
P d. f th 1980 IEEE Internat1'onal Conference on Circuits and Computers rocee 1ngs o e -

FOURIER TRANSFORMS IN VLSI

C. D. Thompson
Division of Computer Science

U. C. Berkeley
Berkeley, CA

1. INTRODUCTION

One of the difficulties of VLSI design
is the sheer magnitude of the task. It is
not easy to lay out one hundred thousand
transistors, let alone ten million of them.
Yet there is a sense in which the scale of
VLSI is advantageous. Analytical techniques
are more often applicable to very large
systems than to moderately-sized ones.

This paper shows that asymptotic
analysis can be used to guide the design
of Fourier transform circuits in VLSI.
Approaching chip design in this way has
three advantages. First of all, the n
analysis is simple: the calculations are
easy to perform and thus easy to believe.
Second, the analysis points out the
bottlenecks in a design, indicating which
portions are truly important to optimize
and which designs are inherently flawed.
It ·js impossible to "miss the forest for
the trees" when one is thinking of
asymptotic performance.

A third advantage of the analytic
approach is that it can provide criteria
for judging optimality. The performance
of an optimal circuit can only be matched,
net beaten. Several of the implemen~atiJns
of this paper are demonstrably optima~.
They achieve the l~mit~ng area*(time)
performance of n(N log N) for the H-element
Fourier transform [14]. (The omega
notation meuns "gro\vs at least as fast as":
as N increases, the product of area with
the square of the solution time for these
c~rcu~ts is bounded by some constant times
N log N.) Similar performance limits have
been proved for the problems of sorting,
matrix multiplication, and integer
multiplication [l,3,10,14].

Section 2 of this paper develops a
simple model for VLSI, laying the groundwork
for the implementations and the analyses.
The model is based on a small number of
assumptions that are valid for any
currently envisioned, transistor-based
technology. Thus the results apply equally
well to the field-effect transistors of the

.-MOS technologies (CMOS, HMOS, VMOS, 2 ... }
and to the bipolar transistors of I L.
Jhis work was supported in part by the
U. S. Army· Research Office under Grant
QAAG29-78-G-Ol67.

Section 3 describes seven implemen­
tations of Fourier transform-solving
circuits in VLSI. Most of these circuits
are highly parallel in nature.

Section 4 concludes the paper 1·1ith
a summary of the performance figures of the
designs.

2. THE MODEL

Briefly, a VLSI circuit is modeled
as a collection of nodes and wires. A
node represents a wire junction, a
t r a n s i s t o r , o r a g a t e . A 1'/i • e r e p r e s e n t s
the conductor that carries signals from
one node to another.

In keeping with the planar nature of
VLSI, nodes are laid out in a non-overlap
ping fashion. Only a constant number of
wires (say 2 or 4) can cross over at any
one point in the plane.

The unit of time in the model is
proportional to the response time of a
simple circuit. In particular, a wire
can carry one bit of information in one
unit of time. This bit is typically used
to change the state of the transistor
at the other end oi the wire.

The unit of area in the model is
proportional to the size of a simple ·
circuit. Wires have unit width and nodes
occupy 0(1) area, that is, a node is some
constant number of wire-widt~s on a side.
(The area of a node also includes an

. allowance for power and clock wires,
: which are not represented explicitly in
. the model.)
I

The problem of long-distance
communication receives special attention.
Most nodes can drive only short wires. A
specialized "driver node" of O(k) area is
required to send a signal down a wire of
length k. A driver has O(log k) stages of
amplification, the last stage of which has.
gate (or junction) area proportional to k.
This structure is consistent with the
assumption that the load presented by a
long wire is capacitive in nature and
proportional to its length [B]. The !
amplifier stages are individually clocked,
so· that a driver has O(log k) delay but '
unit bandwidth.

The notion of "self-timed regions"
[11] is incorporated into the model to
account for the difficult of obtaining
chip-wide synchronization. The nodes in ~
self-timed'region are in synchrony: all 1

signal transistions occur at the same
phase of a common clock. Signals
originating outside the region are syn­
chronized with this local clock by means
of "receiver nodes."

The model is summarized in the list
of assumptions below. A fuller ~xpla­
nation and defense of the model 1s
contained in the author's thesis [14].

Assumption 1: Embedding.
a. Wires are one unit wide.
b. Two wires may cross over each

other•at right angles.
c. A logic node occupies 0(1) area.

