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Generalized Connection Networks for Parallel
Processor Intercommunication

CLARK D. THOMPSON

Abstract—A generalized connection network (GCN) is a swit-
ching network with N inputs and N outputs that can be set to pass any
of the NV mappings of inputs onto outputs. This papéer demonstrates
an intimate connection between the problems of GCN construction,
message routing on SIMD computers, and “resource partitioning.”
A GCN due to Ofman [7] is here improved to use less than
7.6N log N contact pairs, making it the minimal known
construction.

Any GCN construction leads to a new algorithm for the broadcast
of messages among processing elements of an SIMD computer
when each processing element is to receive one message. Previous
approaches to message broadcasting have not handled the problem in
its full generality. The algorithm arising from this paper’s GCN
takes 8 log N (or 13N /) routing steps on an N element processor of
the perfect shuffle (or mesh-type) variety.

If each resource in a multiprocessing environment is assigned one
output of a GCN, private buses may be provided for any number of
disjoint subsets of the resources. The partitioning construction
derived from this paper’s GCN has 5.7N log N switches, providing
an alternative to “banyan networks” with O(N log N) switches but
incomplete functionality.

Index Terms—Array processors, connection networks, message
broadcasting, parallel algorithms, parallel processing, resource
partitioning, SIMD machines.

1. INTRODUCTION

GENERALIZED connection network (GCN) is a
switching network with N inputs and N outputs ca-
pable of implementing any mapping of inppts onto outputs.
In other words, each output may be connected to any one of
the inputs for a total of NV different connection patterns.
Thus, a GCN is more powerful than the connection
networks of Beizer [2] and Benes [3] et al., for a connection
network handles only one-to-one mappings of inputs onto
outputs (N! settings).

In many situations, two parameters of a GCN design are
of paramount importance: its delay and the number of
contact pairs used in its construction. The delay ofa GCN is
defined to be the maximum number of contact pairs separat-
ing any input-output pair. There exists a tradeoff between
these two parameters, as evidenced by Table I (all log-
arithms in this paper are base 2).

(The delays quoted for the last two entries are derived
from Pippenger’s proof technique [10}; it may be possible to
improve these delays without affecting the asymptotic
number of contact pairs.) This paper’s construction is seen
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to be a small improvement on Ofman’s construction [7], on
which it is based.

Any GCN construction leads to an algorithm for the
transfer of data among processing elements of an SIMD
(single instruction stream multiple data stream) computer.
This data transfer is modeled as the routing of messages,
each originating at a processing element and destined for
some subset of the other processing elements. There have
been many papers treating particular message routing pat-
terns on particular networks (Stone [12], Siegel [11], Orcutt
[8], etc.). The algorithm based on the GCN of this paper
performs near-optimally on any message broadcasting pat-
tern in which each processing element receives one message
on several popular SIMD interconnection networks. For an
N element computer (N a power of 2), the algorithm requires
13N'/2 routing steps on a square mesh-type array, 8 log N
routing steps on the perfect shuffle, PM2I, and WPM2I
networks, and 4 log N routing steps on the Cube (see
Section III for descriptions of these networks). All other
known GCN constructions lead to slower routing
algorithms.

Finally, any GCN construction applies to the partitioning
of multiprocessor systems in the sense of Goke and Lipovski
[4]. If each resource is assigned one output of a GCN, proper
switch settings provide a private conductive path for each of
any number of disjoint subsystems. The banyan networks
originally proposed for this task do not implement all
partitions when O(N log N) switches are employed. When
used for partitioning, £ of this paper’s GCN can be omitted,
so that unrestricted partitioning may be obtained with
5.7N log N switches. No other known GCN construction
leads to smaller partitioners.

The new GCN construction is described in Section 11, its
application to message routing is elaborated in Section IT1,
and its related partitioning network is derived in Section IV.

