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Abstract

The recently adopted V.42bis standard for data compressing moderns is discussed from al-
gorithmie, experimental, practical, and marketing standpoints. V.42bis is a conservative and
economically-implementable scheme, one that compresses text about as well as the Lempel-
Ziv-Welch algorithm of the Berkeley Unix “compress” utility. Other Ziv-Lempel variants are
discussed briefly. Even though better compression ratios can be obtained by these variants,
V.42bis is shown to be eminently suitable for implementation on a contemporary modem with
an 8-bit microprocessor, 40 Kbytes of RAM, 32 Kbytes of ROM, a 9.6 KBaud V.32 modem-
modem connection, and a 19.2 KBaud EIA-232-D modem-terminal connection.

1 Introduction

It is now possible to buy a modem with the following characteristics.

e Price: $650 (discounted) to $1150 (list)

¢ Modem to terminal or computer connection: EIA-232-D (300 to 19,200 Baud)
e DCE to telephone network connection: V.32 (300 to 9600 Baud)

o Error correction: V.42 (16-bit CRC with retransmission, based on HDLC) [19]
e Data compression: V.42bis (modified Ziv-Lempel) [18]

Implementation: 8-bit microprocessor (10 MHz Z80) with 40 Kbytes RAM and 64 Kbytes
ROM.

I will call such a device a V.42bis modem, although I caution the reader that other uses of
the V.42bis standard are possible. The implementation and pricing information correspond -
to a MultiTech MT932EAB, introduced in late July 1990. Six similar products are currently
being offered by other manufacturers, according to an informative set of product reviews in PC
Magazine [7].

Readers who are unfamiliar with the communication standards in the list above will find some
information in Section 2 below. Should that discussion prove insufficient, I heartily encourage
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you to read the PC Magazine reviews [7] and to obtain a copy of Black’s excellent compendium
and discussion of the V-, EIA-, and X- series standards [5].

It is worth noting at the outset that the V.42bis modem’s throughput is often limited by
its EIA-232-D connection to the terminal or computer, or by the terminal or computer itself.
At the 3:1 compression ratio observed on some transmissions, a V.42bis modem has a potential
throughput of 3200 characters per second. Unfortunately, throughputs of this magnitude are
rarely observed in practice, for the reasons listed in Section 2.

In Section 3, I describe the data compression method of V.42bis. Briefly, it is a textual
substitution scheme based on Ziv and Lempel’s second algorithm [27, 12]. V.42bis incorporates
Welch’s coding scheme (25, 11], as well as Miller and Wegman’s (and, independently, Storer’s)
idea for incremental modification of a full dictionary using a least-recently-used (LRU) heuristic
{16, 17, 22, 8, 23, 15]. V.42bis also has an efficient “cleartext” escape mechanism, differing in
implementation but not in spirit from that proposed by Fiala and Greene [13].

Section 4 lists the compression ratios obtained by a sample V.42bis implementation, as well
as the ratios obtained on the same files by the 4.3 bsd Unix “compress” utility, and by state-of-
the-art Ziv-Lempel codes by Miller and Wegman [16], Rogers and Thomborson [20], and Fiala
and Greene [13]. My data shows that a well-implemented V.42bis modem will acheive 2.3:1
compression on English text, 1.6:1 compression on binaries, and 3.2:1 compression on source
code. A pessimally-implemented V.42bis-compliant modem will not compress anything.

Section 5 concludes the article with a brief summary and some comments on the future of
data-compressing modems.

2 Communication Standards and the Modem Market

EIA-232-D An external modem for a terminal or a personal computer is universally connected
in accordance with the EIA-232-D signalling standard. This standard is the most recent update
of the venerable RS-232C convention. In a fully-compliant EIA-232-D implementation, the data
rate is limited to to 19.2 KBaud, where a Baud is one bit-frame per second. However, most
modern terminals and some personal computers will communicate over an EIA-232-D run at

