
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 11, NOVEMBER 1983

Fourier Transforms in VLSI

CLARK D. THOMPSON

Abstract-This paper surveys nine designs for VLSI circuits that
compute N-element Fourier transforms. The largest of the designs
requires O(N2 log N) units of silicon area; it can start a new Fourier
transform every O(log N) time units. The smallest designs have about
1/Nth of this throughput, but they require only 1/Nth as much
area.
The designs exhibit an area-time tradeoff: the smaller ones are

slower, for two reasons. First, they may have fewer arithmetic units
and thus less parallelism. Second, their arithmetic units may be in-
terconnected in a pattern that is less efficient but more compact.
The optimality of several of the designs is immediate, since they

achieve the limiting area * time2 performance of Q(N2 log2 N).

Index Terms-Algorithms implemented in hardware, area-time
complexity, computational complexity, FFT, Fourier transform,
mesh-connected computers, parallel algorithms, shuffle-exchange
network, VLSI.

I. INTRODUCTION

ONE of the difficulties of VLSI design is the magnitude
of the task. It is not easy to lay out one hundred thou-

sand transistors, let alone ten million of them. Yet there is a
sense in which the scale of VLSI is advantageous. The com-
plexity of a VLSI chip is so great that asymptotic approxi-
mations can give insight into performance evaluation and
design.

This paper shows how asymptotic analysis can aid in the
design of Fourier transform circuits in VLSI. Approaching
chip design in this way has three advantages. First of all, the
analysis is simple: the calculations are easy to perform and thus
easy to believe. Second, the analysis points out the bottlenecks
in a design, indicating the portions that should be optimized.
It is impossible to "miss the forest for the trees" when one is
thinking of asymptotic performance.
A third advantage of the analytic approach is that it provides

a simple framework for the evaluation and explanation of
various designs. Limits on area-time performance have been
proved for a number of important problems, including sorting,
matrix multiplication, and integer multiplication [1]- [6]. In
the case of the central problem of this paper, the N-element
Fourier transform, it has been shown that no circuit can have
a better area * time2 performance than Q(N2 log2 N)1 [7].

For the purpose of this paper, "time performance" is defined

Manuscript received December 8, 1980; revised September 17, 1982 and
April 29, 1983. This work was supported in part by the National Science
Foundation under Grant ECS-81 10684, in part by the U.S. Army Research
Office under Grant OAAGG29-78-G-0167, and in part by a Chevron U.S.A.
Career Development grant.
The author is with the Division of Computer Science, University of Cali-

fornia, Berkeley, CA 94720.

as the number of clock cycles in the interval between successive
Fourier transformations by a possibly pipelined circuit. Note
that it is a circuit's throughput, not its delay, that is measured
by this definition of "time performance." However, in view of
the importance of circuit delay in many applications, delay
figures will be presented for all the Fourier transform-solving
circuits in this paper. The optimality of any particular delay
figure can be judged by how close the circuit comes to the
limiting area * delay2 performance of Q(N2 log2 N) [5].
No matter how one defines a circuit's time performance, it

is important to make explicit I/O assumptions when quoting
or proving lower bound results. Vuillemin's implicit convention
[7], followed here, is that successive problem inputs and out-
puts must enter and leave the circuit on the same pins. For
example, pin 1 might be used to carry the most significant bit
of input 1 for all problems. This is a natural assumption for
a pipelined circuit; a more flexible form of parallelism would
allow different problem instances to enter the circuit on dif-
ferent I/O lines. (The area * delay2 performance limit [5]
quoted above relies on the assumption that all the bit of an
input word enter the circuit through the same pin, or at least
through a localized set of pins. However, Vuillemin's proof
technique makes it clear that the delay bound also applies
under the I/O assumptions of this paper.) Readers interested
in a further discussion of the way I/O assumptions can affect
lower and upper bounds on circuit performance are referred
to [6].
The fact that there is a theoretical limit to area * time2

performance suggests that designs be evaluated in terms of how
closely they approach this limit. Any design that achieves this
limit must be optimal in some sense and thus deserves careful
study. This paper presents a number of optimal and nearly
optimal designs, corresponding to different tradeoffs of area
for time. For example, in Section III, the "FFT network" takes
only O(log N) time but O(N2) area to perform its Fourier
transform. Thus it is a faster but larger circuit than, say, the
"mesh implementation," which solves an N-element problem
in 0(VN) time and O(N log2 N) area.

Section II of this paper develops a model for VLSI, laying
the groundwork for the implementations and the analyses. The

The Q() notation means "grows at least as fast as": as N increases, the
area * time2 product for these circuits is bounded from below by some constant
times N2 log2 N. In contrast, the more familiar 0() notation is used exclusively
for upper bounds, since it means "grows at most as fast as." For example, a
circuit occupies area A = O(N) if there is some constant c for which A < cN
for all but a finite number of problem sizes N. Finally, all logarithms in this
paper are base two.

0018-9340/83/1100-1047$01.00 © 1983 IEEE

1047

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

ctho065
Text Box
Copyright IEEE, 1983. This copy is posted here by the author, for your personal use, and is not authorised for redistribution. The definitive version is http://dx.doi.org/10.1109/TC.1983.1676155.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 11, NOVEMBER 1983

model is based on a small number of assumptions that are valid
for any currently envisioned transistor-based technology. Thus
the results apply equally well to the field-effect transistors of
the MOS technologies (CMOS, HMOS, VMOS,. . .), to the
bipblar transistors of F2L, and to any GaAs process.

Section III describes nine implementations of Fourier
transform-solving circuits in VLSI. Most of these circuits are
highly parallel in nature. None of the circuits are original to
the paper. However, only a few had been previously analyzed
for their area-time performance.

Section IV concludes the paper with a summary of the
performance figures of the designs.

II. THE MODEL

Briefly, a VLSI circuit is modeled as a collection of nodes
and wires. A node represents a transistor or a gate. A wire
represents the conductor that carries signals from one node to
another. In keeping with the planar nature of VLSI, restric-
tions are placed on the ways in which nodes and wires are al-
lowed to overlap each other. Only one node and at most two
wires can pass over any point in the plane.
The unit of time in the model is equal to the period of the

system clock, if one exists. (Asynchronous circuits and "self-
timed" circuits are discussed in the author's dissertation [5];
only the synchronous case is described here.) In particular, a
wire can carry one bit of information in one unit of time. This
bit is typically used to change the state of the node at the other
end of the wire.
The unit of area in the model is determined by the "mini-

mum feature width" of the processing technology. Wires have
unit width and nodes occupy 0(1) area, that is, a node is some
constant number of wire-widths on a side. The area of a node
also includes an allowance for power and clock wires, which
are not represented explicitly in the model.

Fan-out and wire-length restrictions are enforced by the
model's timing and loading rules. These rules are predicated
on the assumption that loads are capacitive in nature and
proportional to wirelength and fan-out [8, p. 315]. Under this
assumption, an 0(k)-area circuit can drive a wire of length k
with only 0(log k) delay [8, p. 13]. Fig. 1 shows such a driver
circuit for the case that k = 3. Each stage of the driver is twice
the size of the previous one, so its output can drive twice the
wirelength or twice the fanout. (The final stage of a driver is
about 10 percent of the area of the circuit it drives, in a typical
NMOS design.)

