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1. INTRODUCTION 

One of the difficulties of VLSI design 
is the sheer magnitude of the task. It is 
not easy to lay out one hundred thousand 
transistors, let alone ten million of them. 
Yet there is a sense in which the scale of 
VLSI is advantageous. Analytical techniques 
are more often applicable to very large 
systems than to moderately-sized ones. 

This paper shows that asymptotic 
analysis can be used to guide the design 
of Fourier transform circuits in VLSI. 
Approaching chip design in this way has 
three advantages. First of all, the n 
analysis is simple: the calculations are 
easy to perform and thus easy to believe. 
Second, the analysis points out the 
bottlenecks in a design, indicating which 
portions are truly important to optimize 
and which designs are inherently flawed. 
It ·js impossible to "miss the forest for 
the trees" when one is thinking of 
asymptotic performance. 

A third advantage of the analytic 
approach is that it can provide criteria 
for judging optimality. The performance 
of an optimal circuit can only be matched, 
net beaten. Several of the implemen~atiJns 
of this paper are demonstrably optima~. 
They achieve the l~mit~ng area*(time) 
performance of n(N log N) for the H-element 
Fourier transform [14]. (The omega 
notation meuns "gro\vs at least as fast as": 
as N increases, the product of area with 
the square of the solution time for these 
c~rcu~ts is bounded by some constant times 
N log N.) Similar performance limits have 
been proved for the problems of sorting, 
matrix multiplication, and integer 
multiplication [l,3,10,14]. 

Section 2 of this paper develops a 
simple model for VLSI, laying the groundwork 
for the implementations and the analyses. 
The model is based on a small number of 
assumptions that are valid for any 
currently envisioned, transistor-based 
technology. Thus the results apply equally 
well to the field-effect transistors of the 

.-MOS technologies (CMOS, HMOS, VMOS, 2 ... } 
and to the bipolar transistors of I L. 
Jhis work was supported in part by the 
U. S. Army· Research Office under Grant 
QAAG29-78-G-Ol67. 

Section 3 describes seven implemen­
tations of Fourier transform-solving 
circuits in VLSI. Most of these circuits 
are highly parallel in nature. 

Section 4 concludes the paper 1·1ith 
a summary of the performance figures of the 
designs. 

2. THE MODEL 

Briefly, a VLSI circuit is modeled 
as a collection of nodes and wires. A 
node represents a wire junction, a 
t r a n s i s t o r , o r a g a t e . A 1'/i • e r e p r e s e n t s 
the conductor that carries signals from 
one node to another. 

In keeping with the planar nature of 
VLSI, nodes are laid out in a non-overlap 
ping fashion. Only a constant number of 
wires (say 2 or 4) can cross over at any 
one point in the plane. 

The unit of time in the model is 
proportional to the response time of a 
simple circuit. In particular, a wire 
can carry one bit of information in one 
unit of time. This bit is typically used 
to change the state of the transistor 
at the other end oi the wire. 

The unit of area in the model is 
proportional to the size of a simple · 
circuit. Wires have unit width and nodes 
occupy 0(1) area, that is, a node is some 
constant number of wire-widt~s on a side. 
(The area of a node also includes an 

. allowance for power and clock wires, 
: which are not represented explicitly in 
. the model.) 
I 

The problem of long-distance 
communication receives special attention. 
Most nodes can drive only short wires. A 
specialized "driver node" of O(k) area is 
required to send a signal down a wire of 
length k. A driver has O(log k) stages of 
amplification, the last stage of which has. 
gate (or junction) area proportional to k. 
This structure is consistent with the 
assumption that the load presented by a 
long wire is capacitive in nature and 
proportional to its length [B]. The ! 
amplifier stages are individually clocked, 
so· that a driver has O(log k) delay but ' 
unit bandwidth. 



The notion of "self-timed regions" 
[11] is incorporated into the model to 
account for the difficult of obtaining 
chip-wide synchronization. The nodes in ~ 
self-timed'region are in synchrony: all 1 

signal transistions occur at the same 
phase of a common clock. Signals 
originating outside the region are syn­
chronized with this local clock by means 
of "receiver nodes." 

The model is summarized in the list 
of assumptions below. A fuller ~xpla­
nation and defense of the model 1s 
contained in the author's thesis [14]. 

