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zstimates of the values for P,, BW, and U, if C, is small. The second
of these, the MC model, is the more complex model but, according
to comparisons to simulations, provides accurate estimates of the
values for P,, BW, and U,, for a wide range of C,. The ER model
requires the values of M, N, r, and X as inputs. The MC model
requires, in addition, the value of X2. The explicit dependence of the
MC model on XZ (and hence C,) can be observed in (12). This was
confirmed empirically; specifically, it was shown that BW decreases
with increase in C,. The fact that the second moment is an important
feature of memory interference should not be completely un-
expected as the behavior of similar systems, e.g., networks of
queues, also depend on the variance of underlying stochastic pro-
cesses (in the case of queues, it is the variances of the interarrival
time and service time).
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An Efficient Implementation of
Search Treeson [lg N + 1] Processors

MICHAEL J. CAREY AND CLARK D. THOMPSON

Abstract — A scheme for maintaining a balanced search tree on
[lgN + 1] parallel processors is described. The scheme is almost fully
pipelined: [ IgN + 1] /2 search, insert, and delete operations may run
concurrently. Each processor executes O(1) instructions of a top-down
2-3-4 tree manipulation algorithm before passing the operation along to
the next processor in the pipeline. Thus, the total delay per tree operation
is O(lg N), and one tree operation completeé every O (1) time units.

Index Terms — Algorithms for VLSI, dictionary search, pipelining,
search trees, special-purpose architectures.

I. INTRODUCTION

The problem of implementing a search tree on a digital computer
has received intense study. If all the data in the tree will fit into main
memory, the conventional approach is to maintain the data in the
form of a balanced binary tree [1]. Using the balanced tree format,
a uniprocessor can perform search tree operations such as insert,
delete, exact-match search, and range search by executing just
O(lg N) instructions where N is the current number of entries in the
tree.' In this correspondence, we show how to design a multi-
processor system that is O(lg N') times as fast as the conventional
approach. Qur system can accept a new search tree operation once
every O(1) instruction times. This increased throughput makes our
scheme attractive for the implementation of centralized databases
handling a large volume of queries. A more complete presentation
of our scheme is available as [8].

In brief, the idea is to use a linear array of [Ig N + 1] processors
to maintain a balanced tree structure for up to N items. Each item
is assumed to consist of a primary key K and an uninterpreted data
field I(K'). Our scheme handles the following operations on the data
in the tree: insertions, deletions, exact-match searches, and range
queries. Each operation completes after O(lg N) delay where the
unit of time is taken to be the instruction cycle time of an individual
processor. The scheme is almost fully pipelined, allowing as many
as [lg N + 1]/2 operations to be at varying stages of execution at
any point in time, so one operation can complete every O(1) time
units. The processors in the system operate independently, each
executing its own instruction stream, so the system is an MIMD
architecture.

Each of the processors in our linear array is furnished with a
private memory unit. Processor P, has memory capable of storing a
single tree node. Processor P;, 2 < i = [lg N + 1], has twice the
amount of memory of its predecessor P,_,. The last processor
Pry, v+ must have memory sufficient to hold all of the data which
are to be stored in the machine. Adding bidirectional communica-
tion paths between the processors, the resulting machine architec-
ture is shown for N = 16 in Fig. 1. (Also shown is an example of
tree storage layout in our scheme.) This is essentially the same
architecture used by Armstrong [3] and by Tanaka, Nozaka, and
Masuyama [19]. In distinction to these earlier machines, however,
our processors execute a top-down version of a 2-3-4 tree manipu-
lation algorithm [13], in which each processor, takes care of one
level of the tree. By using this algorithm, our machine provides a
richer set of database operations than either of its predecessors.
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Fig. 1. Parallel architecture for balz_mc‘ed tree maintenance.

Also, only the last processor in our machine Py, v+1] stores the actual
data items /(K). '

II. RELATED RESEARCH

Our pipelined search tree implements many of the operations
performed by the VLSI “search trees,” “dictionary machines,” and
“database machines” of Leiserson [14], Bentley and Kung [6], Song
[17], [18], Dohi, Suzuki, and Matsui [10], Ottman, Rosenberg, and
Stockmeyer [15], Atallah and Kosaraju {41, Bonucelli, Lodi,
Luccio, Maestrini, and Pagli [7], and Somani and Agarwal [16].
These “tree machines” are based on the use of O(N) processors
organized in tree-like configurations, and they can handle a large
vanety of search operations, including “partial match” queries [12],
in O(lg N) time. In contrast, our scheme requires only O(lg N)
processors but queries can only be for exact or range matches to the
“primary key” field of each data item. In applications for which our
scheme’s operation set is sufficiently powerful, our pipelined search
tree machine will be smaller, cheaper, and thus superior to an
O(N)-processor tree machine.