In Fig. 1, the size of a stage is indicated by the number of
latches in that stage. This is somewhat contrary to current
practice, in which each stage is a single device built of larger-
than-normal transistors. Splitting stages into unit-sized pieces
has two advantages, offsetting the obvious constant-factor
disadvantages in size and speed. First, it results in a cleaner
and simpler model. Second, and more importantly, it makes
it clear that drivers can increase circuit area by at most a
constant factor. The first 10 percent of the length of every long
(but unit-width) wire can be replaced by its 0(1)-width driver.
Other wires may cross the "driver portion" of a long wire al-
most anywhere, in the gaps between its latches. If wires were

OUT

DDQ 0D % ~D D

i IN IN 3

Fig. 1. A three-stage driver. The output of a k-stage driver at time t is given
by the transmission function OUT(t) = INI(t - k) V INk(t - 1). The
high-power, low-delay input INk is used in the "mesh" construction of
Section III-I.

not allowed to cross over drivers, quadratic increases in circuit
area could be observed when long-wire drivers are included into
an arbitrary layout [9].

This paper's assumption of capacitive loads and logarithmic
wire delays seems adequate to model any of today's transis-
tor-based technologies [10]. Technological "fixes" are avail-
able [11] to minimize the resistive effects and current limita-
tions that degrade the performance of circuits with extremely
long wires and/or large fan-outs [8, p. 230]. However, the
model is invalid for any technology, such as IBM's supercon-
ducting Josephson junction logic [12], in which wire delays are
influenced by speed-of-light considerations. Wire delay would
then be linear in wire length, leading to entirely different a-
symptotic results [13].
The model is summarized in the list of assumptions below.

A fuller explanation and defense of a similar model is con-
tained in the author's Ph.D. dissertation [5]. A slightly dif-
ferent version of the model, with modified I/O assumptions,
appears in [6].
Assumption I-Embedding:
a) Wires are one unit wide.
b) At most two wires may cross over each other at any point

in the plane.
c) Fan-out may be introduced at any point along a wire. In

graph-theoretic terms, wires are thus hyperedges connecting
two or more nodes.

d) A node occupies 0(1) area. Wires may not cross over
nodes, nor can nodes cross over nodes.

e) A node has at most 0(1) input wires and 0(1) output
wires. (In general, a node can implement any Boolean function
that is computable by a constant number of TTL gates. Hence
an "and gate" or a "j-k flip-flop" is represented by a single
logic node: see Assumption 4.)

f) Unboundedly long wires and large fanouts are permis-
sible under the following loading rule. A length-k wire may
serve as the input wire for n gates only if it is connected to the
outputs of at least cwk + cgn identical gates with identical
inputs. See, for example, the circuit in Fig. 1. The "loading
constants" cw, cg are always less than one-otherwise it would
be impossible to connect two gates together-but their precise
values are technology-dependent.

Assumption 2- Total Area: The total area A of a collection
of nodes and wires is the number of unit squares in the smallest
enclosing rectangle. (A rectangular die is used to cut individual
chips out of a silicon wafer: the larger the die, the fewer circuits
per wafer. This paper's area measure is thus correlated with
manufacturing costs.)

1048

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

THOMPSON: FOURIER TRANSFORMS IN VLSI

Assumption 3-Timing:
a) Wires have unit bandwidth. They carry a one-bit "sig-

nal" in each unit of time.
b) Nodes have 0(1) delay. (This assumption, while real-

istic, is theoretically redundant in view of Assumption 3a.)
Assumption 4- Transmission Functions:
a) The "state" of a node is a bit-vector that is updated every

time unit according to some fixed function of the signals on its
input wires. The signals appearing on the output wires of a
node are some fixed function of its current "state." (With this
definition, a node is seen to have the functionality of a finite
state automation of the Moore variety.)

b) Nodes are limited to 0(1) bits of state.
Assumption 5-Problem Definition:
a) A problem instance is obtained by assigning one ofM

different values to each ofN input variables. All MN possible
problem instances are equally likely: there is no correlation
between the variables in a single problem instance, nor is there
any correlation between the variables in different problem
instances. (If successive problem instances were correlated,
pipelined circuits might take advantage of this correlation,
invalidating the lower bounds on achievable performance. It
would of course be interesting to make a separate study of
circuits that efficiently transform correlated data.)

b) N is an integral power of 2. This allows us to use the FFT
algorithm in our circuits.

c) log M = O(log N): a word length of rlog M = C(log2
N) bits is necessary and sufficient to represent the value of an
input variable, using any of the usual binary encoding schemes:
one's complement, two's complement, etc. (This assumption
allows us to suppress the parameter M in our upper and lower
bounds. Binary encoding is required in the lower bound proof
[7]; it should be possible to remove this restriction. The re-
striction on word length seems to be congruent with normal
usage of the Fourier transform: in practice, c seems to be a
small constant greater than 1.)

d) The output variables y are related to the input variables
x by the equation y = Cx. The (i, j)th entry of C has the value
wi, where w is a principal Nth root of unity in the ring of
multiplication and addition mod M. (This assumption defines
a number-theoretic transform; results for the more common
Fourier transform over the field of complex numbers are
analogous.)

Assumption 6-Input Registers:
a) Each of theN input variables is associated with one input

register formed of a chain of rlog M] logic nodes. In other
words, input register i corresponds to input variable xi, 0 <
i <N-1.

b) Each input register receives the value of its variable once,
at the beginning of each computation; each input value is sent
to exactly one input register. (This paper's model is thus
"when- and where-oblivious" [3], since the times and locations
of input events are not data-dependent. The model is also
"semelective and unilocal" [14] since each input value is read
at a single time and location. Less restricted I/O models are
considered in [61.)

Assumption 7-Output Registers:
a) Each of the N output variables is associated with one

output register formed of a chain of rlog M] logic nodes.
b) A computation is complete when the correct value of

each output variable is encoded in the state of the nodes in its
output register. Presumably, some other circuit will make use
of these output values at this time.

Assumption 8-Pipelined Time Performance: A collection
of nodes and wires operates in "pipelined time Tp" if it com-
pletes computations at an average rate of one every Tp time
units. The time bounds of this paper thus measure the period
or throughput, and not the delay, of Fourier transform circuits.
(However, delays are considered in Section IV's comparison
of the nine designs.)

TII. THE IMPLEMENTATIONS
All of the Fourier transform circuits of this paper are built

from a few basic building blocks: shift registers, multiply-add
cells, random-access memories, and processors. These are
described in the following.
A k-bit shift register can be built from a string of k logic

nodes in 0(k) area. Each of the logic nodes stores one bit. Shift
registers are used to store the values of variables and constants;
these values may be accessed in bit-serial fashion, one bit per
time unit.

Multiply-add cells are used to perform the arithmetic op-
erations in a Fourier transform. Each cell has three bit-serial
inputs wk, xo, and x1. It produces two bit-serial outputs

Yo XO + wkx1 andyl = xo - wkx 1. (1)
The inputs and the outputs are all riog MI = O(log N) bit
integers.