38.4 KBaud.

The asynchronous signalling convention used by EIA-232-D encodes an 8-bit character into
10, 10.5, or 11 bit-frames, depending on the number of “stop bits” selected. A V.42bis modem’s
throughput is therefore upper-bounded by 1920 characters per second (1920 cps), if its EIA-
232-D connection is run at 19.2 KBaud. Even at 38.4 KBaud, this interface provides at most
3840 cps, where this limiting behavior can be observed only if both the terminal and the modem
have fast enough microprocessors, and enough internal buffering, to run without invoking a flow-
control mechanism. A more assured way of obtaining higher throughput would be to replace the
EIA-232-D connection with a high-bandwidth serial port such as the 10 MBaud EIA-422-A or
the 100 KBaud EIA-423-A. Unfortunately, these high-bandwidth standards show no immediate
promise of displacing the ubiquitous EIA-232-D. '

V.32 The V.32 standard offers the highest bandwidth, 9600 Baud, for a dial-up connection in
the general switched telephone network. (Leased lines can give even higher bandwidths.) Unlike
the asynchronous EIA-232-D, V.32 is a synchronous protocol, sending characters in packets. If
the packets contain 256 data characters apiece, the control overhead is approximately 12%; 9600
KBaud thus translates into about 1060 cps.

Comparing the 1060 cps bandwidth of V.32 with the 1920 cps offered by EIA-232-D, we see




the attraction of a data-compressing modem. If the data from the DTE is compressed by a
ratio lower than 1060/1920 (= 0.55) before being packetized by V.32, a 19.2 KBaud EIA-232-D
will replace V.32 as the limiting factor. By a similar reasoning process, if the EIA-232-D is run
out-of-spec at 38.4 KBaud, the smallest useful compression ratio is 1060/3840 (= 0.28).

Mike Byrd of PC Magazine has acheived a throughput of 3440 cps when sending a highly-
compressible file between two high-speed personal computers, showing that it is possible to use
up to 90% of the bandwidth available on a 38.4 KBaud EIA-232-D connection to a V.42bis

modem [7].

Future Standards The V.32 specification is currently being revised to permit data rates up
to 14.4 KBaud. The higher-bandwidth V.32bis is expected to receive final approval from CCITT
in February 1991 [7]. Within months of V.32bis approval, it will probably be incorporated into
a new generation of V.42bis modems. The data compression feature in such modems will have
less range of application than in the current V.42bis modems, however, since an (out-of-spec)
3840 cps EIA-232-D connection will be a bottleneck whenever the compression ratio is less than
1600/3840 (= 0.42). ’

Another development in telephone network signalling, hovering on the “near-future horizon”
for many years, is the Integrated Services Digital Network (ISDN). When and if your local
telephone loop is digitized, your dialup connections will run at 8000 cps, without a modem. This
is four times the maximum in-spec bandwidth of the EIA-232-D standard, and twice its out-of-
spec bandwidth, so it will finally be obsolete. Instead, one might expect to make a V.42bis ISDN
file-transfer connections with one’s personal computer, with an effective bandwidth of 20,000 cps
for English text and 13 Kbyte/sec for executables.

V.42 The V.42 specification is a standardized method for error control, based on the HDLC
protocol used in some computer networks. The V.42bis standard is, formally, a revision to V.42,
Hence its “bis” suffix.

One can operate a V.32 modem at 9600 Baud without V.42 error correction, but its utility is
limited by the frequent transmission errors on a typical dialup telephone connection. With the
addition of V.42 error control, a V.32 modem is essentially error-free, but its apparent bandwidth
drops proportionally with its transmission error rate.

Transmission errors are detected by V.42 with a 16-bit CRC code computed on the content
of each packet. When a modem receives a packet whose locally-computed CRC does not agree
with the CRC value received in that packet, the receiving modem sends a special control packet
requesting a retransmission. Several packets may be outstanding at a time, so that it is not
necessary for the transmitter to wait for an acknowledgement before proceeding to transmit the
next packet. Thus, a telephone connection introducing one bit-error per minute will result in
one extra data packet transmission each minute. This has a negligible impact on throughput,
even when the packets have 256 characters. Somewhat higher error rates can be accomodated
with small bandwidth degradation by limiting the maximum packet size to 32 characters.