It has 0(1) input wires and 0(1) output
wires, none of which are more than 0(1)
units long.

d. Each logic node belongs to a
self-timed region. All wires connecting
to a logic node lie entirely within its
self-timed region.

e. A self-timed region is at most
O(log N) units wide or long. · ·

d. A driver node of O(k) area has an
output wire that is k units long. This
output wire may pass through any number of

1
·

self-timed regions before it connects to 1

the input of a receiver node. I
g. A receiver node occupies 0(1) ;

area .. Its output wire is 0(1) units long~

Assumption 2: Total area.
The total area of a collection of

nodes and wires is the number of unit
squares in the smallest enclosing
rectangle. I

I
Assumption 3: Timing. I

a .. Wires have unit bandwidth. They
carry at most one bit of information in
a unit of time.

b. Logic nodes and receiver nodes
have 0(1) delay.

c. The driver node for a wire of
length k has O(log k) delay.

Assumption 4: Transmission functions.
a. The signals appearing on the

output wires of a node are some fixed
fun~tion of its current "state."

b. The state of a node is changed
every time unit, according to some fixed
function of the signals on its input wires.:

c. Logic nodes and receiver nodes are j
limited to 0(1) bits of state. ,

d. Driver nodes have O(log k) bits of i
state, one bit for each stage in their i
amplification chain. . I

e. The state of the nodes in an "inpud
register" may be modified from outside whe~

·a computation is initiated. See Assumption)
6. -- .

Assumption 5: Problem definition. I
a. Each of N input variables takes on

one of M different values with equal
likelihood. ·

b. ti is an integral power of 2.
c. log M = G(log N). (A word length

of r1og Ml = c*(log N) bits is necessary
and sufficient to describe the value of an
input v01riable.)

u. The output variables y are
r~1~ted to the input variables x by the
equation j =Ax. The (i,j)-th entry of A
has the value wt((i-l)*(j-1)), where w is
d principal N-th root of unity in the ring
of multiplication and addition mod M. I

Ass~mption 6: Input reg~sters.
a. Each of the N input variables

is associated with one input register
;ormed of a chain of flog Ml logic nodes.

b. A computation is initiated at time
T if the value of each input variable is
eRcoded in the nodes of its input register·
No other node has any information about
this value.

Assumption 7: Output registers.
a. Each of the N output variables

is associated with one output register
formed of a chain of flog Ml logic nodes.

b. A computation is complete at time
i if the correct value of each output
v~riable is determined by the current
state of the nodes in its output register.

Assumption 8: Solution time.
A collection of nodes and wires

operates .in "pipelined time T" if it can
complete a computation every T time units.,

. 3. THE IMPLEMENTATIONS

A basic building block far all of the
designs is the multiply-add cell. kThis
cell has three bit-serial inputs w , x
and x1 • It pro~uces two bit-sRrial 0

outputs y =x +w x and y =x -w x . The
inputs an8 tRe outputs a~e ~11 flog Ml
bit integers. ·

A multiply-add cell can be built from
O(log N) logic gates [14]. The multipli­
cation is performed by O(log N) steps of
addition in a carry-save adder. The
subsequent addition and subtraction can
also be done in O(log N) time. Thus a
complete multiply-add computation can be
done in O(log N) time.

Another basic building block is the .
sh~ft register. A k-bit shift register is'
bu1~t of O(k) logic nodes in O(k) area. I
I~ is used to store constants, successive 1\

bits of which are available during each
unit of time.

The aspect ratios of the multiply-add 1

cell and shift register may be adjusted at
will. They are designed as a rectangle of
0(1) width which can be folded into any
rectangular shape. ·:'

The MM Design

Perhaps the most obvious implemen­
tation of the Fourier transform is by
direct computation of the matrix-vector
product of Assumption 5d. The "systolic
array" of Kung and Leiserson provides an
efficient means of calculating this
product [7].

The MM or Matri2 Multiplication
design consists of N multiply-add cells
connected in a hexago2a1 mesh. These
occupy a total of O(N log N) area.

The input vector x is shifted into
the upper-left-hand edge of the mesh, ,
the constant matrix A is shifted into the:
upper-right-hand edge, and the result ·
vector emerges on the bottom edge. Thus
N input registers are required on the
upper left region of the chip, a~d N
output registers must be located at the
bottom. Additionally, N shift registers
of O(N log N) bits each must be placed
on the upper right to store the matrix
A. It is easy to see that the entire
con~truction can fit in a rectangle of
O(N log N) area.