II. A GCN CONSTRUCTION

A GCN may be represented as a graph with one edge for
each contact pair (SPST switch). The N input terminals
become N vertices, as do the N output terminals. Other
vertices are added as necessary as “tie-posts” for switch
leads. For example, an N x N crosspoint switch is a GCN
with N2 contact pairs; its graph is the complete bipartite
graph on 2N vertices and N? edges.

The setting of a GCN can be formalized as a sequence of N
integers, one for each output vertex:j,, j,, *+*,jywherej, =i
iff output number k is connected to input number i (each
output is connected to exactly one input). For example, if
N =4 a GCN setting might be (3, 3, 4, 1): input 3 is
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TABLE 1

ComPARISON OF CURRENT GCN’s
Description # of contact pairs | delay
N X crosspoint N2 1
Masson and Jordan's GCN [6] | OIN3/3) 3
Ofman's 6N [7] 10N log N Slog N
Pippenger's GCN [9] 7.6Nlog N OiNlog N)
This paper's GCN 7.6Nlog N 3.8 log N
Non-constructive upper bound
on # of contact pairs [10] 3.8Nlog N (01092 N))
Lower bound on # of contact
pairs [10] 1.9N{og N {0(10gZ N))

connected to outputs 1 and 2,input 4 to output 3, and input 1
to output 4.

A graph is a GCN iff it contains a subgraph with proper
connectivity for each of the N¥ possible j, sequences. The
edges in these subgraphs correspond to the switches that
should be closed to realize each GCN setting.

A GCN construction may be obtained from the schema
shown in Fig. 1 (Ofman [7]).

The left-hand network produces the correct number of
copies of each of the inputs, which are then permuted to the
proper outputs by the right-hand network. For the j;
sequence (3, 3, 4, 1), the left-hand network (the generalizer)
must have two copies of input 3 somewhere on its outputs,
one copy each of inputs 4 and 1, and no copies of input 2.
These signals are connected to the proper GCN outputs by
the right-hand connection network.

It is now necessary to examine connection and generaliza-
tion networks in more detail. :

A. Connection Networks

An (N, N)-connection network is a switching network
with N inputs and N outputs capable of passing any of the
N! one-to-one mappings (permutations of inputs onto
outputs). This is, of course, strictly less powerful than a
GCN, in which the same input may be connected to more
than one output at a time (in terms of the j, notation
developed above, connection networks operate on se-
quencies j,, ‘-, jy in which the j,’s are distinct).

Beizer [2] published the 4N log N — 2N construction
of Fig. 2 in which an N-input connection network is syn-
thesized from 2 N/2-input connectors and 4N additional
contact pairs.

The proper switch settings for any desired connection
pattern may be found by the method of Waksman [14] in
O(N log N)time on a serial computer, the best result known.
Thus, it would seem that lengthy preprocessing time will be
required for each GCN setting. In some cases, it may be
feasible to tabulate precomputed GCN settings, although it
would secem necessary to store about one bit per switch
setting or O(N log N) bits in all. This, of course, limits the
practical application of networks involving Beizer’s connec-
tor. Unfortunately, all known GCN’s with O(N log N)
contact pairs contain a Beizer-style connector.
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Fig. 1. Schema for a GCN construction.
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Fig. 2. Beizer’s connection network (recursive construction).

It should be noted that this connector construction is
symmetric about a horizontal axis. In fact, the top log N
stages and the bottom log N stages comprise Omega
networks (see Lawrie [5]) that share a common level of
switches.

B. Generalization Networks

An (N, N)-generalizer passes input i to m; different
outputs where ). m; = N and m; > 0. Thus, it provides a
particular number of copies of each input somewhere among
the outputs. The existence of (N, N)-generalizers with O(N)
switches has been demonstrated nonconstructively by Pip-
penger [10]. Construction of a generalizer can be accom-
plished by the schema shown in Fig. 3, due to Ofman [7].