It is fairly easy to see that a simple (if slow) multiply-add
cell can be built from O(log N) logic gates [5]. The multipli-
cation is performed by O(log N) steps of addition in a carry-
save adder. Each addition takes 0(1) time, if carries are only
propagated by one bit-position per addition. The result of the
multiplication is available O(log N) time after the last partial
product enters the adder, when the carry out of the least-sig-
nificant bit position has had a chance to propagate to the
most-significant position. The subsequent addition and sub-
traction can also be done in O(log N) time. Thus a complete
multiply-add computation can be done in O(log N) time and
O(log N) area.
The aspect ratios of the multiply-add cell and shift register

may be adjusted at will. They should be designed as a rectangle
of 0(1) width that can be folded into any rectangular
shape.
An S-bit random-access memory with a cycle time of O(log

S) can be built in O(S) area, using the techniques of Mead and
Rem [8, pp. 317-321]. (Their area and time analyses are es-
sentially consistent with the model of this paper; see [5] for a
comparative study of the two models.) The cycle time claimed
above is the best possible, given the logarithmic wire delays
implied by Assumption If, since most of the storage locations
are at least N/;§ wire-widths from the output port of the
memory. To achieve this optimal cycle time, the number of
levels in Mead and Rem's hierarchical memory must grow
proportionally with log S.

1 049

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. I1, NOVEMBER 1983

Processors are used to generate control signals, whenever
these become complex. Each processor is a simple von Neu-
mann computer equipped with an O(log N)-bit wide ALU,
O(log N) registers, and a control store with O(log N) in-
structions. The cycle time of a processor is O(log N) time units.
This is enough time to fetch and execute a register-to-register
move, a conditional branch, an "add," or even a "multiply"
instruction. It is also enough time to allow the processor's op-
erands to come from an N-bit random-access memory.
At least O(log2 N) units of area are required to implement

a processor, since it has O(log N) words and thus O(log2 N)
bits of storage. A straightforward, if tedious, argument can be
made to show that O(log2 N) area is actually sufficient to build
a processor [5]. Neither the ALU, the data paths, nor the in-
struction decoding circuitry will occupy more room (asymp-
totically) than the control store.

A. The Direct Fourier Transform on One Multiply-Add
Cell

The naive or "direct" algorithm for computing the Fourier
transform is to compute all terms in the matrix-vector product
of Assumption 5d. Following this scheme, a total of N2 mul-
tiplications are required when an N-element input vector x is
multiplied by an N X N matrix of constants C, to yield an
N-element output vector y. Three degrees of parallelism im-
mediately suggest themselves: the product may be calculated
on one multiply-add cell, on N multiply-add cells, or on N2
multiply-add cells. Each possibility is discussed separately in
the discussion that follows.
A single multiply-add cell will take O(N2 log N) time to

perform all the-calculations required in the direct Fourier
transform algorithm. (Recall that a multiply-add calculation
takes O(log N) time.) To this must be added the overhead of
calculating the constants in the matrix C, since a prohibitively
large amount of area would be required to store these explicitly.
Fortunately, this calculation is quite simple. The constant
required during the ijth multiply-add step (see statement 4 of
Fig. 2) can generally be obtained by multiplying wi by the
constant used in the previous multiply-add step, wi(hi). A
single processor is capable of performing this calculation,
supplying the necessary constants to the multiply-add cell as
rapidly as they are needed. The time performance of the uni-
processor DFT design is thus O(N2 log N).
The area required by the single multiply-add cell design is

O(log N) for the multiply-add cell, O(log2 N) for the processor
supplying the constants, and O(N log N) for the random-
access memory containing the input and output registers. This
last contribution clearly dominates the others, giving the uni-
processor DFT design a total area of O(N log N). Its combined
area * time2 performance is thus a dismal O(N5 log3 N). It has
far too little parallelism for its area. The designs in the next
two sections employ progressively more parallelism to achieve
better performance figures.

B. The Direct Fourier Transform on N Cells

Kung and Leiserson [8, pp. 289-291] were apparently the
first to suggest that the Fourier transform could be computed

Fig. 2. The naive or "direct" Fourier transform algorithm.

by the "direct" algorithm on 2N - 1 multiply-add cells con-

nected in a linear array. These cells operate with a 50 percent
duty cycle: the even-numbered cells and the odd-numbered
cells alternately perform the computational step described
below. An obvious optimization [8, p. 275] results in a circuit
using only N multiply-add cells to accumulate the terms in the
DFT.
The entire DFT calculation is complete in 4N - 3 compu-

tational steps. During each step in which it is active, each even-

(or odd-) numbered cell computes y' *
y + cx using the value

y provided by its right-hand neighbor (the leftmost cell always
uses y = 0). The y' values eventually emerging from the left-
most cell are the outputs y in natural order. The inputs x to the
circuit enter through the leftmost cell and are passed, un-

changed, down the line of cells. Due to the 50 percent duty
cycle of the cells, one y' value is produced (and one x value is
consumed) every other computational step.
The only complicated part of the circuit has to do with

computing the constant values c. A complete description of this
computation is rather lengthy [8, pp. 290-291]; only a sketch
is attempted here. Suffice it to say that each c value is obtained
by a single multiplication from the c value previously used by
the cell next closest to the center of the linear array. The only
exception to this rule is that the constant-generating circuitry
for the centermost cell must perform four multiplications to
obtain the next c value. (Perhaps a fast multiplier might be
provided for the centermost cell, to keep it from slowing down
the whole array.) In any event, the constant-generating cir-
cuitry for each cell performs a fixed sequence of register-
register operations, all of which can be completed in O(log N)
time and O(log N) area.
The time performance of the N-cell DFT design is O(N log

N), since each of the 4N - 3 computational steps can be
completed in O(log N) time. The total area of the N cells and
their constant-generating circuitry is O(N log N).

Note that the total area of the N-cell DFT design is
asymptotically identical to that of the 1-cell design. This is a
reflection of the fact that a register takes the same amount of
room (to within a constant factor) as a multiply-add cell.
However, one can confidently expect that an actual imple-
mentation of the 1-cell design will be significantly smaller than
an N-cell design due to this "constant factor difference."
Section IV contains a further discussion of the significance of
constant factors in the interpretation of the asymptotic results
of this paper.
The area * time2 performance of the N-cell DFT design is

O(N3 log3 N). This is far from optimal, but it is a great im-
provement on the 1-cell design. The next section describes an
N2-cell design that has a nearly optimal area * time2 perfor-

1. FORi0-OTON- DO
2. yi -;
3. FORj -0 TON- IDO
4. Yi - Yi + wiixj;
5. OD;
6. OD.

1 050

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

THOMPSON: FOURIER TRANSFORMS IN VLSI

Y3

Fig. 3. Staggered I/O pattern for the N2-cell DFT design.

mance figure.

C. The Direct Fourier Transform on N2 Cells

One way of boosting the efficiency of the N-cell DFT design
is to pipeline its computation. Instead of circulating interme-
diate values among one row of 2N - 1 cells for 4N - 3 steps,
one can "unroll" the computation onto 4N - 3 rows of 2N -
1 cells. Now each problem instance spends just one computa-
tional' step on each row of cells before moving on to the next
row. (Note that there are actually about 8N2 cells in the
"N2-cell" design.)