Assumption 1: Embedding. 
a. Wires are one unit wide. 
b. Two wires may cross over each 

other•at right angles. 
c. A logic node occupies 0(1) area. 

It has 0(1) input wires and 0(1) output 
wires, none of which are more than 0(1) 
units long. 

d. Each logic node belongs to a 
self-timed region. All wires connecting 
to a logic node lie entirely within its 
self-timed region. 

e. A self-timed region is at most 
O(log N) units wide or long. · · 

d. A driver node of O(k) area has an 
output wire that is k units long. This 
output wire may pass through any number of

1
· 

self-timed regions before it connects to 1 

the input of a receiver node. I 
g. A receiver node occupies 0(1) ; 

area .. Its output wire is 0(1) units long~ 

Assumption 2: Total area. 
The total area of a collection of 

nodes and wires is the number of unit 
squares in the smallest enclosing 
rectangle. I 

I 
Assumption 3: Timing. I 

a .. Wires have unit bandwidth. They 
carry at most one bit of information in 
a unit of time. 

b. Logic nodes and receiver nodes 
have 0(1) delay. 

c. The driver node for a wire of 
length k has O(log k) delay. 

Assumption 4: Transmission functions. 
a. The signals appearing on the 

output wires of a node are some fixed 
fun~tion of its current "state." 

b. The state of a node is changed 
every time unit, according to some fixed 
function of the signals on its input wires.: 

c. Logic nodes and receiver nodes are j 
limited to 0(1) bits of state. , 

d. Driver nodes have O(log k) bits of i 
state, one bit for each stage in their i 
amplification chain. . I 

e. The state of the nodes in an "inpud 
register" may be modified from outside whe~ 

·a computation is initiated. See Assumption) 
6. -- . 

Assumption 5: Problem definition. I 
a. Each of N input variables takes on 

one of M different values with equal 
likelihood. · 

b. ti is an integral power of 2. 
c. log M = G(log N). (A word length 

of r1og Ml = c*(log N) bits is necessary 
and sufficient to describe the value of an 
input v01riable.) 

u. The output variables y are 
r~1~ted to the input variables x by the 
equation j =Ax. The (i,j)-th entry of A 
has the value wt((i-l)*(j-1)), where w is 
d principal N-th root of unity in the ring 
of multiplication and addition mod M. I 

Ass~mption 6: Input reg~sters. 
a. Each of the N input variables 

is associated with one input register 
;ormed of a chain of flog Ml logic nodes. 

b. A computation is initiated at time 
T if the value of each input variable is 
eRcoded in the nodes of its input register· 
No other node has any information about 
this value. 

Assumption 7: Output registers. 
a. Each of the N output variables 

is associated with one output register 
formed of a chain of flog Ml logic nodes. 

b. A computation is complete at time 
i if the correct value of each output 
v~riable is determined by the current 
state of the nodes in its output register. 

Assumption 8: Solution time. 
A collection of nodes and wires 

operates .in "pipelined time T" if it can 
complete a computation every T time units., 

. 3. THE IMPLEMENTATIONS 

A basic building block far all of the 
designs is the multiply-add cell. kThis 
cell has three bit-serial inputs w , x 
and x1 • It pro~uces two bit-sRrial 0 

outputs y =x +w x and y =x -w x . The 
inputs an8 tRe outputs a~e ~11 flog Ml 
bit integers. · 

A multiply-add cell can be built from 
O(log N) logic gates [14]. The multipli­
cation is performed by O(log N) steps of 
addition in a carry-save adder. The 
subsequent addition and subtraction can 
also be done in O(log N) time. Thus a 
complete multiply-add computation can be 
done in O(log N) time. 

Another basic building block is the . 
sh~ft register. A k-bit shift register is' 
bu1~t of O(k) logic nodes in O(k) area. I 
I~ is used to store constants, successive 1\ 

bits of which are available during each 
unit of time. 



The aspect ratios of the multiply-add 1 

cell and shift register may be adjusted at 
will. They are designed as a rectangle of 
0(1) width which can be folded into any 
rectangular shape. ·:' 

The MM Design 

Perhaps the most obvious implemen­
tation of the Fourier transform is by 
direct computation of the matrix-vector 
product of Assumption 5d. The "systolic 
array" of Kung and Leiserson provides an 
efficient means of calculating this 
product [7]. 

