
Enhancements to Ziv-Lempel Data
Compression*

by

Clyde Rogers
Clark D. Thomborson (a.k.a. Thompson)t

January 11, 1989

Technical Report 89-2

University of Minnesota
Duluth

Computer Science

1'

Enhancements to Ziv-Lempel Data
Compression*

by

Clyde Rogers
Clark D. Thomborson (a.k.a. Thompson)t

January 11, 1989

Technical Report 89-2

Department of Computer Science
University of Minnesota

Duluth, Minnesota 55812
U.S.A.

*Submitted to the Proceedings of the Computers and Mathematics 1989 Conference, Springer-Verlag,
to be held June 12-16 at MIT.

tSupported in part by the National Science Foundation, through its Design, Tools and Test Program
under grant number MIP 8706139.

Abstract

'vVe describe several modifications to the Ziv-Lempel data compression scheme,
improving its compression ratio at a moderate cost in run time. Our best algo
rithm reduces the length of a typical compressed text file by about 25 percent.
The enhanced coder compresses approximately 1800 bytes of text every second
before optimization, making it fast enough for regular use.

1 Introduction

This paper describes several modifications to the Ziv-Lempel data compression
algorithm that can reduce the size of output files significantly. Common Ziv
Lempel implementations, such as UNIX compress, reduce the size of our English
text an\i source code test files by 46 to 70 percent. Our enhancements improve
this compression ratio to between 55% and 84%, making typical output files
about 25 percent smaller.

Cleary and Witten [1) have used Markov modeling, building huge data struc
tures, to achieve somewhat better compression. After embarking on this re
search, we learned of experiments run by Miller and Wegman [3) on a different
set of Ziv-Lempel enhancements.

Section 2 describes the Ziv-Lempel (ZL) and arithmetic coding algorithms.
Section 3 describes the combination and extension of these powerful coding
techniques, and section 4 describes experiments on the resulting enhanced coder.
Section 5 discusses the results of the experiments and points out future directions
in Ziv-Lempel coders.

2 Data Compression

,Most of today's<lata<:ompression techniques employ a collection of strings called
a dictionary. Any text you might want to compress can be represented by an
ordered concatenation of some (or all) of the dictionary's strings. For example,
if a dictionary contains all lower case letters, the word "stuff'' is represented by
the strings "s", "t", "u", "f' and "f'. If we assume that the dictionary contains
all lower case letters and all possible combinations of two lower case letters, the
word "stuff'' could be represented by the strings "st", "uf' and "f', the strings
"st", "u" and "ff'', or one of many other concatenations.

This example shows one way data compression can occur. With the first
dictionary, we were able to represent the word "stuff'' using five dictionary
entries. The second dictionary required only three entries to represent the same
word, giving us forty percent compression.

We could stop and congratulate ourselves with this accomplishment, but first
we must look a little deeper into what we've done. If our dictionary contains
twenty-six entries, as the first dictionary did, we can represent each entry with
a five bit number. Using five bits to represent each string, it would encode the
word "stuff'' in twenty-five bits. Our second dictionary, however, contains 702
entries, so representing each entry takes ten bits. Then the three entry represen
tation of the word "stuff'' takes thirty bits. Good thing we didn't congratulate
ourselves too soon.

Now consider a third dictionary that contains all lower case letters and the
string "st". We could represent the word stuff as "st", "u", "f' and "f', and we

1

can represent each of the twenty-seven dictionary entries with a five bit number,
so this four entry representation takes twenty bits. Finally, we have compressed
the word "stuff'' by twenty percent from the five entry version.

This example illustrates the two parts of an effective compression technique.
First, we need a dictionary that contains more than just strings, it should contain
only us.eful strings. Second, we need to represent those strings in as few bits as
possible.

2.1 Ziv-Lempel-Welch Coding

One data compression technique people use daily is to replace regularly used
long words with short words. For example, people typically replace the word
"automobile" with the word "car". This eliminates seven of ten letters, giving
us seventy percent compression without the aid of a computer. Why did we
make the shorter word? Because we used the long word often enough that our
tongues began to trip over it. So how can a computer know when to make
a shorter word? Further, how can the computer know what words to shorten
before it looks at the text it must compress?

Using the Ziv-Lempel data compression algorithm [7] [8] [9], an industrious
person (or a lazy computer) can mechanically check a text while compressing
it, identify strings that are used often and put them into its dictionary. This
may seem like a difficult task, but the following example shows the simple ideas
behind a variation of the Ziv-Lempel algorithm called the Ziv-Lempel-Welch
(ZLW) [5] algorithm.