The left-hand network routes all important inputs to its
uppermost output lines. More precisely, if p of the inputs will
appear on some output of the generalizer, they must appear
on lines k, through k, of the hyperconcentrator. The
right-hand network is responsible for producing the correct
number of copies of each of its inputs, but there must exist
some integer p such that ky, k,, ---, k, will appear in the
output at least once, while k. 1, k4 2, -+, ky Will be ignored.
For example, an (8, 8)-generalizer setting might be m; = (3,
0,1,0,0,2, 1, 1): input 1 to be connected to three outputs;
inputs 2,4, 5 to none; inputs 3, 7, 8 to one; and input 6 to two.
The corresponding hyperconcentrator-infrageneralizer
decomposition would have p =5, with inputs 1,3, 6, 7, 8
appearing on lines k; through ks in some arbitrary order.

Ofman demonstrates that the network shown in Fig. 4 is
an infrageneralizer.

Ofman’s infrageneralizer is a little more powerful than the
infrageneralizer defined above. An infrageneralizer requires
its “live” input signals to appear on the first p of its input
lines; Ofman’s network allows the p signals to appear in any
consecutive sequence of its N input lines (wraparound is
permitted, so that (ky_,, ky, k,) is a consecutive sequence
ofinputs). Secondly, infrageneralizers need only connect the
correct number of outputs to each live input, but Ofman’s
network connects outputs to inputs in order. The first
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Schema for a generalizer construction.
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Fig. 4. Ofman’s infrageneralizer (recursive construction).

member of the consecutive sequence of inputs is connected
to the leftmost outputs; the second live input is connected to
outputs just to the right of these; and the last live input is
connected to the rightmost outputs.

The proper switch settings for Ofman’s network may be
obtained recursively by using the upper switches to give each
half-sized infrageneralizer some of the live input signals. The
output specifications outlined above determine which input
signals are needed by each half-sized network. These signals
form a consecutive subsequence of the original sequence of
live inputs by virtue of the ordering of the outputs.

An (N, N)-connection network could be used for hyper-
concentration since a hyperconcentrator merely permutes
its inputs. This is, in fact, Ofman’s approach, yielding an (N,
N)-generalizer with 6N log N contact pairs. Ofman’s con-
struction can be improved by using fewer switches in the
hyperconcentrator portion. Somewhat surprisingly,
Ofman’s infrageneralizer is an “upside down”
hyperconcentrator—the direction of signal flow through the
network is reversed by turning inputs into outputs and vice
versa. This equivalence will be verified by the demonstration
of a correspondence between any desired hyperconcentra-
tion function and an infrageneralizer function. A hypercon-
centration setting may be specified by a list of p integers (n,,
ny,-+-,ny)with 1 <n; <n, <---<n, <N corresponding
to the indices of the inputs whose signals are to appear in
the first p output lines. The corresponding infrageneralizer
function is that input i should appear on m; output lines
where m;=n;—n;_y, no=0, and n, ., =n, ==
ny = N. Ofman’s infrageneralizer will connect input i to
outputs n;_, + 1 through n;; if switches are opened to
disconnect all but output number n;-for 1 < i < p, then the
required hyperconcentration function is implemented by the
reversed infrageneralizer.

An example should clarify matters. A (8, 8)
hyperconcentrator setting for n; = (2, 3, 6, 7, 8) corresponds
to a (8, 8)-infrageneralizer setting for m; = (2, 1, 3, 1, 1,0,0,
0). In other words, the problem of finding the proper switch
settings to bring inputs 2, 3, 6, 7, and 8 to outputs 1, 2, 3, 4,
and 5 (a hyperconcentration) may be solved by setting
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outputs 2 3 4 5 6 7 8

°
° o
inputs 1 2 3 4 5 6 7 8

Fig. 5. An upside-down hyperconcentrator set for (2, 3, 6, 7, 8).

inputs 1 2 3 4 5 6 7 8

o
outputs 1 2 3 4 5 6 7 8

Fig. 6. An infrageneralizer set for (2, 1,3, 1, 1, 0, 0, 0).
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Fig. 7. An (8, 8)}generalizer.

Ofman’s infrageneralizer to routeinput 1 to outputs 1 and 2;
input 2 to output 3; input 3 to outputs 4, 5, and 6; input 4 to
output 7; and input 5 to output 8. See Figs. 5 and 6.