The MM or Matri2 Multiplication 
design consists of N multiply-add cells 
connected in a hexago2a1 mesh. These 
occupy a total of O(N log N) area. 

The input vector x is shifted into 
the upper-left-hand edge of the mesh, , 
the constant matrix A is shifted into the: 
upper-right-hand edge, and the result · 
vector emerges on the bottom edge. Thus 
N input registers are required on the 
upper left region of the chip, a~d N 
output registers must be located at the 
bottom. Additionally, N shift registers 
of O(N log N) bits each must be placed 
on the upper right to store the matrix 
A. It is easy to see that the entire 
con~truction can fit in a rectangle of 
O(N log N) area. 

Each multiply-add step takes O(log N) 
time; N steps are performed during the . 
computation of a single Fourier transform. 
However, N computations may proceed · 
simultaneously if each is separated from 
the next by one multiply-add cell. The 
M~ design thus operates ~n pipelined ti~e 
o ( 1 og JO. - · 

The FFT Network 

Another straightforward implemen­
tation of the Fourier transform takes 
advantage of the Fast Fourier Transform 
algorithm (the FFT). This algorithm is 
most naturally expressed as a computation 
on (N/2)*(log N) multiply-add cells, 
arranged in log N rows of N/2 cells each. 
The interconnections between rows can be 
in the form of a "perfect shuffle" [13] 
or a "butterfly" [4], depending upon how 
the cells are ordered. 

A computation in the FFT network may 
be visulaized as flowing from top to 
bottom~ The inputs are presented in pairs 
(x?.,x . ) to the top row of cells. 
Thnle ~~tls perform a multiply-~dd step, 

·passing the results down to the.next row 
of cells. The computation· is complete 
when the data has flowed through all log N 
rows. 

Th~ best embedding of the FFT network 
is based on the butterfly or~anization. 
Cell i in the top row is ionnected to the 
cell immediately below it and to a cell in 
column (i+N/4) mode N/2. The second 
connection must be laid out carefully: you 
can probably convince yourself that N/2 
horizontal channelys of wiring are 
required between the first and second 
rows •. one for each lateral connection. 
If the multiply-add cells are O(log N) 
units tall and 0(1) units wide, the first 
two rows occupy a region O(N) units tall 
and O(N) units wide. This layout allows 
room for the N drivers of O(N) area that 
ar~ needed for the length-N wires. It 
also allowi plenty of room to store the 
constant w required by each cell. 

The connections between the second and 
third rows oocupy just half as much room as 
the ories between the first two rows. In 
this case, cell i in the first half of the 
second row (O<i<N/4) connects to cell i and 
to cell (i+N/8) mod N/4 in the first half 
of the third row. The cells in the second 
halves of these rows have analogous 
connections. Ho·rizontal channels may be 
shared by corresponding cells in each half­
side, so that N/4 channels. suffice. 

Simiiarl~, ihe connections between th~ 
third and fourth rows occupy just half as: 
much room as the connections between the i 
previous pair of rows. In this case, the! 
N/2 cells in each row are broken into i 
four groups. Cells within each group , 
commuriicate solely with the cells in the ~ 
group immediately beneath them. 

The total area ri~ the FFT network is 
O(N 2), th~ sum of a geometri~ally ·_ 
dec2easing sequence whose first term is 
0 (N ) • . . II 

: 

The pipelined time of this.imp~emen­
tation is O(log N), since log N compu- ! 
tations may proceed simultaneously. Each' 
computation must be separated from the 
next· by at least one multiply-add cell, 
ori·by O(log N) time. I 

Note that the long wires between the. 
rows do not change the asymptotic 1' 

performance of the network. The drivers 

1 

for these wires coritribute a delay of 
O(log N) to each multiply-add step, but 
they do· not affect the rate at which data 
can be shifted into and----ouE of the 
~ultiply-add cells'. 

' ~- ~. -, 
The SE Network ! 

. I 
A shuffle-exchange (SE) network with, 

N/2 multiply-add cells can· perform an FFTI 
in log N steps of compukation [13]. Each 
cell uses a different w value for each 



" 

step.
2 

These values are obtained from an 
O(log N) bit shift register associated 
with every cell. 