Each multiply-add step takes O(log N)
time; N steps are performed during the .
computation of a single Fourier transform.
However, N computations may proceed ·
simultaneously if each is separated from
the next by one multiply-add cell. The
M~ design thus operates ~n pipelined ti~e
o (1 og JO. - ·

The FFT Network

Another straightforward implemen­
tation of the Fourier transform takes
advantage of the Fast Fourier Transform
algorithm (the FFT). This algorithm is
most naturally expressed as a computation
on (N/2)*(log N) multiply-add cells,
arranged in log N rows of N/2 cells each.
The interconnections between rows can be
in the form of a "perfect shuffle" [13]
or a "butterfly" [4], depending upon how
the cells are ordered.

A computation in the FFT network may
be visulaized as flowing from top to
bottom~ The inputs are presented in pairs
(x?.,x .) to the top row of cells.
Thnle ~~tls perform a multiply-~dd step,

·passing the results down to the.next row
of cells. The computation· is complete
when the data has flowed through all log N
rows.

Th~ best embedding of the FFT network
is based on the butterfly or~anization.
Cell i in the top row is ionnected to the
cell immediately below it and to a cell in
column (i+N/4) mode N/2. The second
connection must be laid out carefully: you
can probably convince yourself that N/2
horizontal channelys of wiring are
required between the first and second
rows •. one for each lateral connection.
If the multiply-add cells are O(log N)
units tall and 0(1) units wide, the first
two rows occupy a region O(N) units tall
and O(N) units wide. This layout allows
room for the N drivers of O(N) area that
ar~ needed for the length-N wires. It
also allowi plenty of room to store the
constant w required by each cell.

The connections between the second and
third rows oocupy just half as much room as
the ories between the first two rows. In
this case, cell i in the first half of the
second row (O<i<N/4) connects to cell i and
to cell (i+N/8) mod N/4 in the first half
of the third row. The cells in the second
halves of these rows have analogous
connections. Ho·rizontal channels may be
shared by corresponding cells in each half­
side, so that N/4 channels. suffice.

Simiiarl~, ihe connections between th~
third and fourth rows occupy just half as:
much room as the connections between the i
previous pair of rows. In this case, the!
N/2 cells in each row are broken into i
four groups. Cells within each group ,
commuriicate solely with the cells in the ~
group immediately beneath them.

The total area ri~ the FFT network is
O(N 2), th~ sum of a geometri~ally ·_
dec2easing sequence whose first term is
0 (N) • . . II

:

The pipelined time of this.imp~emen­
tation is O(log N), since log N compu- !
tations may proceed simultaneously. Each'
computation must be separated from the
next· by at least one multiply-add cell,
ori·by O(log N) time. I

Note that the long wires between the.
rows do not change the asymptotic 1'

performance of the network. The drivers

1

for these wires coritribute a delay of
O(log N) to each multiply-add step, but
they do· not affect the rate at which data
can be shifted into and----ouE of the
~ultiply-add cells'.

' ~- ~. -,
The SE Network !

. I
A shuffle-exchange (SE) network with,

N/2 multiply-add cells can· perform an FFTI
in log N steps of compukation [13]. Each
cell uses a different w value for each

"

step.
2

These values are obtained from an
O(log N) bit shift register associated
with every cell.

The shuffle-exchange connections
occupy much mor~ room than the cells
themselves: O(N /log N) area in the best
embedding known [6]. This construction
applies only to N of the form 2 2 n. In
the general case of N=2 n, the best
embedding i~ O(N~//log N) [14]. (As
little as N /log N area might be enough,
for this wo~ld lead to an optimal
area*(time) performance for the SE
network.) These area results are a bit
surprising, for there are only 4
connections to each node in the SE network

Each stage of computation on the
SE network consists of a multiply-add
step followed by a routing step. In
a ro~ting step, one word of data is sent
down each intercellular c~nnection.
These connections are O(H /log N) in
length, so that the drivers contribute
O(log N) delay to the O(log N) time of a
multiply-add step. The pipelinzd time
of the SE network is thus O(log N),
since there are log N stages Gf
computation.

I

The CCC·Network I
The cube-connected-cycles (CCC) \'

1nterconnection for N cells is capable
of performing an N-element FfT in' O(log N)
multiply-add steps. The CC pattern is I
v~ry similar to the fFT netwbrk of (K/2)*
(1og K} = N cells; · · · · ·

The computation of an FFT on the
CCC network is a little more complicated
than on the SE, although the approach is
similar. Each of the O(log N) multiply­
add steps is preceded and followed by
a routing step. These routing steps
take O(log N) time ~ach, for they move
one word over each intercellular
connection. The 2ime performance of the
CCC is thus O(log N).

2 The 2ccc can be embedded in
O(N /log N) area [9]. This ~s an optimal
result since the area*(time) performance
is ~ith~n a constant factor of the limit,
n(N log N).