The market for V.42bis modems The price and implementation of a V.42bis modem are
strongly coupled. At present, the market price for a V.42 modem is about $600, with approxi-
mately a $50 additional charge for the V.42bis feature, Both products are typically built around
an 8-bit microprocessor, perhaps 8 Kbytes of RAM for packet buffering, twenty or thirty Kbytes
of ROM for the firmware, and perhaps eight Kbytes of RAM for V.42 buffering. When the
V.42bis option is selected, an additional three Kbytes of RAM are required for each (minimal-
sized) V.42bis data compression table. Two such tables are required for bidirectional compres-
sion; some modems may implement asymmetric links using just one table.
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In computer-to-computer communications, the data compression feature of V.42bis must
compete with low-cost, higher-performance software. The transmitting computer can run a com-
pression algorithm on the data before sending it to a non-compressing V.42 modem; the receiving
computer can run the corresponding decompression algorithm. This approach permits one to
select the compression method most suitable for the data being transmitted. If one is transmit-
ting scanned image data, for example, one can do much better (10:1 compression is routine) if
the V.42bis feature is bypassed. Another advantage of compressing data, before transmitting it
to the modem, is that a 19.2 KBaud EIA-232-D connection is no longer a bottleneck. '

It is easy to understand why there is such a small price differential between V.42 and V.42bis
modems, despite the novelty and increased performance of V.42bis. The principal market for
V.42bis modems is in computer-to-terminal communications, not in computer-to-computer com-
munications. Users with high-speed terminals will be willing to pay a premium for obtaining
1920 cps throughput on V.42bis instead of 1100 cps on V.42, Many users, however, are currently
satisfied to obtain 270 c¢ps with a $100 2400 Baud modem, so the V.42bis product is aimed at
the top end of the market.

Applications at UMD If my experience is any indication, V.42bis modems are useless at
present, but promise some near-term future utility.

My Zenith Z-39 and Z-29 terminals do not have a 38.4 KBaud setting. They do not run no-
ticeably faster at 19.2 KBaud than at 9600 Baud. Furthermore, their effective display bandwidth
seems to be limited to 1000 cps, so an (uncompressing) V.42 modem gives the same performance
as a more expensive V.42bis modem.

I have yet to see a terminal emulator on a personal computer that can display at a rate
exceeding 1000 cps, so I can not recommend the purchase of a V.42bis modem for this application
either.

As argued above, when transferring files from one computer to another, a software package
can do at least as well (and sometimes much better!) than V.42bis.

The fastest terminal currently on my campus, a Wyse, can keep up with a full-bandwidth
19.2 KBaud input stream, but not 38.4 KBaud. Its effective input bandwidth therefore lies
between these two data rates, perhaps 2500 cps. Unfortunately, the Telnet/Ethernet connection
used between our modem “Annex” box and the UMD mainframes is limited to about 1000 cps,
so a Wyse/V .42bis setup does not give any better performance than does a Z-39/V.42 setup.

V.42bis modems are nonetheless a good investment for our campus because their incremental
cost over a V.42 modem is small, and because terminals, home computers, and inter-campus
connections should soon be fast enough to take advantage of the added speed of V.42bis.

3 V.42bis Compression

V.42bis is a textual substitution scheme based on Ziv and Lempel’s second algorithm {27]. When-
ever a codeword is transmitted, the dictionary is augmented by a new codeword consisting of the
codeword being transmitted, concatenated with the next character in the input stream. Initially,
the dictionary consists of all one-character strings.

Like Welch’s algorithm [25], V.42bis transmits only previously-created codewords, expressing
these as binary strings whose length is the logarithm of the current dictionary size. (The 4.3
bsd Unix “compress” utility is a highly-tuned implementation of Welch’s algorithm.) Note that
Welch’s algorithm is a significant improvement over the Ziv-Lempel algorithm [27], since Ziv and
Lempel suggest transmitting a just-created codeword by sending a previously-created codeword




index followed by an unencoded character.

Unlike Welch’s algorithm, the most-recently-created codeword is not a candidate for trans-
mission in V.42bis. This simplifies and accelerates the decoding process slightly, with little cost
in compression or encoding speed.

Like Storer’s LRU algorithms (23, 10] and the Miller-Wegman codes [16], V.42bis adds new
codewords to a full dictionary by deleting some codeword that is not a prefix of any other
codeword. Candidates for deletion in V.42bis are found by cycling through the dictionary, a
process that is a time- and space-saving approximation to the exact least-recently-used (LRU)
deletion heuristics proposed by Storer and Miller-Wegman.