All I/O occurs through the leftmost cell in the odd-num-
bered rows, in the staggered order shown in Fig. 3. This figure
shows only the I/O for a single problem instance; inputs for
successive problem instances may follow immediately behind
the analogous inputs for the previous problem, after a delay
of one computational step.
More precisely, the first input for each problem instance

enters the leftmost cell of the first row. The second input enters
the leftmost cell of the third row, two computational steps later
(remember that each computational step, as defined in the
previous section, involves only "even" or "odd" cells). The Nth
input enters the leftmost cell of the (2N -1)th row, 2N - 2
computational steps after the first input entered the circuit.
At the end of this step, the first output is available from this
same cell. The second output comes from the leftmost cell of
the (2N + l)th row, after two more steps ... and finally the
Nth output emerges from the leftmost cell of the (4N - 3)th
row, (4N - 3) computational steps after the first input was

injected into the circuit.
As noted above, the kth input for another problem instance

can follow immediately behind the kth input for the previous
problem, delayed by only one computational step. The circuit
thus operates in pipelined time Tp = O(log N). The total area

of the N2-cell design is A = O(N2 log N), since each cell oc-

cupies O(log N) area. The combined area * time2 performance
of the design is only a factor of O(log N) from the optimal
figure of Q(N2 log2 N). Thus it is pointless to look for a smaller
circuit with a similar pipelined time performance. However,
it is possible to make great improvements on this circuit's so-

lution delay, as shown by the (N log N)-cell FFT design pre-
sented later in this paper.

It is fairly easy to describe a few "constant factor" im-
provements to the N2-cell DFT design. First of all, at least half
of the cells on each row are idle, due to the 50 percent duty

cycle inherent in the Kung-Leiserson approach. Secondly, the
computations done in the hatched portion of Fig. 3 are irrele-
vant (the resulting y' values do not affect the circuit's outputs).
Each of these considerations halves the number of required
multiply-add cells, leaving fewer than 2N2 cells in an optimized
design. Finally, the constant-generating circuitry described
for the N-cell design need not be carried over to the N2-cell
design, for each cell uses the same a value every time it does
a computational step. In other words, the constant matrix C
can be "hard-wired" into the registers of the multiply-add
cells.
An alternative design for a Fourier transform circuit with

about N2 cells may be derived from Kung and Leiserson's
matrix-matrix multiplier [8, p. 277]. The inputs to the
Kung-Leiserson multiplier are the constant matrix C and the
matrix formed by concatenating N different problem input
vectors x; the outputs are N problem output vectors y. The
alternative design has the advantage of using about 4N2
multiply-add cells at a 33 percent duty cycle, that is, there are
only 1.33N2 fully utilized cells in an optimized design. On the
other hand, the alternative design has the disadvantage that
it cannot continuously accept input problems: "gaps" of 2N
- 1 time units must intervene between "bursts" ofN problem
instances. Furthermore, additional wires are required in the
alternative design to circulate the constant matrix C among
the multiply-add cells.
D. The Fast Fourier Transform on One Processor

Up to now, all the circuits in this paper have computed the
Fourier transform by the naive or direct algorithm. Great in-
creases in efficiency are observed in conventional uniprocessors
using the fast Fourier transform algorithm; it would be re-
markable indeed if we could not take advantage of our
knowledge of the FFT in the design of Fourier transform cir-
cuits.

There are a number of versions of the FFT in the literature,
differing chiefly in the order in which they use inputs, outputs,
and constants. Fig. 4 shows a "decimation in time" algorithm,
taken from Fig. 5 of [15]. Fig. 5 shows a "decimation in fre-
quency" algorithm, adapted from Fig. 10 of [15]. In both cases,
the N problem inputs are stored in x, the N problem outputs
are y, and w is a principal Nth root of unity.

Either Fig. 4 or 5 may be used as an algorithm for a uni-
processor that runs in O(N log N) computational steps. The
total area of such a design is O(N log N), due mostly to input
and output storage. (Recall that a single processor fits in
O(log2 N) area.) Total time for an N-element FFT is O(N log2
N), since each computational step takes O(log N) time units.
This is, as expected, a vast improvement over the uniprocessor
DFT circuit. However, it is far from being area * time2 opti-
mal, for its processor/memory ratio is too high. Adding more
processors, as in the following design, increases the perfor-
mance of an FFT circuit.

E. The Cascade Implementation of the Fast Fourier
Transform

The cascade arrangement of log N multiply-add cells [16]
is nicely suited for the computation of the Fourier transform

1051

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 1 1, NOVEMBER 1983

Fig. 4. The FFT by "decimation in time." Note: reverse(i) interprets
i as an unsigned (log N)-bit binary integer, then outputs that integer
with its bits reversed, i.e., with its most-significant bit in the least-sig-
nificant position.

using the decimation in frequency algorithm. See Fig. 5 for the
algorithm and Fig. 6 for a diagram of the cascade arrange-
ment.

In a cascade, one of the outputs of each multiply-add cell
is connected to the input of a shift register of an appropriate
length. The shift register's output is connected to one of the
multiply-add cell's inputs, forming a feedback loop. The re-
maining inputs and outputs of the multiply-add cells are used
to connect them into a linear array. Problem inputs (values of
x) are fed into the leftmost cell; problem outputs (values of y)
emerge from the rightmost cell.

Each cell handles the computations associated with a single
value of the loop index b in Fig. 5. The leftmost cell performs
the loop for b = logN - 1; the rightmost cell performs the loop
computations for b = 0. The pairing of x values indicated in
statement 7 of Fig. 5 is accomplished by the 2b-word shift
register associated with cell b.
The attentive reader will note that statement 7 is not exactly

the same as the multiply-add step defined in (1). Statement
7 involves one constant value zi, two variable values xi and
xi+,, two additions, but two (instead of one) multiplications.
Thus its computation will take about twice as much time or
area as a "standard" multiply-add step.

The conditional test of statement 6 is implemented by having
each cell monitor the bth bit of the count i of input elements
that it has already processed. The condition of statement 6 is
satisfied whenever that bit is 0. In this case, a cell performs the
computation indicated in statement 7. It sends the new value
for xi to the right, and retains the new value for xi+p in its shift

Fig. 5. The FFT by "decimation in frequency."

Fig. 6. The cascade arrangement of three multiply-add cells, for computing
eight-element FFT's. The multiply-add cells are square; the rectangular
boxes each represent one word of shift register storage.

register. Whenever the bth bit of i is 1, no multiply-add com-
putations are performed. However, some data movement is
necessary: the data appearing on the cell's lower input line
should be copied into its shift register. Also, the values
emerging from its shift register should be sent on to the next
cell on its right.
One of the advantages of using the decimation in frequency

algorithm on the cascade is the ease of computing the constants
for its multiply-add steps. Only a few registers and a single
multiplier are required to generate the constants required by
each cell. Referring again to the program of Fig. 5, the constant
zJ required in statement 7 may be obtained by multiplying the
previously generated constant z1- I by z. If this multiplication
is performed whether or not statement 7 is executed, no con-

ditional transfers are necessary in the constant-generating
circuitry.2
As noted above, the constant-generating circuitry for each

cell consists of a multiplier and a few registers. It is thus
comparable in area and time complexity to the multiply-add
cell itself. Thus the total area of the cascade design is obtained
by multiplying the number of cells, log N, by the area per cell
O(log N). To this must be added the area of the shift registers.
Unfortunately, there is a total ofN - 1 words of storage in
these registers, so the entire design occupies O(N log N) area.