The Mesh

The mesh implementation is the first
example of a2

11 small design." It requires
only O(N log N) area, which is to say that
it grows about linearly with problem size.
The other designs have had nearly
quadratic growth functions.

A square mesh of N cells can do an
N-element FFT in log N steps of computation
by "simulating" the FFT nt!t1'1ork [12,14].
The action of each cell in the FFT network
is implemented by one of the cells in the
mesh. Since there are N cells in the mesh
but only N/2 cells in each row of the FFT
network, half of the mesh cells are idle
during each stage of the computatation.

It turns out that a very good way to
organize the computation is to put the i-th
input and output registers in the i-th
cell of a mesh. (Mesh cells are indexed in
the natural row-major ordering.) Then,

, follo1·1ing the "butterfly" form of the FFT
network [4], the first multiply-add step
combines the data in cell i with the data
in cell (i+N/2) mod N. This is
accomplished by routing all of the data
in t!!.e bottom half of the mesh 11 upl'1ards"
by /N/2 rows, performing a multiply-add
step, then shifting the y1 values back
"downwards" by /N/2 rows. ·

The connections between the second
and third rows of the FFT network can be
simulated in a similar fashion, by global
shifts upwards and downwards of /N/4 rows.
The third butterfly is simulated by shifts
of /N/8 rows, ..• , and the (1/2 log N)-th
corresponds to a shift by a single row.
Then a series of column shifts begins,
first by /N/2,. then by /N/4, ... , until
the.final computation of the FFT is
performed with the aid of a single column
shift. ·

Define a "unit-distance route" as a j
global shift of one word from each cell to

1

its (right, left, up, or down)-adjacent i
neighbo1·. There are 4(/f\-1) ur.it-distanc:!
routes in the FFT implementation
described above.

·Parallel data p&ths are built into
the mesh design in an effort to make the
routing steps as efficient as possible.
These paths are one word wide so that a
mes!!. of N cells occupies a square region
O(IN 102 N) on a side, for a total area of
O(N log N).

Each cell of the mesh ha O(log 2N)
logic gates. It has an O(log~N)-bit
sRift register to store log N different
w values, one for each step in the
computation. It also has O(log N)
microinstructions of O(Jog N) bits each, .
to provide local control for the shifting
operations [14]. I

A serial-to-parallel converter is
used at the interface between the bit­
serial cell I/0 and the word-parallel
data paths. Each routing operation
consists of O(log N) time periods to
load this converter, some number of

Design Area

MM N2log N
FFT N2

SE N2/log N
CCC N2/log 2N
Mesh N log 2N
Cascade N log N
CPU N log N

Table l: Area-time performance of

unit-distance routes, then another
O(log N) time units to get the data into.
the cells. Since the cells are O(log N)
apart (due to their width and to the
width of the data paths), drivers of
O(log N) area and O(loglog N) delay
are used on each routing path.

Total time for the FFT on the mesh
i s 0 (IN l o g l o g N) • T h e 0 (IN) u n i t -
distance routes take the majority of
the time; the O(log N) multiply-add
steps are asymptotically insignificant.

The Cascade

It is possible to do an N-element
. FFT with only log N multiply-add cells,

. if they are organized in a "cascade"
/[5]. This approach uses one cell for
each row of the FFT network.

The cell corresponding to the j-th
row o~ the FFT network buffers its data
in a shift register of N/2J words. The
data streams through the cascade in a
serial fashion; the first cell is able
to tombine x. with x.tN/ 2 by buffering
x. in its shlft regia e~. A similar
p~ocess ·occurs at the other cells.

The total area of the cascade
implementation is O(N log N), due mostly
to the shift registers. The area of the
multiply-add cells is unimportant in an
asymptotic sense.

Each cell uses N/2 different wk
values of O(log N) b~ts each. These
would occupy O(N_ log N) area if stored
explicitly, since there are log N cells.
To keep the area of ~he circuit down

'to O(N log N), thew values are
computed "on the fly" by each eel 1.
A single multiplication by w is all that
is needed to obtain the value wt(i*j)
rieeded in the i-th step of cell j from
the value wt((i-l)*j) it used in the
previous step.

TJ!l!~ Area*{Time) 2

log N N2log 3N

log N N2log 2N
. 2 N2log 3N log N

2 N2log 2N log N
IN loglog N N2log 2loglog 2NI

N log N N3log 3N i

N log 2N N3log 5N

the Fourier transform-solving circuits.

The time performance of the cascade
is O(N log N). A second computation may
be started as soon as the first one has
~leared the first cell, which takes time
O(N log N).

The CPU Implementation

As its name suggests, this approach
mimics the actions of a conventional
uniprocessor (or CPU) running an FFT. The
input and output registers are formed into
a random-access memory of O(N log N) bits
and O(N log N) area [8].