The shuffle-exchange connections 
occupy much mor~ room than the cells 
themselves: O(N /log N) area in the best 
embedding known [6]. This construction 
applies only to N of the form 2 2 n. In 
the general case of N=2 n, the best 
embedding i~ O(N~//log N) [14]. (As 
little as N /log N area might be enough, 
for this wo~ld lead to an optimal 
area*(time) performance for the SE 
network.) These area results are a bit 
surprising, for there are only 4 
connections to each node in the SE network 

Each stage of computation on the 
SE network consists of a multiply-add 
step followed by a routing step. In 
a ro~ting step, one word of data is sent 
down each intercellular c~nnection. 
These connections are O(H /log N) in 
length, so that the drivers contribute 
O(log N) delay to the O(log N) time of a 
multiply-add step. The pipelinzd time 
of the SE network is thus O(log N), 
since there are log N stages Gf 
computation. 

I 

The CCC·Network I 
The cube-connected-cycles (CCC) \' 

1nterconnection for N cells is capable 
of performing an N-element FfT in' O(log N) 
multiply-add steps. The CC pattern is I 
v~ry similar to the fFT netwbrk of (K/2)* 
(1og K} = N cells; · · · · · 

The computation of an FFT on the 
CCC network is a little more complicated 
than on the SE, although the approach is 
similar. Each of the O(log N) multiply­
add steps is preceded and followed by 
a routing step. These routing steps 
take O(log N) time ~ach, for they move 
one word over each intercellular 
connection. The 2ime performance of the 
CCC is thus O(log N). 

2 The 2ccc can be embedded in 
O(N /log N) area [9]. This ~s an optimal 
result since the area*(time) performance 
is ~ith~n a constant factor of the limit, 
n(N log N). 

The Mesh 

The mesh implementation is the first 
example of a2

11 small design." It requires 
only O(N log N) area, which is to say that 
it grows about linearly with problem size. 
The other designs have had nearly 
quadratic growth functions. 

A square mesh of N cells can do an 
N-element FFT in log N steps of computation 
by "simulating" the FFT nt!t1'1ork [12,14]. 
The action of each cell in the FFT network 
is implemented by one of the cells in the 
mesh. Since there are N cells in the mesh 
but only N/2 cells in each row of the FFT 
network, half of the mesh cells are idle 
during each stage of the computatation. 

It turns out that a very good way to 
organize the computation is to put the i-th 
input and output registers in the i-th 
cell of a mesh. (Mesh cells are indexed in 
the natural row-major ordering.) Then, 

, follo1·1ing the "butterfly" form of the FFT 
network [4], the first multiply-add step 
combines the data in cell i with the data 
in cell (i+N/2) mod N. This is 
accomplished by routing all of the data 
in t!!.e bottom half of the mesh 11 upl'1ards" 
by /N/2 rows, performing a multiply-add 
step, then shifting the y1 values back 
"downwards" by /N/2 rows. · 

The connections between the second 
and third rows of the FFT network can be 
simulated in a similar fashion, by global 
shifts upwards and downwards of /N/4 rows. 
The third butterfly is simulated by shifts 
of /N/8 rows, ..• , and the (1/2 log N)-th 
corresponds to a shift by a single row. 
Then a series of column shifts begins, 
first by /N/2,. then by /N/4, ... , until 
the.final computation of the FFT is 
performed with the aid of a single column 
shift. · 

Define a "unit-distance route" as a j 
global shift of one word from each cell to

1 

its (right, left, up, or down)-adjacent i 
neighbo1·. There are 4(/f\-1) ur.it-distanc:! 
routes in the FFT implementation 
described above. 

·Parallel data p&ths are built into 
the mesh design in an effort to make the 
routing steps as efficient as possible. 
These paths are one word wide so that a 
mes!!. of N cells occupies a square region 
O(IN 102 N) on a side, for a total area of 
O(N log N). 

Each cell of the mesh ha O(log 2N) 
logic gates. It has an O(log~N)-bit 
sRift register to store log N different 
w values, one for each step in the 
computation. It also has O(log N) 
microinstructions of O(Jog N) bits each, . 
to provide local control for the shifting 
operations [14]. I 

A serial-to-parallel converter is 
used at the interface between the bit­
serial cell I/0 and the word-parallel 
data paths. Each routing operation 
consists of O(log N) time periods to 
load this converter, some number of 



Design Area 

MM N2log N 
FFT N2 

SE N2/log N 
CCC N2/log 2N 
Mesh N log 2N 
Cascade N log N 
CPU N log N 

Table l: Area-time performance of 

unit-distance routes, then another 
O(log N) time units to get the data into. 
the cells. Since the cells are O(log N) 
apart (due to their width and to the 
width of the data paths), drivers of 
O(log N) area and O(loglog N) delay 
are used on each routing path. 