V.42bis provides a short escape-code sequence to shift into “transparent mode” whenever this
would provide greater compression (or less expansion). This is somewhat like the literal mode
of Fiala and Greene’s Ziv-Lempel variant [13]. However, Fiala and Greene propose sending the
length of the literal string along with the literal escape code. In V.42bis, transparent mode is
entered with an escape sequence, and exited with another escape sequence, so that a length
determination is unecessary.

The V.42bis dictionary is updated during transparent mode, just as it is during compressed
mode, so that the dictionary is constantly adapting to the modem input.

To avoid undue expansion during transparent mode, V.42bis changes the identity of the
escape character <esc> every time this code is encountered in the input stream, using the
formula <esc> = (<esc> + 51) mod 256. This clever scheme will find an unused character in the
input stream to serve as an escape, if there is such a character. Thus a file that doesn’t contain
all 256 character codes can be tranparently encoded with at most 255 extra characters, yielding
a worst-case expansion of 1.0 for long files.

If the input does contain all 256 character codes, but if the input characters are uncorrelated
with the escape character update function, then any given character transmission has only one
chance in 256 (on long-term average) of being encoded as the two-character sequence <esc><eid>,
The expected expansion for uncorrelated input in transparent mode is thus 1+ 1/256 = 1.005.
Of course, a pathological input can be constructed in which the character sequence tracks the
escape code update function, leading to a worst-case expansion of 2.0, This last case is highly
unlikely to occur in any application, so I conclude that essentially no expansion occurs in the
transparent mode of V.42bis.

V.42bis also provides an escape-code sequence that causes the current dictionary to be dis-
carded. This sequence, as well as the transparent-mode escape, can be transmitted by the
compressor at will, presumably when this would improve the compression ratio.

Algorithmically, V.42bis is underspecified, as indicated in the previous paragraph. A V.42bis-
compliant modem need not provide any data compression at all, when it transmits: it might never
leave transparent mode, or it might enter compressed mode only when ezpansion would result.
A more likely scenario is that some V.42bis modems will have better compression characteristics
than others, due to differences in their heuristics for sending escape codes.

Another area of algorithmic underspecification in V.42bis lies in its openness regarding two
key parameters, the maximum dictionary size and the maximum codeword length. When a
V.42bis connection is first established, the calling modem and the answering modem negotiate
these values. A fully-compliant, but underconfigured, V.42bis modem can insist on the minimum
values of 512 codewords with at most 6 characters apiece.

In a typical V.42bis implementation, a dictionary is implemented as a pointer-list trie with
one node per codeword. A node in a pointer-list trie contains two pointers (Ichild/rsibling) and
a character; a pointer requires two bytes on an 8-bit microprocessor with a 16-bit address space.
The trie nodes should be stored in a dense linear array, so the string corresponding to a node can




be uniquely specified by transmitting the index of that node in the array. Note that 16-bit node
indices could be used instead of pointers, if this is more efficient, transforming the structure into
a cursor-list trie.

To allow rapid deletion of leaf nodes, a third “parent” pointer could be added to each record.
Alternatively, an additional 8-bit unsigned integer would suffice. This could be used to indicate
the depth of a trie node, since the V.42bis standard limits code words to a length of at most 250
characters. The rsibling field of the rightmost child could then contain a parent pointer. This
pointer could be disambiguated from a normal rsibling pointer by a change in the depth of the
node being referenced. A pointer-list trie can thus be implemented with just 6 bytes per node.

A minimally-compliant (512 codewords/dictionary) V.42bis modem thus requires just 3
Kbytes of data space to hold its dictionary. Such a modem would only be able to compress
in one direction of communication, as would be appropriate on a home terminal: the display
data can be at high bandwidth, but keyboard input is always low bandwidth.

The MultiTech MT932EAB on my desk does not seem to allow unidirectional compression, so
it must maintain two dictionaries in its 40 Kbytes of RAM. Some of this RAM must be used for
V.32 buffering. I thus deduce that it is unable to operate with two 4096-codeword dictionaries.
Instead, it probably runs the V.42bis compression algorithm with at most 2048 codewords in
each of its dictionaries. '

A closed hash trie, along the lines suggested by Welch {25}, is another method that could be
used to store the dictionaries in a V.42bis modem. In order to support V.42bis-style incremental
updates, an 8-bit count field must be added to each hash-trie node, to keep track of the number
of its descendants. A leaf node has a O count; whenever a leaf is deleted, its parent’s count
field should be decremented. Total storage per entry in the hash table would then be 6 bytes: a
1-byte suffix character, a 2-byte pointer to the prefix (its parent node), a 1-byte count field, and
a 2-byte code number. If the hash table is 90% full, then we have 6.6 bytes per trie node, making
this structure slightly larger than the 6 bytes per node in a minimal pointer-list trie. Also, the
decompressor requires another 2 bytes per dictionary entry to maintain a mapping from codes
onto hash indices. Closed hash tries are therefore at a significant disadvantage in the present
memory-limited implementations of V.42bis.