Thus the cascade, like the one-processor design, is almost all
memory. An entire problem instance must be stored in the
circuit while the Fourier transform is in progress.

The time performance of the cascade is somewhat improved
over the one-processor design. Input values enter the leftmost
processor at the rate of one per multiply-add step. An entire
problem instance is thus loaded in O(N log N) time units. It
is easy to see that the cascade can start processing a new

problem instance as soon as the previous one has been com-

pletely loaded, so its pipelined time performance is Tp = O(N
log N).
One awkward feature of the cascade is that it produces its

output values in bit-reversed order. Formally, their order is
derived from the natural left-to-right indexing (0 to N 1)
by reversing the bits in each index value, so that the least sig-
nificant bit is interpreted as the most significant bit. The last
few lines of Fig. 5 perform this bit-reversal, but they cannot
be performed on the circuit described thus far. If natural or-

dering is desired, a processor should be attached to the output
end of the cascade. If this processor has N words of RAM

2 Note that zi = zi whenever the bth bit of i is 0, since z is a 2pth root of
unity. Of-course, exact equality obtains only when exact arithmetic is em-
ployed. This is easy to arrange in a number-theoretic transform. When
roundoff errors cannot be avoided, for example in a complex-valued transform,
it is probably best to use a conditional transfer to reset zi to I whenever j =
0.

1. FORb-(log N)-I TO0 BY-1 DO
2. p +2b;q N/p; /* note thatN=pq*/;
3. z - wP; /* z is a principal qth root of unity */;
4. FORi4 OToN-1DO
5. i i mod q; k --reverse(i);
6. IF (k mod p) = (k mod 2p) THEN
7. (Xk, Xk+p) - (Xk + ZjXk+p,Xk -ZJxk+p1);
8. FI;
9. OD;

10. OD;
11. FOR i - 0 TO N - 1 DO /* unscramble outputs */;
12. Yreverse(i) I Xi;
13. OD.

1. FOR b (logN) -1 TOOBY -1 DO
2- p - 2b;q -Nlp;
3. z - wq/2; /* z is a principal 2pth root of unity */;
4. FORi4 OToN-1DO
5. j -imodp;
6. IF (i mod 2p)= j THEN
7. (Xi, xi+P) (Xi + Xi+P, zjXi - zJxi+p);
8. FI;
9. OD;

10. OD;
11. FOR i -0 TON - 1 DO /* unscramble outputs */;
12. Yreverse(i) Xi;
13. OD.

1052

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

THOMPSON: FOURIER TRANSFORMS IN VLSI

storage, a simple algorithm will allow it to reorder the outputs
of the cascade as rapidly as they are produced.

F. The FFT Network

One of the most obvious ways of implementing the FFT in
hardware is to provide one multiply-add cell for each execution
of statement 7 in the algorithm of Fig. 4. (The algorithm of Fig.
5 might also be used, but, as noted in the previous section, its
multiply-add computation is a little more complex.) Each cell
is provided with a register holding its particular value of zi.
Since statement 7 is executed N/2 log N times, a total ofN/2
log N multiply-add cells are required for this "full paralleli-
zation" of the FFT. Such a circuit is called an FFT network
in this paper.
One possible layout for the cells in an FFT network is to have

log N rows ofN/2 cells each, as shown in Fig. 7. (This diagram
was adapted from Fig. 5 of [15].) Each row of cells in the FFT
network corresponds to an entire iteration of the "FOR b" loop
of the algorithm of Fig. 4. The interconnections between the
rows are defined by the way that the array x is accessed. The
reader is invited to check that each multiply-add cell in Fig.
7 corresponds to an execution of statement 7 in Fig. 4 for the
case N = 8.

Note that the inputs to the FFT network are in "bit-shuf-
fled" order and its outputs are in "bit-reversed" order. This
seems to minimize the amount of area required for intercon-
necting the rows. Additional wiring may of course be added
to place inputs and outputs in their natural, left-to-right
order.
The interconnections of Fig. 7 may be obtained from the

following general scheme. Number the cells naturally: from
0 to N/2 - 1, from left to right. Then cell i in the first row is
connected to two cells in the second row: cell i and cell (i +
N/4) mod N/2. Cell i in the second row is connected to cells
i and li/(N/4)] + ((i + N/8) mod N/4) in the third row. Cell
i in the kth row (where k = 1, 2, - -, logN - 1) is connected
to two cells in the (k + l)th row: cell i and cell Li/(N/2k)] +
((i + N/2k+l) mod N/2k). Another way of describing this
"butterfly" interconnection pattern is to say that a cell on the
kth row connects to the two cells on the next row whose indexes
differ at most in their kth most significant bit. (The inter-
connections between rows in an FFT network can also be laid
out in the "perfect shuffle" pattern described in the next sec-
tion. However, this seems to lead to a larger layout, if only by
a constant factor.)
A careful study of Fig. 7 and the preceding paragraph

should convince the reader that N/2 horizontal tracks are
necessary and sufficient for laying out the interconnections
between the first two rows. Essentially, each cell in the first row
has one "long" output wire that must cross the vertical midline
of the diagram. This connection must be assigned a unique
horizontal track to cross the midline. Once this is done, the rest
of the wiring for that row is trivial, especially if the cells are
"staggered" slightly as in Fig. 7.
The connections between the second and third rows occupy

only N/4 horizontal tracks. No wires cross the vertical midline
of the diagram, but each of the N/4 cells on either side of the

YObY4 Y2 Yr YI Y5 Y3 Y7

Fig. 7. The FFT network for N = 8.

midline have a fairly long connection that takes up to half of
a horizontal track.

In general, the connections emerging from the kth row (k
= 0, 1, * * *, log N - 1) occupy N/2k+1 tracks. Straight vertical
wires are used to connect cell i in the kth row with cell i in the
(k + l)th row. The horizontal tracks are divided into 2k
equally sized pieces, then individually assigned to the "long"
connection from each cell.

Following the scheme outlined above, a total ofN - 1 hor-
izontal tracks are required to lay out the interrow connections.
An additional N horizontal tracks could be added above and
below the FFT network to bring its inputs and outputs into
natural order.
The number of vertical tracks in an FFT network depends

strongly upon the width of the multiply-add cells. If these are
set on end, so that each is 0(1) units tall and 0(log N) units
wide, then the entire network will fit into a rectangular region
that is O(N) units wide and O(N) units tall. The height of the
log N rows of multiply-add cells is asymptotically negli-
gible.
The pipelined time performance of the FFT network is

clearly 0(log N) since a new problem instance can enter the
network as soon as the previous one has left the first row of
multiply-add cells. The delay imposed by each row's multi-
ply-add computation and long-wire drivers is 0(log N), and
there are 0(log N) rows, so the total delay of the network is
0(log2 N).
Note that this paper's layout of the FFT network must be

optimal, for the circuit has an optimal area * time2 perfor-
mance of O(N2 log2 N). Any asymptotic improvement in the
layout area would amount to a disproof of Vuillemin's opti-
mality result [7].