A ZLW coder begins by seeding its dictionary with all possible one character
strings. For example, if a ZLW coder is designed to compress files of eight-bit
text, it would start by seeding its dictionary with all 256 eight-bit characters.

ZLW coding looks at the first uncoded character from the source text, and
finds the longest string in the dictionary that matches that character and its
successors. The coder emits the code for that string, and inserts one new code
into its dictionary -a code for that string concatenated with the character that
follows it in the source text. The ZLW coder then repeats this process, starting
with the next uncoded character, until the source text ends.

Figure 1 illustrates this process using the word "Mississippi" as source text.

Notice that ZLW coding does not start by creating all two letter combina
tions, then all three letter combinations and so on. It creates new dictionary
entries based on what it has already seen in the source text. It assumes that
what it sees once in a document it's bound to see again. If this assumption
holds true, ZLW coding gives excellent compression.

The ZLW algorithm results in a fair distribution of characters between the
source and dictionary -characters that appear often in the source quite natu
rally appear often in the dictionary. Additionally, as will be demonstrated later

2

Next Uncompressed Longest Matching Emit Insert String
Step Character String Code for into Dictionary

1 M M M Mi
2 i i ' i IS

3 s s s SS

4 s s s SI

5 i IS IS iss
6 s si SI sip
7 p p p pp
8 p p p pi
g i i i 0

Table 1: ZLW Compression Algorithm Example

in this paper, ZLW coding adapts well to repeated character strings.
Because ZLW coding is a mechanical process, reversing it is straightforward.

Figure 2 shows the ZLW decoding algorithm run on on an encoding of the word
"Mississippi".

Read Code Change Last Emit Insert String
Step For Inserted Code to Letters into Dictionary

1 M 0 M M?
2 i Mi i '? I.

3 s is s s?
4 s SS s s?
5 i SI is is?
6 s ISS si si?
7 p sip p p?
8 p pp p p?
g i pi I '? I.

Table 2: ZLW Decompression Algorithm Example

The biggest drawbacks to ZLW coding are that although it creates many
useful dictionary entries, it also creates many useless entries. It also adapts too
slowly to highly repetitive text files.

2.2 Arithmetic Coding

Back when we encoded the word "stuff'', we used a fixed number of bits for each
code emission. Given a dictionary of N entries, we represented each entry with

3

a flog Nl-bit number. Many modern coders don't use this system, but instead
use Huffman coding [2).

Huffman coding can represent dictionary entries with different numbers of
bits based on a probability distribution. Even if'you want all characters to have
the same probability, when log N isn't an integer Huffman coding will use fewer
than flog Nl bits for some characters. Huffman coding, however, does use an
integral number of bits for each dictionary entry. This is fine if all probabilities
are powers of two, but won't give optimal results otherwise. For example, given
two entries "a" and "b", where "a" has a probability of 0.99, and "b" has a
probability of 0.01, you still must represent each entry with a one bit code.

Arithmetic coding (6), on the other hand, allows output of partial bits. If a
code should be represented by 1/100 of a bit, arithmetic coding will represent
it with 1/100 of a bit.

For example, let's encode the string "aaabbbc", where "a" and "b" each
have a probability of 0.3, and "c" has a probability of 0.4. Huffman coding will
assign one bit to "c", and two bits each to "a" and "b", so the output will be
13 bits long. Arithmetic coding will assign - log (0.3) ~ 1.74 bits to each "a"
and "b", and - log (0.4) ~ 1.32 bits to "c", so the output will be about 11.76
bits long.

So, the chief advantage of arithmetic coding over Huffman coding is that it
can emit a code using fractions of bits. The biggest disadvantage of arithmetic
coding is that it runs slower than Huffman coding.

3 The ZLWAx Coders

The ZLWAx family of data compressors build their dictionaries using the Ziv
Lempel-Welch algorithm and represent dictionary entries using arithmetic cod
ing. Members of the ZLWAx family employ a predictive strategy that takes
advantage of the arithmetic coder's ability to assign different probabilities to
different dictionary entries, and two enhancements to the basic ZLW algorithm.

3.1 Predictive Strategy (ZLWAP)

The predictive strategy tries to exploit the idea of context in the source text.
A context is a part of a source text that is unlike other parts. For example, if
a source contains text and a bit map, the text could be one context and the bit
map another. A source text can contain any number of contexts.