Another related scheme is the [Ig N + 17]-processor heapsort/
search tree database system of Tanaka, Nozaka, and Masuyama
[19]. Theiridea is to use one [ig N + 1]-processor plpelme to heap-
sort a stream of records, and a second machine with similar structure
to arrange the sorted stream into the form of a binary search tree.
The main differéence between their search tree and ours is that we
provide on-line rebalancing, allowing insertions and deletions
to run concurrently with search operations without unbalancing
the tree.

A final related scheme was proposed as this correspondence was
being revised for publication Fisher [11] developed a scheme for
maintaining a “trie” on a pipeline of / processors where / is the length
of the longest item to be stored and each processor stores one byte of
each item. Fisher’s scheme (like ours) is superior to O(NV )-processor
tree machines for simple database applications, namely those in which
the only operations are insert, delete, and exact search.

1II. PROCESSOR ARCHITECTURE

In the introduction, we defined our architecture as consisting of
a linear array of [Ig N +1] processors, each with its own memory.
In stating our time bounds, we have assumed that each processor can
execute one instruction in one unit of time. Before proceeding with
the description of our tree maintenance algarithms, we briefly de-
scribe the capabilities required for the processors in our scheme.

- Memory: Each word of data in the processors and memories of
our scheme consists of w bits where w is large enough to represent
either a key and two [Ig N + 1]-bit pointers, or else a key, an
uninterpreted data field, and one [/jg N + 17-bit pointer. A pointer
can refer to one of N different memory words, or to nil. Processor
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P, 1=<i=[lgN + 1], has 2" words of storage in its local
memory. It has O(1) internal registers, some of which are loaded
with predefined constants. Finally, it has its own read-only control
store with O(1) instructions.

Instruction Set: The instruction set contains register—register
ADD, SUBTRACT, and MOVE instructions, a BRANCH-ON-ZERO(reg,
addr) instruction, instructions to READ and WRITE into each of the N
(or fewer) locations in each processor’s local memory, and SEND and
RECEIVE instructions to communicate with the processor’s nearest
neighbors. For the two processors on the “ends™ of the linear array,
the SEND and RECEIVE instructions are used to communicate with the
outside world. All instructions except RECEIVE are fetched, inter-
preted, and executed in unit time. An execution of RECEIVE, on the
other hand, is not complete until a message is received from the
specified processor. This can take an arbitrarily long amount of
time.

IV. OPERATIONS FOR TREE MAINTENANCE

In this section, the pipelined 2—3—4 tree manipulation operations
are described. We remind the reader that a 2—3—4 tree is a balanced
search tree where two, three, or four pointers (and one, two, or three
search keys) appear in each internal (index) node, and all data items
appear in external (leaf) nodes {13]. The tree manipulations are
simple variants of the algorithms for the more common 2-3 trees
and B* trees [1], [S], [9]. The advantage of 2-3—4 trees over 2-3
trees is that the manipulations can be performed in a top-down
fashion [2], {13]. Top-down operations are ideal for our architec-
ture, as they make pipelined operation both possible and simple.
Since 2-3—4 tree manipulations have been described elsewhere,
our description will be informal, with actual pointer and key
manipulations omxtted

A. Searching

The SEARCH operation for the parallel 2-3-4 tree scheme is a
simple pipelined version of normal B™ tree searching. Hence, when
processor P; receives a “SEARCH(key n, using pointer p)” message,
it should do the following.

Case 1: P, contains internal nodes (i < [lg N + 11). Follow the
pointer p to the appropriate index node in local memory. Use the
key value n to select the appropriate pomter (p') to follow from
here. Send SEARCH(n, p’) to P,+;.

Case 2: P; contains data nodes (i = [lg N + 17). Given key n
and pointer p, sge if pointer p points at a data node containing
key n. If so, send the data to the outside world. If not, send out a
message indicating that the desired data were not found.

B. Insertion

The INSERT operation for the parallel 2-3-4 tree scheme is a
pipelined version of the top-down node-splitting insert algorithm of
Guibas and Sedgewick [2],[13]. When the search encounters a
4-node, the transformation shown in Fig. 2 is applxed ensuring that
future node splits will not cause upwardly propagatmg splits. Note
that the insertion transformation results in an increase in the actual
tree height when applied at the root node.? The figure depicts the
transformation in terms of 2-3-4 trees, with optional pomters
drawn in dotted lines and the search path pointer indicated via a
small black square. Although the figure shows the insertion path as
being the leftmost path, the transformation applies in the obvious
way regardless of the path.

Hence, when processor P; receives an' “INSERT(key n, using
pointer p)” message, it should do the following.