G. The Perfect-Shuffle Implementation of the FFT
Over a decade ago, Stone [17] noted that the "perfect

shuffle" interconnection pattern ofN/2 multiply-add cells is
perfectly suited for an FFT computation by decimation in time.
Fig. 8 shows the perfect shuffle network for the eight-element
FFT, and Fig. 4 shows the appropriate version of the FFT al-
gorithm.

Each multiply-add cell in a perfect shuffle network is as-
sociated with two input values, Xk and Xk+ 1. Here, k is an even

1053

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. IH, NOVEMBER 1983

Iox x23 X4 ,X5 Sx6x7

Fig. 8. The perfect shuffle interconnections for N = 8.

number in the range 0 < k < N - 1. A connection is provided
from one of the outputs of the cell containing Xk to one of the
inputs of the cell containing xj if and only ifj = 2k mod N -
1. Note that this mapping of output indexes onto input indexes
is one-to-one, and that it corresponds to an "end-around left
shift" of the (log N)-bit binary representation of k.
The computation of the FFT on the perfect shuffle network

can now be described. First, the input values Xk are loaded into
their respective multiply-add cells. Then a multiply-add step
is performed: each cell ships its original Xk values out over its
output lines, and computes new Xk values according to (1). It
is not very obvious, but nonetheless it-is true, that this corre-
sponds to an entire iteration of the "FOR b" loop of Fig. 4. For
example, the leftmost cell of Fig. 7 computes new values for
xo and X4, having received the original value of the former from
its own output line and the original value of the latter from the
third cell. This is the computation required by step 7 of Fig.
4whenN = 8,b = 2,p = 4,q = 2,i = 0,j = 0,andk = 0.
The FFT computation proceeds in this fashion for log N

parallel multiply-add steps. In each step, the cell containing
the (updated) version of Xk ships this value to the cell formerly
containing the (updated) version of X2k mod N- 1. Each cell then
performs a multiply-add computation, updating the two data
values currently in its possession.

At the end of log N parallel multiply-add steps, each cell
contains the final versions of its original data values. Unfor-
tunately, the FFT computation of Fig. 4 is not complete. The
outputs y are all available among the final x values, but they
appear in "bit-reversed" order. Additional circuitry is required
to bring them into natural order, following steps 11-13 of Fig.
4. The techniques of [18] could be employed in the design of
reordering circuitry that would operate in 0(log2 N) time,
without affecting the area performance of the perfect shuffle
network. A detailed description of such circuitry is beyond the
scope of this paper, since Assumption 7 does not require the
circuit to produce its y values in any particular order.
The log N multiply-add steps require a total of 0(log2 N)

time. The data movement involved in each multiply-add step
does not require any additional time, at least in an asymptotic
sense. As will be seen below, the "shuffle" connections between
cells are implemented as single wires carrying bit-serial data.
Each wire is less than O(N) units long, and each work has

Fig. 9. The CCC network for N = 4.

0(log N) bits, so that the data transmission time per step is the
same as the multiplication time, 0(log N) time units.
The total area of the perfect shuffle implementation is a bit

harder to estimate. There are N/2 multiply-add cells, each
occupying 0(log N) area. However, the best embedding known
for the shuffle interconnections takes up O(N2/log2 N) area
[19]. It is easy to see that no better embedding is possible, since
otherwise the perfect shuffle circuit would have an impossibly
good area * time2 performance.

H. The CCC Network

The cube-connected-cycles (CCC) interconnection for N
cells is capable of performing an N-element FFT in 0(log N)
multiply-add steps [20]. Using the multiply-add cell of the
previous constructions, the complete FFT takes 0(log2 N)
time.
The CCC network is very closely related to the FFT net-

work. In fact, a CCC network is just an FFT network with
"end-around" connections between the first and last rows. For
this reason, CCC networks do not exist for all N, only for those
N of the form (K/2) * (log K) for some integer K. Fig 9 il-
lustrates the CCC network for N = 4. It is derived from the
four-element FFT network with "split cells": each cell handles
one element of the input vector x, instead of two as in the FFT
network of Fig. 7. (The reader is invited to redraw Fig. 9,
combining the cells linked by horizontal data paths. The re-
sulting graph should be isomorphic to a "butterfly" whose
outputs have been fed back into its inputs.)
The CCC network is somewhat smaller than the FFT net-

work, since it uses only N cells to solve an N-element problem
instead of the FFT network's (N/2) * (log N) cells. Further-
more, the CCC's interconnections can be embedded in only
O(N2/log2 N) area [20]. This is an optimal embedding, for
the combined area * time2 performance is within a constant
factor of the limit, Q(N2 log2 N).

It is rather difficult to describe the data routing pattern
during the computation of a Fourier transform on a CCC,
although the basic approach is similar to that taken on the
perfect shuffle network. Each of the log N multiply-add steps
is preceded and followed by a routing step. These routing steps-
take 0(log N) time each, for they move 0(1) words over each
intercellular connection. Thus the total time spent in routing
data does not dominate the time spent on multiply-add com-
putations.

1. The Mesh Implementation
A square mesh ofN processors is shown in Fig. 10. It con-

sists of approximately VN rows ofVN processors each, fitted
with word-parallel interconnections. It is thus essentially the
ILLIAC IV architecture, with the difference that each pro-
cessor in the mesh is capable of running its own program. (A
closer approximation to the ILLIAC IV would have N mul-
tiply-add cells, each deriving control signals from a central
processor.)
The total area of the mesh is O(N log2 N), since there are

N processors each of O(log2 N) atea. The processors should
each be laid out with a square aspect ratio, so that the O(log

i 054

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

THOMPSON: FOURIER TRANSFORMS IN VLSI

Fig. 10. The mesh ofN processors; formed of 2L(1ogN)/2J rows and
2r(logN)/21 coumns.

N) wires in each word-parallel data path do not add to the
asymptotic area of the layout. Note that it takes O(loglog N)
time to send a word of data from one processor to its neighbor,
since analogous registers in adjacent processors are O(log N)
units distant from each other.

Stevens [21] appears to have been the first to point out that
the mesh can perform an N-element FFT in log N steps of
computation. Each "step" consists of an entire iteration of the
FOR b loop of Fig. 4. Each processor in the mesh performs the
loop computation for one value of the index variable k. The
total amount of data movement during the FFT can be mini-
mized by making an appropriate assignment of index values
k to individual mesh processors. It turns out that a fairly good
choice is obtained from the natural row-major ordering (0 to
N - 1) of the mesh. Processor k is then the "home" of the
variable Xk.