Since Ofman’s (N, N }infrageneralizer has2N log N con-
tact pairs, an (N, N)}-generalizer can be built with 4N log N
contact pairs by attaching an infrageneralizer to a reversed
infrageneralizer (a hyperconcentrator). Since the last stage
of the hyperconcentrator is identical to the first stage of the
infrageneralizer, the combined functionality of these two
levels of switches may be obtained with a single one,
eliminating 2N contact pairs. The (8, 8)-generalizer obtained
in this way is illustrated in Fig. 7.

C. The Complete GCN Construction

The astute reader will have noticed that the (N, N}
generalizer of Section II-B is quite similar to the (N,
N)-connection network of Section II-A. In fact, one merely
needs to “unshuffle” the inputs and outputs of this (N,
N)-connection network to make the two networks identical.
Then, when concatenating the generalization and- connec-
tion networks to obtain a GCN, the first stage of the latter
can be combined with the last stage of the former. This
eliminates 2N contact pairs, yielding (for N = 8) Fig. 8.

The number of contact pairs in this GCN is easily
counted: the generalization network “front end” has
4N log N — 2N contact pairs, as does the connection.
network. When the two networks are concatenated, 2N
contact pairs are eliminated, so that the complete GCN has
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Fig 8. An (8, 8)GCN.

8N log N — 6N contact pairs. If further optimization is
desired, O(N) contact pairs may be stripped from the con-
nector (see Waksman [14]).

The 7.6N log N GCN construction claimed in the Intro-
duction is derived from the 3.8N log N connection network
of Benes [3] (N is a power of 3; three-way branching is used
throughout). These three-way connection networks have the
same property as the two-way Beizer networks used until
now in this paper. The first half (front end) may be set to act
as a hyperconcentrator, and the second half can be used as
an infrageneralizer. Thus a 7.6N log N contact pair GCN
may be formed by concatenating two of these connectors.
This new GCN does not seem to be any easier to “set up”
than the two-way branching constructions derived above,
limiting its applications in a similar fashion.

III. MESSAGE BROADCASTING

An SIMD computer may be considered to consist of three
major parts: a central control unit, the processing elements,
and an interconnection network. Each PE (processing
element) operates on data in its own local memory accord-
ing to the dictates of the central control unit. Data enter and
leave this local memory via the interconnection network,
which typically connects each PE to one of several neighbor-
ing PE’s. For example, in- a mesh-type computer, each PE
has at most four neighbors. The situation may be depicted in
Fig. 9, where the boxes are PE’s and the lines are possible
connections.

Note that PE’s on the edges have fewer than four neigh-
bors. The interconnection network of this mesh-connected
computer may be in one of four states: U, D, L, R (Up,
Down, Left, Right). When in the U position, each PE may
receive one message per time unit from its downward-
adjacent neighbor.

The message broadcasting problem may now be broadly
stated. Initially, each PE has generated a message of interest
to some (possibly empty) subset of the other PE’s. Each PE
is to receive exactly one interesting message. How long does
it take to deliver all the messages, as a function of the total
number of PE’s and their interconnection pattern? Time is
measured in the number of (parallel) unit-distance message
routings. For simplicity, assume that no time is spent on
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Fig. 9. A mesh-connected computer.

selecting which message (of possibly several) will be sent
from each PE. This assumption is valid on a computer with a
sufficiently powerful control unit (each PE is explicitly told
which message to send), and is nearly valid when routing
decisions are made locally (for example, by examination of
“routing tags” on the messages). The algorithms of this
paper will place at most two messages in a PE at a time, so
these routing decisior:s should not be time-consuming,

It should be noted at this juncture that the routing
algorithms presented in this paper will require substantial
preprocessing time. As indicated in Section II-A, computa-
tion of settings for Beizer’s connection network is a time-
consuming process, but must be performed for each distinct
message broadcasting pattern. Thus, the algorithms
outlined below will be of most use when the broadcasting
pattern is known at compile time. In more dynamic situa-
tions, “sorting” of destination tags is a more viable alterna-
tive (see Batcher [1] and Thompson and Kung [13]).