Case 1: P;contains internal nodes (i < [Ig N + 17). P, follows
the pointer p to the appropriate index node in its local memory. It
then uses the key value n to select the appropriate pointer p’
to follow from here. Next it sends INSERT_TRANSFORM(p’) to Pis .
P.., will apply the insertion transformation if it is applicable, split-
ting the next node on the search path for key n, and sending
INSERT_TRANSFORM_REPLY(m, np) to P;. This reply mformsP of the

*The root node is defined as the first 2-, 3-, or 4-node on the path going from
Py 10 Prgwsrl
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Fig. 2. Insertion transformation.

new splitting key® m and new offspring pointer np resulting from a
node split if one occurred. That is, if np # nil, P; increases the size
of its current index node p. If p is a 4-node, such an action would
lead to the formation of a 5-node (an error). By induction, however,
this is impossible since INSERT_TRANSFORM(p) was previously
requested by processor P,_;. (We consider the basis i = 1 of
this induction in the next section, in the discussion of storage
requirements. ) '

If processor P; modifies the current node p in response to an
INSERT_TRANSFORM_REPLY, it uses » once again to select the appro-
priate path p’ to follow from here. Finally, P; sends INSERT(n, p') to
Py,

Case 2: P; contains data nodes (i = [lg N + 11). If the indi-
cated data item is not already present and if there is room for another
item in the tree, Py, y+:7 installs it in a new data node. It then sends
Py, v 2 pointer np to the new node in an INSERT_REPLY(np) message,
and finally sends the outside world an acknowledgment. If there is
no room for the item, or if the indicated data item is already present,
Py ve11 sends Py, 41 an INSERT_REPLY(nil) message, then sends the
outside world an error response.

C. Deletion

The DELETE operation is a modified version of the Guibas and
Sedgewick top-down deletion algorithm [13]. The modification is
based on the observation that ald keys may be used to guide searches
in B* trees [9] since all predecessors of a deleted key are prede-
cessors of its successor key, and all successors of its successor key
are also successors of the deleted key. Thus, it is not necessary to
delete the instances of a data item’s key from the index portion of
a 2-3—4 tree when deleting the item.

The basic idea of top-down deletion is that when a node with the
minimum allowable number of keys is encountered, a trans-
formation that adds keys must be performed to ensure that deletions
cannot propagate upwards [2], [13]. No paper in the literature has
described these transformations in terms of standard 2—3—4 trees or
B* trees in a particularly comprehensible manner, so they will be
described here in some detail. There are three such transformations,
depicted in Figs. 3, 4, and 5 for 2-3—4 trees. In all cases, the
transformations ensure that the next node or the search path has at
least 3 descendents. As with Fig. 2, Figs. 3-5 depict the deletion
path as being the leftmost path; the transformations can be gener-
alized in the obvious way regardless of the path. Note that deletion
transformation / (and only deletion transformation ) can result in
a decrease in the tree height when applied at the root node.

Hence, when processor P; receives a “DELETE(key n, using
pointer p)” message, -it should do the following.

Case 1: P; contains internal nodes (i < [lg N + 1]). Processor
P; follows the pointer p to the appropriate index node in local
memory, using the key value n to select the appropriate pointer p’
to follow from here. Then it sends DELETE_TRANSFORM(1, p’, p") to
P, where p" is the adjacent path pointer* for p’ and m is the
splitting key for p’ and p". Processor P;., applies a deletion trans-
formation if one is applicable, either merging the nodes indicated by
p' and p” or moving one of the offspring of the p” node into the p’
node (i.e., redistribution). Next, processor P.,; sends DELETE.

>A “splitting key” is a key which P; stores in its index node to guide future
searches to one of two index nodes stored in P;,,.

“The “adjacent path pointer” sent by P; points to an index node in P;,, which
is an immediate neighbor of the index node in P;..; on the current search path.
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TRANSFORM_REPLY(m', np) back to P;. This reply informs P; of the
new splitting key (m’) resulting from a transformation (if one
occurred). Also, the reply contains a pointer np to either nil, p’, or
p", depending on which node (if any) was deleted by the trans-
formation. Processor P; uses this information to update its current
index node. i .

Once its index node is updated, P; again uses n to select the
appropriate path p’ to follow from here. (The path may be differ-
ent if the current index node p was rearranged in response to
the DELETE_TRANSFORM_REPLY message.) Finally, P; sends
DELETE(n, p') to Pix;.

Case 2: P; contains data nodes (i = [Ig N + 17). If the indi-
cated data item is present, P, ~+17 deletes its data node, sends Py, m
a DELETE_REPLY(no error) message, and sends the outside world an
acknowledgment. If the indicated data item is not present, Pr v+1y
sends P, 1 @ DELETE_REPLY(error) message, then sends the outside
world an error response.