The predictive strategy used in the ZLWAP coder is based on two assump
tions: first, certain entries are used often when the source file's context changes,
and second, new entries from the current context are likely to be useful.

To identify dictionary entries that are used to build up contexts, the coder
keeps track of how often older entries are used. If an entry has been around a

4

long time, and is used regularly, it is likely that it is a building block for new
contexts. To give these entries the probability they deserve, the coder gives
older dictionary entries probability based on how often· they are used. Taking
an analogy from the job market, the coder gives probability to older codes based
on their experience.

New entries, on the other hand, won't have much experience. The ZLWAP
coder, expecting great things from these entries, gives them probability based
on their potential.

To differentiate the new entries from old entries, the dictionary for a ZLWAP
coder is ordered from its newest entry to its oldest entry. Floating underneath
this ordered dictionary are bins. Bins break the entries into groups where each
entry in a bin has the same probability. So bins near the dictionary front have
high probability because they contain new codes, and bins near the dictionary
back get probability based on how often the entries they contain are emitted.
Bins have two functions: first, they level out the differences between adjacent
entries, and second, they make the ZLWAx implementation run much faster.
Data describing bins is given in figure 1.

Information relevant to figuring out bin probabilities is given in figure 2. We
ran a series of experiments, to be described in Clyde Rogers' Master's thesis,
to determine optimal default settings for the parameters r, S, Oweight and k.
The experimental data in section 4 was collected using these default settings.

The arithmetic coder represents probabilities as a ratio of an integer bin
probability to the sum of all integer bin probabilities. Because the arithmetic
coder wants to express probability as a ratio of two integers, it uses the fi(t)
probabilities. Therefore, all terms of fi(t) are multiplied by S before they are
rounded to minimize the loss of precision that occurs when converting the real
probabilities to integer probabilities. For example, if S = 2, the probability
0.5/2 becomes 1/4 instead of rounding to 1/2.

Also, it is important to note that a new bin gets some probability even though
it has no history. Oweight is a multiplier that gives observed frequencies greater
importance than the probability a bin received before it had a history.

Last but not least, the b(t)/m(t) term in the computation of g;(t) is a scaling
factor so that old bins don't get extra probability just because they've been
around a long time.

3.2 String Extension (ZLWAS)

As discussed earlier, each time a ZLW coder emits a code representing a string x,
it adds a new string to the dictionary. Miller and Wegman [3] call this character
extension because the new string is one character longer than string x. String
extension [3] adds to the dictionary the concatenation of the last two dictionary
entries for which codes were emitted.

5

]\If axB lock Size = the ma.ximum number of coder emissions from time t to t + 1.

M axHinSize = the maximum number of codes per bin at any time

D = the diction.ary.

A = the alphabet size, and is 256.

D(t) = the number of strings in the dictionary at time period t, where
D(O) A

D2(i) = the size of the dictionary after i coder emissions.

m(t) = min(M axBlockSize, b(t - 1)) is the number of coder emissions in time period t.

M = the total number of emissions from the coder.

n(t) = the maximum number of codes per bin at time t, and is given by
n(t) min(MaxBinSize, f(D(t) + l)/b(t)l)

b(t) = the number of"bins at time t, and is given by
b(t) max(h/D(t)l, fD(t)/MaxBinSizel)

Figure 1: Dictionary and Bin Information

String extension makes the dictionary grow faster and contain longer strings,
so many sources can be represented by fewer dictionary entries. This idea is
used in the ZLWAS coder to allow it to adapt quickly to highly repetitive text
when long dictionary entries have a good chance of being used. If the source
text makes little use of long dictionary entries, however, string extension can
reduce rather than enhance compression. It can increase the number of useless
dictionary entries to a point that offsets the gains realized by representing the
source text with fewer entries.

3.3 Word Based Strategy (ZLWASC)

One problem mentioned with the string extension enhancement and ZLW coders
in general is that they both can create many useless dictionary entries. Con
ditional dictionary entry is a strategy that often reduces the number of useless

6

r = the time constant for frequency predictions, and is 0.9 by default.

S = the scaling factor for integer frequencies, and is 16 by default.