If 64K-node dictionaries ever became prevalent, a random or otherwise incompressible input
file would expose a weakness in a pointer-list trie: the average search path would be of length 128
(approximately), as opposed to a small constant in a hash trie. The worst-case search path in the
pointer-list trie would only be about 256, however, as opposed to 64K in the hash trie. (V.42bis,’
unlike Welch’s algorithm [25], will not limit the length of a collision chain in a hash search.)
So pointer-list tries will be a preferred implementation for V.42bis, due to better worst-case
performance, even on the largest dictionaries.

Tim Bell is currently making a comparative study of seven methods of organizing the data .
structure for a Ziv-Lempel compressor [2].

4 Experimental Results

John Copeland, of the V.42bis study group, was kind enough to send me C-language source code
for an implementation of the V.42bis standard. The comments and experimental results in this
section are obtained from his version 6.83, dated 7/16/89, of hv42b3.c. Hayes Microcomputer
Products, Inc. owns the copyright to this code, which was “distributed for experimentation aimed
at developing a CCITT V.42 data compression standard.”

The dictionaries in hv42b3.c are implemented as rchild/Isibling /rsibling /parent pointer-tries.
The sibling lists were sorted by their suffix character.




Dictionary Size
512 1024 2048 4096
csh | .65 .62 62 .62
essays | .57 .49 .45 43
news | .70 .64 .60 .56
pascal | .62 41 .35 31
tex | .59 .60 .45 42

Table 1: Effect of dictionary size on V.42bis compression ratio, when maximum codeword length
is 16.

When I ran hv42b3.c on my Sun-3/50, my 100 Kbyte testfiles were compressed at rates of 6 to
10 Kbytes of input data per second. On a 10 MHz Z80, I estimate that hvd2b3.c would run 2 to
4 times slower, due to the lower MIPS rate and the narrower data bus. Some code optimization
will thus be necessary to keep the CPU from becoming the bottleneck in a V.42bis modem,
since the CPU in such a modem has a number of other tasks. The CPU must handle V.42bis
compression on the transmission channel, V.42bis decompression on the receiving channel, as
well as V.42 error correction and V.32 packetizing on both channels. Perhaps the ATI 9600etc/e
modem has a CPU bottleneck of this sort, which would explain why it was unable to deliver
more than 1977 cps throughput, on an experimental setup where its fastest competition ran at
3440 cps [7].

I have run a number of compression measurements on the V.42bis implementation used by
the study group. All measurements reported in this paper are for the following five files. The
first, labelled “csh,” is the 122880-byte executable c-shell in my Sun 4.2 Unix. The second test
file, labelled “essays,” consists of 176369 bytes of concatenated freshman essays. It is cleartext
English, containing no text formatting commands. The third file, labelled “news,” is 210931
bytes of articles representing a (small) portion of a day’s Usenet feed. This file is a good test
of a compression algorithm’s ability to respond quickly to a rapidly-changing source, since the
article header fields are quite different from the article bodies, and the article bodies are also
variable (ranging from cleartext English to source code). The fourth file, labelled “Pascal,” is
119779 bytes of source code to a student-written program. It is highly compressible, due to its
repeated use of long identifiers. The fifth and final test file, labelled “tex,” is the 201746-byte
LaTex manual, vintage 1984, containing both cleartext and text formatting commands.

Table 1 shows the compression ratios obtained by hv42b3.c on the five test files, when the
length of the longest codeword is 16 and the maximum length of the dictionary was varied
between 512 and 4096. In this table, and throughout this section, we define compression ratio to
be the length of the compressed file divided by the length of the input file. A compression ratio
of 0.50 is thus the “2:1 compression” mentioned earlier in this paper as being typical of V.42bis
when applied to a text file.