The next three subsections will solve the message broad-
casting problem for several different interconnection
networks. In all cases, N is assumed to be a power of 2.

A. Message Broadcasting on the M esh-Connected Computer

A lower bound for the message broadcasting problem on
the mesh-connected computer may ecasily be derived. A
square N-element computer of the type depicted in Fig. 9 has
N'2 processing elements on a side. If a message broadcast-
ing pattern involves the exchange of messages between the
upper-leftmost PE and the lower-rightmost PE, at least
4(N'2 — 1) time units will be required. This result follows
immediately from the observation that the interconnection
network must be in each of its four states (U, D, L, R) for at
least (NY? —1) time units. Any general algorithm for
message broadcasting must be able to handle this particular
message exchange, leading to a lower bound of 4(NV/2 — 1)
time units. :

It is not known whether more complicated broadcasting
patterns require more than 4(N'/? — 1)time units. However,
a large number of patterns can be completed in that amount
of time—the so-called Omega permutations (Orcutt [8]).
Also, any one-to-one pattern (each message of interest to
exactly one PE) can be accomplished in about 6N'/2 time
when N is very large (Thompson and Kung[13]). Indeed, for
these one-to-one patterns, 7(N'/2 — 1) time is sufficient for
any N, as indicated later in this subsection. The main
algorithm of this subsection demonstrates that no broadcast
pattern need take more than 13N"2 — 16 time units.

A relationship between the graph form of a GCN and a
message routing algorithm may be drawn in the following
way. Each vertex of a GCN corresponds to a PE, and each
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Fig. 10. Row-major indexing of a 4 x 4 mesh-connected computer.

edge to the routing of a single message from one PE to
another PE. Furthermore, each of the N input vertices must
correspond to a different PE, as must each of the output
vertices. A message routing pattern is now exactly analogous
to a GCN setting: messages (signals) originate at PE’s (input
vertices)and are routed to other PE’s (intermediate vertices)
until they reach their destinations (output vertices).

The vertex—PE correspondence is most easily made by
indexing both vertices and PE’s; corresponding vertex-PE
pairs have the same index (from 0 to N — 1). On mesh-
connected computers, the row-major indexing scheme il-
lustrated in Fig. 10 will be used throughout this paper.

If the 16 nodes on each level of the (16, 16}-GCN built
according to Section II are numbered from left (0) to right
(15), then the corresponding routing algorithm may be
drawn as in Fig. 11. Note that each “stage” of the GCN
corresponds to a possible interchange of messages between
pairs of PE’s. The first stage’s interchange pairs are (0, 1), (2,
3), -+, (14, 15); this is easily seen to call for one time unit of
the L interconnection setting and one of R. The second
stage’s pairs are (0, 2), (1, 3), (4, 6), ---, (13, 15)—two L'sand
two R’s. For convenience, the notation (Lx, Ry) is used to
denote x time units of the L setting and y time units of R.

In general, this approach on an N element computer
would require 3(L1, R1) routings, 4(L2, R2) routings, 4(L4,
R4) routings, -+, 4(LN2/2, RNY2/2) routings, 4(D1, U1)
routings, 4(D2, U2) routings, --+,4(DN'?/4, UN'?/4) rout-
ings, and 2(DN"/2/2, UNY?/2) routings. Note that there are
four routings of every type in the list except the first and the
last. The time required to complete these routings may be
shown to be

2(NV2)/2)) — 2 — 2N¥2 = 1AN*2 — 18,

1 <i<(logN)/2

2% 4(

The summand is the time taken by the routing instruction
(LN2/2', RNY2/2), which is issued four times. The leading
factor of 2 accounts for the analogous (DN'?/2', UN"2/2})
instructions. The “missing” (L1, R1) instruction saves 2 time
units; the two missing (DN'/?/2, UN"/?/2) instructions save
2N'? time units.