Oweight = the ,weighting factor for observations and is 5.0 by default.

k = the fraction of codes that are considered new and get probability based on potential, and
is 0.1 by default.

o;(t) = the count of emissions from bin i during time block t.

a;(t) = the o; vector adjusted for newly-created bins, where

{

o;(t - 1), for i::; k * b(t -1)
a;(t) = ob(t-1)-(b(t)-i)(t - 1), for i;::: b(t) - ((1 - k) * b(t - 1))

Ob(t-l)/2(t - 1), otherwise

The scaled integer relative frequency predicted for bin i during time period t is

f;(t) = { sro,und(r * f;(t - 1) + (1- r) * g;(t)), fort> 1
fort= 1

and the instantaneous prediction is

·(t) _ { S, for a;(t) = 0
g, - S + 1·ound(Oweight * S * a;(t) * b(t)/m(t)), otherwise

The sum of relative frequencies at time t is

F(t) = ~~~l f;(t)

Figure 2: Bin Probability Information

dictionary entries for a ZLW coder with the string extension enhancement.
The idea behind conditional dictionary entry is that when the entries in a

dictionary are letters or parts of words, it makes sense to character extend them
until they become words. However, once you have a dictionary of words, it
makes little sense to build long phrases character by character. It makes more
sense to build them up by putting words together.

The conditional dictionary entry strategy does not add new dictionary en
tries that end with a blank space when doing character extension. In sim
ple terms, once the dictionary contains a complete word, that word cannot be
lengthened by character extension. So the regular ZLWA coder builds up words
character by character, while string extension builds up phrases word by word.

7

If the source contains long runs of blanks, the string extension enhancement will
create plenty of long blank strings to make them compress well.

The virtue of this strategy is that it uses a nearly universal word separator,
the blank space, as a word boundary. This symbol is uncommon enough in
binary files that it does not degrade their compression, and is common enough
in prog,ram source and text files to enhance compression.

Figure 3 shows the coder with all the outlined enhancements in place.

for i := 1 to A do begin
Di := chr(i);

end;
IPos := 1;
NumDef :=A;
LastSfring := "'';
while IPos <= length(!) do begin

CodeNum :=match(!, IPos, D);
String := DcodeNum;

end;

output(CodeNum, log (fcodeNum(t)/ F(t)));
IPos := IPos + 1ength(String);
LastChar := hPo~;
if (stringcat(LastString, String) 3 D) then begin

NumDef ·:='NtmiDef + 1;
DNumDeJ := stringcat(LastString, String);

end;
if (stringcat(String, LastChar) 3 D) and (LastChar f. SpaceChar) then begin

NumDef := NumDef + 1;
DNumDeJ := stringcat(String, LastChar);

end;

if (m(t) = I:~~1f ai(t)) then begin
t := t + 1;
UpdateFreqs(f);

end;
LastString := String;

Figure 3: ZLWASPC Encode Algorithm

3.4 Implementation Decisions

The first coder design decision was choosing the dictionary storage method.
Consulting the dictionary must be quick, adding both character and string ex-

8

tended entries must be quick, and the dictionary should contain as little redun
dant information as possible.

For dictionary consulting and character extension, a hash trie would provide
the best storage method.

This arrangement is inefficient for string extension, however. When doing
string yxtension, both code words are already in the table, and it would be
desirable to have an easy way to link them. A system of dual pointers in a tree
[3] to signify doubled code words could be implemented, but it was decided that
code table consulting speed and implementation simplicity outweighed added
storage efficiency and string extension speed. Hence we used a hash trie as in
Welch's implementation [5].

The next implementation decision was whether to store frequency data in a
sequential array or in a tree. The tree structure offers update or reference of a
single entry in O(Iogb(t)) time, and the array offers update of any number of
entries in O(b(t)) time, and reference of a single entry in 0(1) time.

For a given time period t, the array structure takes

m(t)(b(t)/m(t - 1) + 1)

total steps for any time period t. For the same time period, the tree structure
takes

m(t) log (b(t))((l + m(t - 1))/m(t - 1))

total steps. When b(t - 1) _:::; MaxB/ockSize, m(t -1) ~ b(t), so the array
structure takes approximately m(t) steps. In the same situation, the tree
structure takes about m(t) log (b(t)) steps. So when b(t - 1) $ M axBlockSize,
the array storage method is always better than the tree storage method.
When b(t - 1) > MaxB/ockSize, the b(t) term dominates. The array ver
sion then takes about b(t) + M axB/ockSize steps, and the tree version takes
about MaxBlockSizelog(b(t)) steps. So when b(t-1) > MaxB/ockSize and
b(t) + M axBlockSize > M axB/ockSize log (b(t)) the tree version is the best
storage method.