Note that increasing the size of the dictionary has a dramatic effect on compression ratio
for all files save “csh.” Perhaps the most striking feature of Table 1, however, is that even a
512-codeword dictionary is sufficient to obtain a fairly high level of compression on our long test
files.

Table 2 is identical to Table 1, except that the length of the longest codeword is restricted
to 8. Note that these figures are only slightly larger than those of Table 1, indicating that the
codeword-length parameter is not very important to V.42bis performance, at least for our five
test files.

Table 3 shows the compression ratios obtained by the Unix “compress” utility [25] on our
five test files, as a function of dictionary size. Note that “compress” is a poor algorithm for




Dictionary Size
512 1024 2048 4096
csh | .66 .63 .63 .64
essays | .57 .49 46 43
news | .70 .64 .60 57
pascal | .63 .43 .38 .35
tex | .60 .51 .46 44

Table 2: V.42bis compression ratio, for various dictionary sizes, when maximum codeword length
is 6.

Dictionary Size
512 1024 2048 4096 65536
csh | .98 .82 .89 75 .64
essays | .67 .53 .49 46 40
news { .91 .73 71 67 .54
pascal | .70 .50 43 370 .30
tex | .86 .61 .53 .48 .39

Table 3: Unix-Welch compression ratio, for various dictionary sizes.

small dictionaries. Even with a 64K dictionary, it is only slightly better than V.42bis with a 4K
dictionary.

Tables 4 and 5 compare the performance of hv42b3.c with a 4K codeword dictionary (max
codeword length = 16) with that of a number of other Ziv-Lempel variants. Where possible, I
use the abbreviations of the Fiala-Greene paper [13].

Table 4 consists of those algorithms which, like V.42bis, send codeword indices in straight
binary form. The algorithms of Table 5 gain compression, at some penalty in speed, by using
Huffman or arithmetic codes to compress the codeword indices.

UW is the Unix-Welch Berkeley “compress” utility, with 16-bit codes (64K dictionary
entries)[25]. As noted previously, UW is a variant of Ziv and Lempel’s second algorithm [27].

Al, Bl, A2, B2, and C2 are Fiala and Greene’s algorithms. Al is a ZL1 scheme [26] with a
4X-character buffer, augmented with a literal transmission mode, using a suffix trie to accelerate
the buffer searches. Its compressed output contains two types of codewords: “literal #,” meaning
that the decompressor should pass the next z characters directly to the output, and “copy z y,”
meaning that the decompressor should go back y characters in the output buffer and append the
next x characters to the output buffer. B1 is similar to A1, but optimized for speed: it builds a
Patricia trie with only some of the substrings contained in the last 4K characters of input. A2
and B2 are similar to Al and B1, respectively, with 16 Kbyte buffers and a static Huffman “back
end.” C2 is designed for maximum compression. Its Patricia trie contains all the substrings
contained in the last 16K characters of input. It gains compression efficiency over the usual ZL1
schemne, since it does not waste code space on duplicate substrings. Because A2, B2, and C2 use
a Huffman code to send trie indices, I have listed their compression ratios in Table 5.

MW1 and MW2 are the Miller-Wegman algorithms[16, 17], as implemented by Dan Greene
of Xerox PARC. MW1 ig a ZL2 variant [27], with a 4096-entry dictionary, an LRU replacement
algorithm, and Welch-style output coding [25]. MW2 is like MW1, augmented with “string
extension.” It is thus an ID-LRU, in Storer’s terminology [23].

MWP, of Table 5, is a high-compression, high-speed implementation of MW2 by Roberto
Pasqui of IBM Italy. It uses a static Huffman code with only three code lengths. The shortest




codes refer to the most-recently-used set of 128 codewords; medium;length codes refer to a set
of less-recently-used 512 codewords; and the longest codes refer to the oldest 4096 codewords.

Y64 and Y512 are the “yabba” coders, placed into the public domain recently by Dan Bern-
stein [4]. Yabba is a ZL2 variant [27] that adds one string pc to its dictionary for each input
character ¢, where pis the longest suffix of the already-processed input such that p is currently in
the dictionary. The higher-compressing Y512 has a 5§12K-entry dictionary; Y64 has a 64K-entry
dictionary.