(Another, more intuitive way of visualizing the computation
of the FFT on the mesh is to view the latter as a time-multi-
plexed version of the FFT network. During each step, N/2 of
the mesh's processors take on the role of the N/2 cells in one
row of the FFT network. The wires connecting the rows of the
FFT network are simulated by data movement among the
processors of the mesh.)
An iteration of the FOR b loop of Fig. 4 can now be de-

scribed. Each mesh processor examines the bth bit of re-

verse(k) to decide if it will perform the computation of state-
ment 7. (For example, when b = 0 only the even-numbered
processors will perform statement 7.) Next, each processor that
will not perform statement 7 sends its current value of xk to
processor k + 2b. (For example, when b = 0 each odd-num-
bered processor sends its x value to the processor on its left.)
Statement 7 is then executed, and finally the updated Xk values
are returned to their "home" processors.
When b = log N - 1, the data movement required before

statement 7 can be visualized by "sliding" all the Xk values in
the bottom half of the mesh up to the top half of the mesh. In
this way, processor 0 receives the current value of XN/2, pro-

cessor 1 receives the value of XN/2+ 1, etc. This particular data
movement will be called a "distance-N/2 route." In general,
a distance-2b route must be performed both before and after
each execution of statement 7.
The time required by a distance-2b route depends, of course,

on the value of b. When b = 0 or 2r(RogN)/21, all data movement
is between nearest neighbors (horizontal or vertical) in the
mesh. As mentioned above, this takes only 0(loglog N)
time.
When b =i2L(logN)/2] 'or log N - 1, it would seem that

0(\/ loglog N) time is required for a distance-2b route. Each

data element must ripple through about VN/2 processors.
However, this result may be improved by using the "high-
power" inputs on the long-wire drivers on the interprocessor
data paths (see Fig. 1). Once the bits in a data element have
been amplified enough to be sent to a neighboring processor,
only one more stage of amplification is necessary to send these
bits on to the next processor. Since the amplifier stages in a
long-wire driver are individually clocked, all data elements in
a routing operation may "slide" toward their destination si-
multaneously, moving by one processor-processor distance
every time unit. Th'e total time taken by a distance-2b routing
is thus easily seen to be 2bmodr(logN)/21 + O(loglog N).
The total time taken by all routings in a complete FFT

computation is bounded by O(V\7K). Essentially, this-is the sum
of a geometric series whose largest term is the time taken by
the longest routing operation, O(V/IN). The time performance
of the mesh design is thus O(\N). At least asymptotically,
the O(log2 N) time required for the multiply-add computations
is insignificant compared to the time required for the routing
operations.

Three aspects of the mesh implementation deserve further
attention. First of all, the individual processors are expected
to come up with their own zi values, as they execute statement
7 of Fig. 4. This is not difficult to arrange: each processor has
O(log2 N) bits of program storage, so it can easily perform a
table look-up to obtain the required constants. One constant
is needed,for each processor, for each value of b.

Secondly, the algorithm described computes the y values
in bit-reversed order (relative to the natural row-major or-
dering of the mesh). If the outputs are desired in natural order,
another O(V\V) routing operations are required [18], and the
individual processors' programs become a bit more compli-
cated.
One final note: the mesh implementation, as described, is

area * time2 optimal. A slightly less efficient, but possibly more
practical design was suggested by one of the referees. Instead
of using word-parallel buses betweenN processors in a mesh,
one might provide bit-serial buses between N cells in a mesh.
Now the best possible time performance is constrained by the
bit-serial buses to be no better than 0(1N log N). Similarly,
the area could be reduced to as little as O(N log N). However,
it will be a bit tricky to attain these performance figures. There
is not enough area to store each cell's zi values locally, so these
values must be computed "on the fly" in (hopefully) only few
extra multiplications. This seems to be impossible to accom-
plish directly. One solution to this difficulty is to have the cells
exchange zi values as well as Xk values. The bit-serial approach
is thus inherently slower both in routing time and in the
number of necessary multiplications. On the other hand, the
word-parallel approach has wider buses and perhaps larger
look-up tables, so that it takes up somewhat more area.

IV. CONCLUSION

The area and time performance of the nine implementations
is summarized by Table I. Note that the last four designs are
optimal in the area * time2 sense. (Remember that AT2 =
Q(N2 log2 N) for the solution of the N-element Fourier

1055

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 11, NOVEMBER 1983

TABLE I
AREA-TIME PERFORMANCE OF THE FOURIER TRANSFORM-SOLVING

CIRCUITS

Design Area Time Area*Time2 Delay

III-A 1-cell DFT N log N N2 log N N5 log3 N N2 log N
Ill-B N-cell DFT N log N N log N N3 log3 N N2 log N
III-C N2-cell DFT N2 log N log N N2 log3 N N2 log N
III-D 1-proc .FFT N log N N log2 N N3 log5 N N log2 N
III-E Cascade N log N N log N N3 log3 N N log2 N
III-F FFT Network N2 log N N2 log2 N log2 N
III-G Perfect Shuffle N2/log2 N log2 N N2 log2 N log2 N
111-H CCC N2/log2 N log2 N N2 log2 N log2 N
III-I Mesh N log2 N v\K N2 log2 N \/N

transform.) In general, the problem with the nonoptimal de-
signs is that they are processor-poor: the number of multiply-
add cells does not grow quickly enough with problem size.
The mesh is the only design that is nearly optimal under any

ATp metric for 0 < x < 1. Here the limiting performance is
A T2X = NI(Nl+x log2x N) [51. None of the other designs with
O(N) or fewer multiply-add cells is fast enough, while the
other designs are much too large.
When delay figures are taken into consideration, only the

last three designs are seen to be optimal. The perfect shuffle,
the CCC, and the mesh are the only designs that achieve the
limiting area * delay2 product of Q(N2 log2 N) [5]. These
designs keep all their multiply-add cells and wires busy solving
Fourier transforms using the efficient FFT algorithm. All the
others, save one, use too few processors or an inefficient al-
gorithm. The FFT network is an interesting exception to this
observation. Its delay inefficiency seems to be a result of its
slow bit-serial multipliers. If fast parallel multipliers were

employed, the delay in each stage of the FFT network might
be as low as 0(loglog N). This would not increase its total area

significantly, since its area is still dominated by its "butterfly"
wiring. The improved FFT network could thus have a area *

time2 product of as little as O(N2 log2 N loglog2 N).
Of course, asymptotic figures can hide significant differ-

ences among supposedly optimal designs due to "constant
factors." The area and time estimates employed in this paper
are not sensitive to the relative complexity of the various
control circuits required in the designs. For example, the
N2-cell DFT, the cascade, the FFT network, and the perfect
shuffle are especially attractive designs because they have no
complicated routing steps. They are thus given a more detailed
examination in the following.
As indicated in Table I, the N2-cell DFT is nearly optimal

in its area * time2 performance. However, it is by far the largest
design considered in this paper since it uses more than N2
multiply-add cells. (The others use O(N log N) or fewer cells.)
Using current technology, one might place ten multiply-add
cells on a chip [5]: this means that one hundred thousand chips
would be needed for a thousand-element FFT! Thus the N2-cell
DFT design cannot be considered feasible until technology
improves to the point that 100 or 1000 cells can be formed on

a single wafer. Even then, the interconnections between chips
will pose some difficulties, for there are 40 cells on the "edge"
of a 100-cell chip.
The N-cell DFT is an attractive design at present, despite

its nonoptimal area * time2 performance. It uses only 2N cells
in a linear array, so that a 1000-element Fourier transform can
be implemented with only 102 chips of 10 multiply-add cells
each. This design is, of course, much slower than the N2-cell
DFT, since it produces only one element of a transform at a
time rather than an entire transform.
The FFT network is also fairly attractive at present, for its

