-route"). Heuristics involving backtrack search 
rarely yield performance guarantees - our algorithm, on the other hand, is provably 
good in light of Theorem 1. Moreover, our experience to date is encouraging - we have 
successfully routed two industrial examples. We are currently investigating several other 
data sets. 

Perhaps the most remarkable results of our experiments are the runtimes; it takes less 
than one minute to solve the linear programs for each of the problem instances. Since 
linear program optimization is the most computationally intensive part of our algorithm, 
our technique compares very favourably with other routers. 

Although we have been using the simplex method for linear programming in our 
experiments so far, it would be interesting to apply recent developments in the field. 
A polynomial-time algorithm for linear programming [4, 61 could be used to ensure that 
our algorithm runs in polynomial time. This is in marked contrast to classical maze-style 
routers which may take exponential time. 

The nature of our algorithm allows us to restrict the choice of routes. This permits us 
to control the quality of the routing - in particular we can avoid routes that are long 
or have many bends. This capability is not easily achievable in other routers. 

Our solution to the routing problem does not make allowances for subsequent 
detailed routing. In the event that a detailed router cannot complete the routing of a 
channel, the rounding process can be rerun. Failing this, the entire global routing can be 
redone with larger numbers of choices of routes for each connection. 

The linear programming technique does not restrict us to 2-point decompositions of 
nets. We could specify a set of possible routings for an entire net without decomposing 
it. Each such routing would be a Steiner tree spanning the terminals in the net. We are 
currently developing a language that generates Steiner tree configurations in a systematic 
manner [10]. We are now implementing this style of router. 
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