Like MWP, Rogers-Thomborson code RT [20] uses a back-end coder to transmit frequently-
used codewords with fewer bits than the rarely-used ones. Since RT uses an arithmetic code
rather than a static Huffman code, however, it is very slow. RT grows its dictionary in a similar
fashion to the MW2 and MWP algorithms, except that it does not add new dictionary entries
ending with a blank space when doing character extension. In such cases, only string extension
occurs, This heuristic tends to increase the fraction of dictionary entries that are complete
English words or phrases, when the input is textual. Since there are usually few ASCII blanks in
a binary file, their compression is not degraded much: note that RT compresses slightly better
than MWP, on all but the csh binary. We believe that most of this improvement is due to the
non-blank heuristic, not to the arithmetic coding, but this hypothesis deserves test.

LHarc (see Table 5) is a public-domain code from Japan that is in common use for distribution
of personal computer software on floppy disks. To install such packages, users must typically
wailt minutes for the software to be decompressed onto their hard disk or alternate floppy drive.
I obtained a Unix version of LHarc over the Internet [24]. It runs at about 2 Kbytes/second
on my Sun 3, or about 15 times slower than the Unix “compress” utility UW. As may be seen
from Table 5, however, LHarc has better compression ratios. No documentation was included
with my version of LHarc, although it appears to run in two passes: a ZL1 coding [26] with a 4
Kbyte buffer, followed by a dynamic Huffman recoding of the Ziv-Lempel indices. This Huffman
“back end” probably accounts for most of the compression improvement and speed degradation,
relative to UW.

Freeze is a public-domain code that recently emerged from the Soviet Union [6}. Like LHarc,
it is a ZL1 variant [26] with a dynamic Huffman back end, although it has an 8 Kbyte buffer.
Since single-character literals appear in the output stream, Freeze is more precisely an LZSS
variant [21, 1]. Its output coding appears to work a little better than that of LHarc, and it
runs at about the same speed, so I will describe it here. Of a 512-symbol alphabet, the first
256 symbols are used to denote single-character literals; one symbol marks an end-of-file; and
the last 255 symbols indicate the length ! of the match (1 < ! < 256). If a multiple-character
match is selected, the next bits in the compressed stream indicate the most-significant 8 bits of
the position of the match. These bits are sent with a static Huffman code of 1 to 8 bits., The 7
least-significant bits of the match position are sent in binary.

As may be seen in Table 5, the Bentley-Sleator-Tarjan-Wei code [3] achieves very good
compression ratios for every file except csh. The data in Table 5 was obtained from Dan Greene’s .
implementation. This data agrees with that from my own, independently-coded, implementation
to within 0.01.

BSTW'’s compression ratios are remarkable, it uses less than 6 Kbytes of space for its data
structures. A BSTW compressor, in my implementation, uses two linked lists of 239 cells con-
taining words of up to 16 characters apiece. One list contains only “alphanumeric words”; the
other list contains “nonalpha words.” The input file is parsed into an alternating sequence of
maximal-length alpha- and nonalpha- words; 0-length words must be allowed in the lists to al-
low for the eventuality that the input contains alphanumeric (or nonalphanumeric) substrings of
length greater than 16. A previously-encountered word is transmitted with an adaptive Huffman
encoding of the list position, then moved to the front of its list. A new word is transmitted with




| V42 UW Al Bl MWl MW2 Y64 Y512
csh | .62 .64 61 .62 .62 BT .64 .60
essays | .43 40 45 44 42 40 39 .37
news | .56 .b4 .66 b5 .56 .53 54 49
pascal | .31 .30 26 26 .31 a7 .25 22
tex | 42 .39 41 39 41 .35 40 .35

Table 4: Compression ratios of Ziv-Lempel algorithms that do not also employ Huffman or
arithmetic coding. Bold-face entries are row minima.

A2 B2 C2 MWP RT LHarc Freeze BSTW ppmC
csh | b4 .55 .52 5l .55 .51 .50 .69 47
essays | 40 .39 .36 .36 34 .40 .39 .39 .29
news | .48 .48 44 47 45 48 46 .53 .40
pascal | .15 .14 .13 .17 16 .19 15 .24 .18
tex | .34 .33 31 .32 31 .36 .33 .38 27

Table 5: Compression ratios of algorithms employing Huffman or arithmetic coding. Bold-face
entries are row minima over Tables 4 and 5.

an escape code followed by an adaptive Huffman encoding of the cleartext.