Experiments indicate that a large bin size is desirable. On even the largest
test text files, b(t - 1) never came close to MaxB/ockSize, so for our purposes
a sequential array is the best storage choice. Had a small bin size been chosen,
the tree structure may have been a better choice.

4 Experiments Using the ZLWAx Coders

Experiments were conducted on a variety of text files:

1. A file of student essays (file essays).

2. A Pascal source code file (file Pasca~.

9

File
essays
Pascal

TEX
News
abc
csh

3. The 'l'Ei"'<: source to the complete 'l'Ei"'<: manual (file Tj;X).

4. A file of USENET news articles (file News).

5. A file of three repeated characters (file abc).

6. An executable program (file csh).

Each of these files was compressed using several methods.

1. UNIX compress, a standard implementation of the Lempel-Ziv compres
sion algorithm that encodes dictionary entires using Huffman coding. Two
versions of compress are listed: one using a twelve-bit code table (ZL12),
and the other a si.'Cteen-bit code table (ZL16). The more bits in the code
table, the more codes it can hold.

2. Lempel-Ziv coding where dictionary entries are arithmetically coded (ZLWA).

Size
(bytes)
176369
119779
201746
210931
150000
122880

3. Lempel-Ziv with arithmetic coding and string extension (ZLWAS).

4. Lempel-Ziv with arithmetic coding, string extension and the predictive
strategy described above (ZLWASP).

5. Lempel-Ziv with arithmetic coding, string extension, predictive strategy
and eonditiomi] dretionary entry (ZLWASPC).

The compression results are given in table 3.

Size and Percent Reduction by Compression Method
ZL12 ZL16 ZLWA ZLWAS ZLWASP

81808 (54%) 70833 (60%) 68298 (61%) 65534 (63%) 64627 (63%)
43791 (63%) 35756 (70%) 34372 (71%) 20605 (83%) 20089 (84%)
96920 (52%) 79603 (61%) 76718 (62%) 68011 (66%) 66422 (67%)

141921 (33%) 113665 (46%) 110081 (48%) 102810 (51 %) 97242 (54%)
1179 (99.2%) 1179 (99.2%) 1119 (99.2%) 46 (99.9%) 40 (99.9%)
91070 (26%) 78697 (36%) 75835 (38%) 72777 (41%) 67164 (45%)

Table 3: Compression Results

One point of interest in table 3 is the comparison between the ZLWA and ZL
WAS coders. The Pascal file in particular shows a large compression gain when
string extension is added. Examining the Pascal file showed that it started with
many similar forward declarations. This high repetition resulted in a substantial
compression gain, as expected. The TEX file contains many consecutive similar
index entries, also giving a healthy compression boost. Repetition also accounts

10

ZLWASPC
59725 (66%)
19171 (84%)
62567 (69%)
94326 (55%)
40 (99.9%)

67092 (45%)

for the tremendous compression gain realized by adding string extension when
compressing file abc.

The predictive model (ZLWASP) seemed to work well on the News file. This
file contains many context shifts due to having articles on varied topics, but
also contains periodic repetition because of the header information appearing on
every 8:rticle. It seems that the predictive model gave emphasis to new strings,
but also didn't forget that certain strings were liable to be used repeatedly.

Both the essays and TEX files show the power of conditional dictionary entry
in ZLWASPC. Each of these files gained significant compression over ZLWASP
by using this simple strategy.

Comparing our algorithms to 16-bit UNIX compress, we find that the ZL
vVASPC compressed English text and source code files are smaller. The com
pressed file essays is reduced by 16 percent, file Pascal is reduced by 46 percent,
file TEX is reduced by 21 percent and file News is reduced by 17 percent. For
these four text files, the average improvment for the ZLWASPC coder over 16-bit
UNIX compress is 25 percent. When we examine the files containing text that
is neither English text nor source code, we still show significant improvment
over 16-bit UNIX compress. The compressed file abc is reduced by 97 percent,
and file csh is reduced by 15 percent.

It is also interesting to observe how the string extension and conditional
dictionary entry strategies affect the dictionary. Table 4 shows the number of
~oder -emis5ions M for" a coder with D(T) dictionary entries, both with and
without the conditional entry and string extension enhancements.