D. Range Queries

Range queries can be accommodated with a slight additional
amount of storage overhead. Immediately after a SEARCH(n) opera-
tion is initiated, any number of NEXT_UPTO() operations can be
requested. When Py, v+ receives a NEXT_UPTO(m) message, it looks
for the smallest key k which is larger than the key of the previously
outputted item. If there is no such item, or if & > m, Py, y+11 sends
out an error indication. The external interface to our search tree
should respond to this error indication by stopping the generation of
NEXT_UPTO requests, thereby terminating the range query. About
[lg N + 17/2 NEXT_UPTO requests will still be in the pipeline at the
time the range query is terminated. A range query returning j items
can thus be executed by means of atotalof j + [Ig N + 1]/2search
tree operations.

Note that Py v+17’s search for an item that is NEXT_UPTO(m) will
be very time consuming if that item is not in the same node as the
previous output. For this reason, additional pointer fields should be
provided with each item (or with each node), forming the items into
a doubly linked list or sequence set {9]. Thus, with two extra point-
ers per item, and one additional message type, our scheme will
execute range queries in time proportional to /g N plus the number
of items in the range. For completeness, an analogously defined
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PREV_DOWNTO(m) command should probably be added to any real-
ization of our scheme that implements the NEXT_UPTO(m) command.
Once the doubly linked lists are in place, only a minimal amount of
extra code is required in Py, n+17 to implement PREV_DOWNTO.

V. STORAGE REQUIREMENTS

In this section we prove that our scheme has enough memory to
hold all possible 2-3-4 trees of N or fewer items. As defined in
Section III, processor P;, 1 < i =< [lgN + 1], has 2! words of
storage in its local memory. Trees start out on processor Pp v+11,
growing upwards towards P, as items are inserted. Let M; (k) be the
maximum number of words used by P; when there are k items in the
tree. Since a key, an item, and a pointer field fit into the word length
specified in Section III, the last processor Py, v+17 Us€s just as many
words as there are items in the tree

MrlgN+ﬂ(k) = k .

The number of words used by processor P, »1 is somewhat vari-
able, depending on the number of 2-, 3-, and 4-nodes in the last
processor. The worst case storage requirement is obtained when
Py v+ has no 3-nodes or 4-nodes

Mrzm(k) = max{l, Lk/2_l}

The “max” function is used to reflect the fact that there is always at
least one occupied word on each level, even in an empty tree.

In general, M.(k) can be expressed in terms of M, (k)

M(k) = max{l, |[M.(k)/2]}, foralli <[IgN + 1].

Solving the above recurrence, and noting that both | [ k/2/|/2] and
Lk/2*'] are equal to the binary value of k right-shifted by
Jj + 1 bits, we find that

Mi(k) = max{l, [k/2"¥+11~i ]}

max{1,2"'k/N}.

i

Evaluating M,(N), we find that P, needs no more than 2" words
to store any N-item 2—3—4 tree. Furthermore, since M;(k) is mono-
tonically nondecreasing in k, the architecture described in
Section III is capable of storing any k-item 2-3—4 tree, k = N. (If
range query support is desired, an additional N words of memory
will be required in processor Py, y+11.)

V1. CONCLUSIONS

We have described a scheme for maintaining a 2—-3—4 tree using
a pipeline of [Ig N + 1] processors. Since the pipeline operates
using a request/reply paradigm, half of the processors can be pro-
cessing requests at any given point in time. The factor of two comes
from the fact that until a processor P; receives its reply from P,
the keys and/or pointers in P; may be incorrect. Thus, the level
of concurrency in a [lg N + 17 processor configuration executing
an arbitrary sequence of SEARCH, INSERT, and DELETE commands
is [lg N + 11/2, as claimed in the Abstract. (A higher degree
of concurrency —up to [lg N + 1]—could be obtained on a
long string of SEARCH commands, as these do not involve
INSERT_TRANSFORM Or DELETE_TRANSFORM messages.) Since our
scheme requires O(lg N) time per tree operation, but allows O(lg N)
concurrency on the operations, one operation completes every O(1)
time units. This scheme could be a useful component for index
maintehance in a machine architecture specialized for information
storage and retrieval.
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A Muitiprocessor Architecture for Generating Fractal Surfaces

STEPHEN L. STEPOWAY, DAVID L. WELLS,
AND GERALD R. KANE

Abstract — Fractal surfaces have recently been shown to be a useful
model for generating images of terrain in comiputer graphics. Unfortu-
nately, the generation of fractal images is very costly in CPU time. A
multiprocessor architecture is described which takes advantage of the
paralleliSm inherent in fractals to speed the generation of images. The
performance of the processing array is analyzed along with the suitability
of implementation in’ VLSI. :

Index Terms -—Arcililecture, computer graphics, fractal surfaces, par-
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