The Bell-Cleary-Witten code ppmC {9, 1] of Table 5 is based on a variable-order Markov mod-
elling of the source, with arithmetic coding used to communicate state transitions. It achieves
impressive compression ratios, however it requires the largest amount of data space (730 Kbytes)
of any algorithm in my tables.

As indicated in Tables 4 and 5, hv42b3.c obtains markedly worse compression ratios than
many other algorithms. Below, each competing algorithm is discussed in turn, to see if it offers
a significant advantage in the V.42bis application.

The UW algorithm achieves slightly better compression than V.42bis on the test files, at the
expense of 16 times the data space. Since a low-cost modem is memory-limited, UW is not an
appropriate choice. Furthermore, as we saw in Table 3, a memory-limited UW is not competitive
in compression ratio with V.42bis.

Fiala and Greene algorithm’s A1 requires 145 Kbytes to compress with a 16K—entry dictio-
nary; their other algorithms require even more space. Further research is necessary to decide if
any of these algorithms are competitive with V.42bis, when restricted to a 10 or 20 Kbyte dic-
tionary and an 8-bit microprocessor. Still, the A2, B2 and C2 algorithms would be a prormsmg
starting point for research on a future data compression standard.

Despite its LRU-Huffman “back end,” MWP runs at a respectable 10K to 20K bytes/second
on my testfiles, on an IBM PS/2 mod 80, 16 MHz 80386 under DOS 4.0 [14]. By way of
comparison, the Unix “compress” utility UW runs at 25K to 50K bytes/second on my testfiles,
on my Sun 3/50, and my V.42bis implementation runs at only 6K to 10K bytes/second. Even
though my V.42bis implementation is not optimized for speed, I believe that MWP would be at
least as fast as V.42bis, even on an 8-bit microprocessor such as a Z80. Despite its impressive
speed and compression ratios, however, MWP is not directly applicable to the design of today’s
low-cost V.42bis modems, since it requires 60 Kbytes of space for its data structures.

BSTW requires just 6-Kbytes of data space, so it would “fit” in a low-cost modem. How-
ever, its adaptive Huffman encoding would severely the bandwidth of any such modem’s low-
performance processor. Of course, a much more expensive modem could employ a special-
purpose, high-bandwidth, Huffman- (or arithmetic-) encoder/decoder chip. The poor perfor-
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mance of BSTW on non-textual data could also pose a problem in many applications, although
one might envision a revision to V.42bis allowing a compressor to enter “BSTW mode” whenever
suitable data was received.

As argued in Sections 1 and 2 of this report, the V.42bis modem is limited by its EIA-232-D
input port, not by its compression ratio, for textual data. In less cost-sensitive applications,
the EIA-232-D bottleneck could be removed, and other schemes would be markedly superior to
V.42bis. Thus MWP (perhaps with the RT conditional dictionary entry heuristic), the Fiala-
Greene algorithm B2, BSTW, and ppmC deserve attention in the next round of standards-making
activity.

5 Conclusion

This examination of some of the practical, algorithmic, and marketing aspects of the V.42bis
standard has not uncovered any serious flaws in its specification. On the contrary, the algorithm
embodied in this standard is competitive with other Ziv-Lempel variants, if these are required
to run in a small data space on 8-bit microcomputer.

The future of data-compressing modems is uncertain. Microcomputers and their memory
are rapidly becoming cheaper, by 20% to 30% per year. Thus the “quick-and-inexpensive” al-
gorithmic choices embodied in V.42bis will soon be outmoded, and the “more computationally
expensive” but better-compressing algorithms mentioned in this paper will become economical
for text transmission. However, text transmission is only a fraction of current computer com-
munication over the telephone network, and this fraction is rapidly decreasing. Source-specific
compression algorithms (for voice, image, fax, etc.) can be run efficiently on a personal com-
puter, acheiving much higher compression ratios than are offered by any of the algorithms in
this paper, for these non-textual sources.

Following this line of reasoning, the main application of V.42bis modems will continue to
be in low-cost computer-to-ASCII-terminal communications. I would therefore not expect to
see many such modems in the year 2000, when a 10 MIPS personal computer should be only a
little more expensive than an ASCII terminal. Such computers could run source-specific data
compression algorithms at high bandwidth, not only for their communication lines, but also for
their mass storage devices.
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