Total time for the FFT on the mesh 
i s 0 ( IN l o g l o g N ) • T h e 0 ( IN ) u n i t -
distance routes take the majority of 
the time; the O(log N) multiply-add 
steps are asymptotically insignificant. 

The Cascade 

It is possible to do an N-element 
. FFT with only log N multiply-add cells, 

. if they are organized in a "cascade" 
/[5]. This approach uses one cell for 
each row of the FFT network. 

The cell corresponding to the j-th 
row o~ the FFT network buffers its data 
in a shift register of N/2J words. The 
data streams through the cascade in a 
serial fashion; the first cell is able 
to tombine x. with x.tN/ 2 by buffering 
x. in its shlft regia e~. A similar 
p~ocess ·occurs at the other cells. 

The total area of the cascade 
implementation is O(N log N), due mostly 
to the shift registers. The area of the 
multiply-add cells is unimportant in an 
asymptotic sense. 

Each cell uses N/2 different wk 
values of O(log N) b~ts each. These 
would occupy O(N_ log N) area if stored 
explicitly, since there are log N cells. 
To keep the area of ~he circuit down 

'to O(N log N), thew values are 
computed "on the fly" by each eel 1. 
A single multiplication by w is all that 
is needed to obtain the value wt(i*j) 
rieeded in the i-th step of cell j from 
the value wt((i-l)*j) it used in the 
previous step. 

TJ!l!~ Area*{Time) 2 

log N N2log 3N 

log N N2log 2N 
. 2 N2log 3N log N 

2 N2log 2N log N 
IN loglog N N2log 2loglog 2NI 

N log N N3log 3N i 

N log 2N N3log 5N 

the Fourier transform-solving circuits. 

The time performance of the cascade 
is O(N log N). A second computation may 
be started as soon as the first one has 
~leared the first cell, which takes time 
O(N log N). 

The CPU Implementation 

As its name suggests, this approach 
mimics the actions of a conventional 
uniprocessor (or CPU) running an FFT. The 
input and output registers are formed into 
a random-access memory of O(N log N) bits 
and O(N log N) area [8]. 

The CPU portion of the design is a 
glorified multiply-add cell that does a 
step of computation in O(log N) time . 
This is just sufficient time to fetch a 
word that might be as much as O(lfillog N) 
units distant. There is thus no asymptotic 
incentive to build a super-fast multi-
p 1 i cat i on u n it . _____ _ 

.- ... :;... 
The ( N / 2) * (1 o g N )° multi ~ 1 i ca~ ion 

steps in an FFT take O(N lo~ N).t1me, 
making this the slowest design in the 
paper. Total area is O(N log N), d~e 
mostly to variable storage. (The~ 
values must be generated "on the fly" 
to obtain this area bound.) 

~. CONCLUSION 

The area and time performance of 
the seven implementations is summarized by 
the table above. Note that all the 
design2 are nearly optimal in an area* 
(time) sense except for th2 Casca2e a~d 
the CPU. (Remember that AT = n(N log N) 
for the solution of an N-element Fourier 
transform.) The problem with the Cascade 
and the CPU seems to be that these designs 
are·processor-poor: the number of multiply-
add cells does not grow quickly enough · 
with problem size. 



The mesh is the only d~sign that is 
nearly optimal under any AT X metric for 
O<f~l. 111H thl+limiting performance is 

. [ 6] Hoey D. and Leiserson C., "A Layout 
for the Shuffle-Exchange Network," 
Proc. 1980 Int 1 l Conf."on Parallel 
Processing, IEEE Computer Society AT x= n(N log xN) [14]. None of the 

other "small" designs is small enough, and 
the other designs are much too large. 

Of course, asymptotic figures can 
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factors." The model used in this paper 
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of memory to logic, since these designs 
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The MM, the FFT, the SE, and the Cascade 
are especially simple implementations 
because they have no complicated routing 
steps. A much more detailed model of 1 

computation (and much more detailed I 
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.effect. The deve lo pm en t of such models· I 
is a promising area for future research. 
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