The natural GCN numbering scheme used until now is
not optimal. Another scheme may easily be derived in which
an (LN'2/2, RN''%/2)instructionis “missing” in the stead of
the previously missing (L1, R1) routing. This will save
NY% — 2 time units, so that the optimized message broad-
casting algorithm takes just 13N/ — 16 time units. One of
the numberings that leads to this result is obtained from the
binary representation of the natural sequence by exchanging
the least significant bit with the (log N)/2th least significant
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Fig. 11. Routing on a 4 x 4 mesh-connected computer.

bit. For example, with N = 16 the numbering of GCN nodes
from left to right on each stage would be (0,2, 1,3,4,6,5,7,8,
10,9,11,12,14,13,15),and the first stage of GCN simulation
would involve interchanges between PE pairs (0, 2), (1,
3), -+, (13, 15).

Other GCN constructions may, of course, be simulated
on a mesh-connected computer. However, none seems to
lead to faster message broadcasting algorithms. The N x N
crosspoint offers nostructure to the problem: the simulation
of its first and only stage calls for potential data movement
from each PE to every other. Masson and Jordan’s GCN [6]
is little better because potential data movement in its three
stages occurs in “neighborhoods” of O(N*?) or O(N'?)
PE’s. A simulation of Ofman’s GCN would entail a simula-
tion of this paper’s GCN, for the latter is contained in the
former. Pippenger’s GCN has O(N log N) delay; hence it
would require at least O(N log N) time to simulate. And the
three-way branching GCN alluded to at the end of Section II
involves interchanges among triplets of PE’s, which is-not a
natural operation on a square mesh-connected computer
(although it might be applicable to a “triangular mesh”-
connected computer).

If a particular message distribution pattern happens to be
one-to-one (each message goes to exactly one PE), then the
full power of a GCN simulation is not required. Instead, a
simulation of the connection network imbedded in the last
half of the GCN can be accomplished in 7NY2? — § time
units, using the natural correspondence scheme. There
would be two routings of every type except (DN'?/2,
UNY2/2).

B. Message Broadcasting on a Perfect Shuffle Computer

The perfect shuffle interconnection (Stone [12]) is nicely
suited for message broadcasting. As demonstrated below, a
GCN may be simulated, and thus any message broadcasting
pattern implemented, in 8 log N — 7 time units.

Let the PE’s of a perfect shuffle computer be numbered
from 0 to N — 1. Each index can be represented in
log N =m binary bits, b, b,_, - byb,b,. The perfect
shuffle interconnection network has just three settings, so
that PE b, --- b, is connected to b,b,_, - b,b,
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(“exchange™), to b,,_; b,_, *** b, b, b, (“shuffle”), and to
bbby, - by by (“unshuffle”). Fig. 12 illustrates a perfect
shuffle computer; the “shuffie” connections may be visu-
alized by reversing the direction of the “unshuffle” arrows.

A lower bound for the message broadcasting problem on
this computer can be obtained through consideration of the
time necessary to send a message from PEOtoPEN — 1.In
binary notation, N —1 has (log N — 1) “1” bits. The
“exchange” setting is the only one that allows communica-
tion between PE’s with different numbers of “1” bits, but it
only connects PE’s with a bit-difference (Hamming dist-
ance) of 1. So log N — 1 exchange connections intervene
between PE 0 and PE N — 1. Furthermore, at least one
shuffle or unshuffle must be performed between each pair of
exchanges (or else the second exchange connects the same
PE pairs as the first). Thus, log N — 2 shuffle or unshuffle
connections intervene between PE 0 and PE N — 1, leading
to a lower bound for message broadcasting of 2 log N — 3
time units.