ZLW, ZLWA ZLWAS, ZLWASP ZLWASPC
File D(T) M D(T) M D(T) M
essays 39624 39368 70897 35732 49584 34661
Pascal 21373 21117 24423 12534 19837 12231

TEX 44009 43753 72496 37041 55191 35908
News 61040 60784 103672 54273 86523 53845
abc 1205 949 340 44 340 44
csh 43556 43300 69946 39858 68310 39902

Table 4: Dictionary Statistics

To interpret the data from table 4 we must consider how dictionary size
and number of coder emissions affects the size of a ZLWA coder output file.
In cases where no string extension occurs, the dictionary is augmented every
time the coder emits the representation of a dictionary entry, so at all times
D2(i) = i +A. Therefore the output length L(ZLW A) of the ZLWA coder is

11

given by

M+A

L(ZLWA) = 2:: log(D2(i)) = 0(~2(M)logD2(M)).
i=A

In the ZLWAS coders, emissions won't occur as often as the dictionary is
added to. On average, emissions will occur with M / D2(M) of dictionary enter
ings. Thus

M
L(ZLWAS) = D

2
(M) L(ZLWA) = O(Mlog (D2(M))).

Therefore, to improve compression efficiency we must either reduce the number
of coder emissions or greatly reduce the number of dictionary entries.

It is clear from table 4 that string extension, as would be expected, greatly
increases the number of code words. Fortunately, in all but one of our test
files it reduces the number of coder emissions by enough so that compression is
improved.

Adding the conditional dictionary entry enhancement makes string extension
an even more powerful strategy for many text files. Table 4 shows that for
most of the test files conditional dictionary both greatly reduces the number of
dictionary entries and reduces the number of emissions.

"Experiments' also·show"that 'this coder runs reasonably quickly, compressing
about 1800 bytes per second on a Sun-3. This speed could be greatly improved
by using an optimized arithmetic coder, removing debugging code and removing
the statistics collect.ion code. In comparison, the well optimized ZL16 runs at
about 27,000 bytes per second on a Sun-3:

5 Conclusions and Directions for Future Work

Each of the strategies described in this paper squeeze significant additional
compression out of ZLW coding. These techniques operate quickly enough and
can be implemented simply enough to apply them to compression utilities that
could be used daily.

Future directions for ZLW-based coders are many, but it would seem that
improving the speed of the arithmetic coder, enhancing the conditional dic
tionary entry strategy or adding a first order Markov model to the predictive
strategy are the most promising directions. The current conditional dictionary
entry strategy has the virtues of simplicity and applicability to many different
kinds of text files, but it could be enhanced to recognize attributes of text files
and dynamically adjust conditional entry to improve compression. The existing
predictive strategy seems incompatible with the first order Markov conditioning
scheme from Miller and Wegman's A2 algorithm, but it would be interesting to

12

modify the predictive strategy to benefit from Markov modeling. Another pos
sibility would be to incorporate Storer and Szymanski's linear time OMP /UD
scheme [4] into our dictionary entry heuristics.

It would also be interesting to directly compare the ZLWAx coders with
powerful coders like Miller and Wegman's A2 or Cleary and Witten's Markov
modelii;ig with partial string matching [1].

Acknowledgments

We gratefully acknowledge Ian Witten, for providing us with online C source for
his arithmetic coder. We also benefitted greatly from discussions with James
Storer and Mark Wegman.

References

[1] John G. Cleary and Ian H. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communications, COM-
32(4):396-402, April 1984.

[2] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Com
,pv.ti~g Surveys, 1~(4).:261-;-:.2D~~.Beptember 1987.

[3] Victor S. Miller and Mark N. Wegman. Variations on a Theme by Ziv
and Lempe/. Technical Report RC 10630 (47798), IBM, Thomas J. Watson
Research Center, July 1984. ·

[4] James A. Storer and Thomas G. Szymanski. Data compression via textual
substitution. Journal of the ACM, 29(4):928-951, October 1982.

[5] Terry A. Welch. A technique for high-performance data compression. Com
puter, 17(6):8-19, June 1984.

[6] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for
data compression. Communications of the ACM, 30(6):520-540, June 1987.

[7] Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions on Information Theory, IT-
24(5):530-536, September 1978.

[8] Jacob Ziv and Abraham Lempel. On the complexity of finite sequences.
IEEE Transactions on Information Theory, IT-22(1):75-81, January 1976.

[9] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, IT-23(3):337-343,
May 1977.

13