The CPU portion of the design is a
glorified multiply-add cell that does a
step of computation in O(log N) time .
This is just sufficient time to fetch a
word that might be as much as O(lfillog N)
units distant. There is thus no asymptotic
incentive to build a super-fast multi-
p 1 i cat i on u n it . _____ _

.- ... :;...
The (N / 2) * (1 o g N)° multi ~ 1 i ca~ ion

steps in an FFT take O(N lo~ N).t1me,
making this the slowest design in the
paper. Total area is O(N log N), d~e
mostly to variable storage. (The~
values must be generated "on the fly"
to obtain this area bound.)

~. CONCLUSION

The area and time performance of
the seven implementations is summarized by
the table above. Note that all the
design2 are nearly optimal in an area*
(time) sense except for th2 Casca2e a~d
the CPU. (Remember that AT = n(N log N)
for the solution of an N-element Fourier
transform.) The problem with the Cascade
and the CPU seems to be that these designs
are·processor-poor: the number of multiply-
add cells does not grow quickly enough ·
with problem size.

The mesh is the only d~sign that is
nearly optimal under any AT X metric for
O<f~l. 111H thl+limiting performance is

. [6] Hoey D. and Leiserson C., "A Layout
for the Shuffle-Exchange Network,"
Proc. 1980 Int 1 l Conf."on Parallel
Processing, IEEE Computer Society AT x= n(N log xN) [14]. None of the

other "small" designs is small enough, and
the other designs are much too large.

Of course, asymptotic figures can
.hide significant differences in "constant
factors." The model used in this paper
can be said to penalize designs with
simple control structures or a high ratio
of memory to logic, since these designs

'will be somewhat smaller than the others.
The MM, the FFT, the SE, and the Cascade
are especially simple implementations
because they have no complicated routing
steps. A much more detailed model of 1

computation (and much more detailed I
analysis) is required to capture this ·
.effect. The deve lo pm en t of such models· I
is a promising area for future research.

(7]

[8]

[9]

(1980). ,

Kung H. and Leiserson C., "systolic
Arrays (for VLSI)," CMU-CS-79-103
Carnegie-Mellon Computer Science '
Dept.'· (1978).

Mead C. and Rem M., "Cost and
Performance of VLSI Computing
Struttures, 11 IEEE Journal of Solid­
State Circuits, Vol. SC-14, pp. 455-
462, (1979).

Preparata F .. and Vuillemin J., "The
Cube-Connected Cycles: A Versatile
Network for Parallel Computation,"
20th Annual Symp. on Foundations of
Computer Science, IEEE Computer
Society, pp. 140-147, (1979).

[1]

REFERENCES . . I [10]

Ab e 1 s o n H . a n d A n d re a e P . , " I n fo rm a t i o nil
Transfer and Area-Time Tradeoffs for

Savage J., "Area-Time Tradeoffs for
Matrix Multiplication and Related
Problems in VLSI Models," TR-CS-50,
Brown Univ. Department of Computer
Science, (1979).

[2]

VLSI Multiplication," Comm. ACM, Vol.
23, pp. 27-32, (1980).

Aho A., Hopcroft J., and Ullman J.,
The Design and Analysis of Computer
Algorithms, Addison-Wesley, (1974).

.[3] Brent R. and Kung H., "The Area-Time
Complexity of Binary Multiplication,"
CMU-CS-79-136, Carnegie-Mellon
Computer Science Dept., (1979).

·'

[4] Cochran W., Cooley J. et al., "What
Is the Fast Fourier Transform?,"
IfEE Trans. on Audio and Electro.,
Vol. AU-15, pp. 45-55, (1967).

[5] Despain A., "Very Fast Fourier
Transform Algorithms for Hardware
Implementation," IEEE Trans. Comput.,

. Vol. C-28, pp. 333-341, (1979).

--

~ 11 J. Seitz C., "Self-Timed VLSI Systems,"
Caltech Conf. on VLSI, Caltech
Computer Science Dept., pp. 345-354,
(1979). . .

[12] Stevens J., "A Fast Fourier Transform
Subroutine for Illiac IV," Technical
Report, Center for Advanced Computation,
Illinois, (1971).

[13] St:rne H., "Parallel Proce:sing witli
the. Perfect Shuffle," IEEE Trans.
Comput., Vol. C-20, pp. 153-161,
~1971). . .

[14] Thompson c:, "A Complexity Theory" for·
VLSI," Ph.D. Thesis, Carnegie-Mellon
Computer Science Dept., (1980).