A good algorithm for mgssage broadcasting results from
the careful (if nonobvious) numbering of the nodes of
Section II’'s GCN. Let the input nodes be labeled naturally: 0
(left) through N — 1 (right). The labelings of the next
log N — 1 rows of GCN nodes are obtained by unshuffling
the binary representation of the labels of the previous row.
For example, if N = 8, the first row is (0, 1, 2,3,4, 5,6, 7), the
second row is (0,4, 1, 5, 2, 6, 3, 7), and the third rowis (0, 2,4,
6,1,3,5,7). The (log N)ththroughthe(2 log N — 1)throws
are labeled by shuffling the indices in the previous row. In
the present example, the fourth rowis (0,4, 1,5,2,6,3,7)and
the fifth row is (0, 1, 2, 3,4, 5, 6, 7). The (2 log N)th through
the (4 log N — 3)th rows are labeled identically to the
second through the (2 log N — 1)th rows (e.g., the sixth
through the ninth rows are identical to the second through
fifth rows), while the output row (the (4 log N — 2)th) is
numbered naturally.

This GCN numbering may be motivated by considering
the corresponding perfect shuffle network settings. In the
example above, the first two rows are (0, 1, 2,3,4,5,6,7)and
0,4, 1,5, 2, 6, 3, 7). Thus, after the first stage of GCN
simulation, each of PE 0 and PE 4 should have one of the
messages originally in PE 0 and PE 1; PE 1 and PE 5should
have messages from either PE 2 or PE 3; PE’s 2 and 6 should
have messages from PE’s 4 and 5; and PE’s 3 and 7 should
have messages from PE’s 6 and 7. This result may be
obtained with only two unit-distance routing steps: an
exchange and an unshuffle. The exchange transmits mes-
sages between PE’s 0 and 1, PE’s 2 and 3, PE’s 4 and 5, and
PE’s 6 and 7. At this point each PE has two messages, one of
which is selected to be sent out on the unshuffle connection,
while the other is ignored (destroyed). After “unshuffling,”
each message is in the proper PE (that is, PE 0 and PE 4 have
messages that originated in either PE O or PE 1, etc.)
Succeeding stages of the GCN simulation are handled
similarly. The complete GCN simulation consists of
(log N — 1)repetitions of (exchange, unshuffie), (log N — 1)
repetitions of (exchange, shuffle), (log N — 1) repetitions
of (exchange, unshuffle) (log N —1) repetitions
of (cxchange, shuffic), and one final exchange, for a total of
8 log N — 7 time units.
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Fig 12. Exchange (straight) and unshuffle (curved) connections on an
eight-PE perfect shuffle computer. ’

This GCN numbering is the best possible, as may be seen
from the following considerations. Each stage of the GCN
consists of N/4 complete bipartite graphs on four nodes. The
shuffle and unshuffle network connections are not in them-
selves sufficient to simulate any stage of the GCN since, for
example, PE 0 is only connected to itself. Thus, at least one
exchange step must be executed during the simulation of
each GCN stage. However, a shuffle or an unshuffle must
occur between consecutive exchange steps (if not, the second
exchange is superfluous). Since there are 4 log N — 3 stages
in this paper’s GCN construction, a simulation requires
4log N —3 exchanges interlarded with 4log N —4
shuffles or unshuffles. This subsection’s numbering and
associated routing algorithm realizes this minimum.

For the special case of one-to-one message distribution
patterns, 4 log N — 3 time units are sufficient to simulate
the last half of the GCN (a connection network).

C. Message Broadcasting on Cube, PM2I, and WPM2I
Computers

The nomenclature of this section is due to Siegel [11]. The
Cube network is similar to the one implemented in Staran,
the PM2I neiwork is similar to Feng’s Data Manipulator,
while the WPM2I is Siegel’s brainchild. As before, let the
PE’s be numbered from 0 to N — 1 in m = log N bits:
bub, 1" byb;.

The Cube has m settings, where setting i connects b, - b,
to by, -+ b;y 1 b;b;_ --- by. Using the natural left (0) to right
(N —1) numbering for the nodes on each level of the GCN,
it should be clear that simulation of any stage of the GCN
takes only one time unit, so that at most 4 log N — 3 time
units are required by any message distribution pattern on
the Cube. A lower bound is also immediate: log N time units
are necessary for PE 0 to communicate with PE N — 1, that
is, one time unit for each bit that is of different value in their
indices.