(N/2) * (log N) cells can be formed on about the same number
of chips as the N-cell DFT, yet its performance is equal to the
N2-cell DFT. The drawback of the FFT network is that the
wiring on and between the chips is very area-consuming. It also
has very long intercell wires, whereas the DFT designs use only
nearest-neighbor connections.
The constant factor considerations of the perfect shuffle

design are very similar to those of the FFT network discussed
above. The perfect shuffle uses a factor of log N fewer cells
than the FFT network, so it is a bit smaller and slower. How-
ever, it suffers from the same problem of long interchip wires
and poor partitionability.
The cascade is another nonoptimal design, like the N-cell

DFT, that deserves consideration because of its good "constant
factors." It uses only log N multiply-add cells and N words of
shift-register memory. These are arranged in a simple linear
fashion. The cascade achieves the same performance as the
N-cell DFT, producing one element of a Fourier transform
during each multiply-add time. It is superior to the N-cell DFI'
in that it uses many fewer multiply-add cells.

It is interesting to speculate whether the cascade is the best
way of producing one element of a Fourier transform at a time.
A new metric and method of analysis is needed to answer this
question, for such designs are necessarily nonoptimal. So much
area is required to store the problem inputs and outputs that
the optimal area * time2 figure can not be achieved.

Another interesting open problem is that of partitioning the
perfect shuffle network. If 100 or 1000 multiply-add cells can
be placed on a single chip, what sort of off-chip connections
should be provided so that these chips can be composed into
a large perfect shuffle design?

Finally, the implementations should be reevaluated under
a speed-of-light (or transmission-line) model of wire delay.
Under such a model, a length-k wire would have 0(k) delay,
so all the delay figures in this paper must be reevaluated up-
wards. Since the wires could still have unit bandwidth,
throughput figures would remain the same for all designs that
could be sufficiently pipelined. However, some of the designs
would be adversely affected. For example, the cycle time of
the one-processor FFT design of Section III-D would increase
to 0(V7./W log N), since this is the distance to an arbitrary bit
in its O(N log N)-bit RAM.

ACKNOWLEDGMENT

The author gratefully acknowledges the insightful com-
ments of two anonymous referees.

REFERENCES

[1] H. Abelson and P. Andreae, "Information transfer and area-time
tradeoffs for VLSI multiplication," Commun. Ass. Comput. Mach.,
vol. 23, pp. 20-23, Jan. 1980.

1056

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

THOMPSON: FOURIER TRANSFORMS IN VLSI

[21 R. Brent and H. T. Kung, "The area-time complexity of binary multi-
plication," J. Ass. Comput. Mach., vol. 28, pp. 521-534, July 1981.

[3] R. J. Lipton and R. Sedgewick, "Lower bounds for VLSI," in Proc. 13th
Annu. ACM Symp. on Theory of Computing, May 1981, pp. 300-
307.

[4] J. Savage, "Area-time tradeoffs for matrix multiplication and related
problems in VLSI models," J. Comput. Syst. Sci., vol. 22, pp. 230-242,
Apr. 1981.

[5] C. D. Thompson, "A complexity theory for VLSI," Ph.D. dissertation,
Carnegie-Mellon Univ., CMU-CS-80-140, Aug. 1980.

[6] -, "The VLSI complexity of sorting," UCB/ERL M82/5, Feb.
1982.

[7] J. Vuillemin, "A combinatorial limit to the computing power of VLSI
circuits," in Proc. 21st Symp. Foundations of Comput. Sci., IEEE
Comput. Soc., Oct. 1980, pp. 294-300.

[8] C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.

[9] V. Ramachandran, "On driving many long lines in a VLSI layout," in
Proc. 23rd Symp. Foundations ofComput. Sci., IEEE Comput. Soc:,
Oct. 1982, pp. 369-378.

[10] G. Bilardi, M. Pracchi, and F. P. Preparata, "A critique of network speed
in VLSI models of computation," IEEE J. Solid-State Circuits, vol.
SC-17, pp. 696-702, Aug. 1982.

[11] C. Mead and M. Rem, "Minimum propagation delays ii VLSI," in Proc.
Caltech Conf. VLSI, Caltech Dep. Comput. Sci., Jan. 1981, pp. 433-
439.

[12] T. R. Gheewala, "Design of 2.5-micrometer Josephson current injection
logic (CIL)," IBM J. Res. Develop., vol. 24, pp. 130-142, Mar.
1980.

[13] B. Chazelle and L. Monier, "Towards more realistic models of compu-
tation for VLSI," in Proc. II th Annu. ACM Symp. Theory of Com-
puting, Apr. 1979, pp. 209-213.

[14] J. Savage, "Planar circuit complexity and the performance of VLSI
algorithms," in Proc. CMU Conf. VLSI, IEEE Comput. Soc., Oct. 1981,
pp. 61-68.

[i5] W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, G.
Maling, Jr., D. Nelson, C. Rader, and P. Welch, "What is the fast
Fourier transform?," IEEE Trans. Audio Electroacoust., vol. AU-I 5,
pp. 45-55, June 1967.

[16] A. Despain, "Very fast Fourier transform algorithms for hardware
implementation," IEEE Trans. Comput., vol. C-28, pp. 333-341, May
1979.

[17] H. Stone, "Parallel processing with the perfect shuffle," IEEE Trans.
Comput., vol. C-20, pp. 153-161, Feb. 1971.

[18] C. D. Thompson, "Generalized connection networks for parallel pro.
cessor intercommunication," IEEE Trans. Comput., vol. C-27, pp.
1119-1125, Dec. 1978.

[19] F, T. Leighton, "Layouts for the shuffle-exchange graph and lower
bound techniques for VLSI," Ph.D. dissertation, M.I.T., MIT/
LCS/TR-724, June 1982.

[20] F. Preparata and J. Vuillemin, "The cube-connected cycles: A versatile
network for parallel cornputation," in Proc. 20th Annu. Symp. Foun-
dations of Comput. Sci., IEEE Comput. Soc., Oct. 1979, pp. 140-
I47.

[21] J. Stevens, "A fast Fourier transform subroutine for Illiac IV," Cen.
Advanced Comput., Univ. Illinois, Tech. Rep., 1971.

Clark D. Thompson received the B.S. degree in
chemistry and the M.S. degree in computer
science/computer engineering from Stanford Uni-
versity, Stanfotd, CA, in 1975 and the Ph.D. de-
gree in computer science from Carnegie-Mellon
University, Pittsburgh, PA, in 1980.
He is presently on the faculty of the University

of California, Berkeley, where he teaches courses
on microprocessor interfacing and data structures.
The goal of his current research is to apply theo-
retical insight to problems arising in VLSI design.

He also maintains an interest in algorithms, models, and architectures for
highly parallel computers.

1 057

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:25:38 UTC from IEEE Xplore. Restrictions apply.