The PM2I network has 2 log N = 2m settings, corre-
sponding to the addition or subtraction mod N of 2' for
0 < i < m. The WPM2I connections are similar to those of
the PM2I network, except any “carry” or “borrow” will
“wrap around” to bit b;_,. Lower bounds for message
broadcasting on these computers are implicit in the work of
Siegel [11]. The PM2I (or WPM2I) takes at least log N (or
(log N)/2) time to perform a “shuffle,” which is a legal
message broadcasting pattern. Upper bounds are also easily
obtained. Either network can simulate a naturally
numbered GCN in two time units per stage (one “addition”
and one “subtraction”), giving a total of 8 log N — 6 time
units for worst-case message broadcasting.

Of course, these bounds are cut almost in half for the
special case of one-to-one message distribution patterns.
Only 2 log N — 2 time units are required for a Cube simula-
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tion of a connection network (4 log N — 4 time units on the
PM2I or WPM2I), using the natural numbering scheme.

IV. PARTITIONING

The use of switching networks in the partitioning of a
multiprocessing system is treated in Goke and Lipovski [4].
They propose connecting N resources to a network flexible
enough to provide private buses for disjoint “subsystems” of
the resources. For example, if a particular terminal, proces-
sing unit, and memory device are to be formed into an
independent subsystem, the partitioning network is in-
structed to form a private connection between their respec-
tive I/O ports. The partitioning networks considered in this
paper will merely connect appropriate 1/O ports; manage-
ment of the bus thereby created for each subsystem will be
the responsibility of the member resources. The most
straightforward partitioning network is based on an N by
N/2 crosspoint switch: each of the N resources can be
independently connected to any of N/2 internal buses. While
this network is simple to configure and has only constant
delay, it requires O(N?) switches. Another network con-
sidered by Goke and Lipovskiis an (N, N)-connector whose
inputs are connected to its outputs. Although thisdevice has
only O(N log N) switches, its delay may be O(N log N).
Goke and Lipovski settled on “banyan networks” with
O(N log N) switches and O(log N) delay, but incomplete
functionality (not all partitions could be achieved). It should
be clear that a GCN provides unrestricted freedom of
connection between any of its N outputs. This paper’s GCN
construction thus immediately gives a complete partitioning
network with O(N log N) switches and O(log N) delay.

Actually, a GCN is an unnecessarily complex partitioning
network. The resources will only be connected to the
outputs of the GCN, so that the ordering of the inputs is
completely arbitrary. In terms of Section II's construction,
this implies that the hyperconcentrator “front end” is
superfluous and may be removed. Thus, a partitioner can be
built with 8N log N —2N log N = 6N log N contact
pairs. If further optimization is desired, Waksman’s connec-
tor [14] may be used. Also, halfthe inputs to the infragenera-
lizer may be removed, since at most N/2 subsystems can
have more than one resource. For example, Fig. 13 is an
(8)-partitioner.

Setup algorithms for this network are relatively time-
consuming, limiting its practicality (banyan networks can be
essentially self-configuring in O(log N) time). When a new
subsystem with k resources (k > 1)comes into existence, it is
assigned the leftmost unused infrageneralizer input and the k
leftmost unused connector inputs. The infrageneralizer can
be configured in O(log N)timesinceit is a banyan. However,
the connector setting may need radical changes for which
the best known algorithm (Waksman [14]) requires
O(N log N)time on a serial computer. Heuristic approaches
to connector setting may mitigate this problem, but the
author is forced to conclude that this partitioner is of little
use in real-time or rapidly changing computational
environments.

The three-way branching construction mentioned at the
end of Section II leads to another partitioner. The concaten-
ation of a 38N IO% N contact Hrqi{lgrsﬁ)ggrpctor ith a
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Fig. 13. An (B)-partitioner.

1.9N log N infrageneralizer (a copy of the second half of the
connector) produces a 5.7N log N partitioner. Of course,
the problem of setting the connector is a limiting factor in
the practicality of such a partitioner.
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