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Delay Optimization of Carry-Skip Adders 
and Block Carry-Lookahead Adders Using 
Multidimensional Dynamic Programming 

Pak K. Chan, Member, IEEE, Martine D. F. Schlag, Member, IEEE, Clark D. 
Thomborson, Member, IEEE, and Vojin G. Oklobdzija, Senior Member, IEEE 

Abstract-The worst-case carry propagation delays in carry- 
skip adders and block carry-lookahead adders depend on how 
the full adders are grouped structurally together into blocks as 
well as the number of levels. 

We report on a multidimensional dynamic programming para- 
digm for configuring these two adders to attain minimum latency. 
Previous methods are applicable only to very limited delay models 
that do not guarantee a minimum latency configuration. Under 
our delay model, critical path delay is calculated not only taking 
into account the intrinsic gate delays, but also the fanin and 
fanout contributions. 

Index Terms-Block carry-lookahead adders, carry-skip add- 
ers, CMOS, computer arithmetic, delay optimization, multidi- 
mensional dynamic programming, VLSI design. 

I .  INTRODUCTION 

HE worst-case carry propagation delays in carry-skip T adders depend on how the full adders are grouped to- 
gether (into blocks). The problem of configuring carry-skip 
adders to minimize the carry propagation delay has been 
the subject of several papers. Lehman has shown that carry- 
skip adders with variable-size blocks are faster than adders 
with fixed-size blocks [l]. Later, Majerski suggested that 
multilevel implementation of the variable-block-size carry- 
skip adders would provide further improvement in speed 
121. The optimization technique developed for the choice 
of block sizes by Majerski is limited to a specific ratio 
between the carry-generate and carry-skip propagation delay. 
Almost two decades later, Oklobdzija and Barnes developed 
algorithms for determining near-optimal block sizes for one- 
level and two-level implementations, and a generalization 
of their method was given by Guyot er al. [3] ,  141. Their 
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algorithms have very elegant geometrical interpretations but 
do not guarantee optimality of the design. Moreover, their 
algorithms work only if the carry-skip propagation delay is 
a constant. In [5] it is noted that in CMOS Manchester 
adders with carry-skip, the carry-skip propagation delay is 
not necessarily a constant, but depends on the number of 
bits in the adder. Chan and Schlag developed a polynomial 
time algorithm to configure block sizes to attain minimum 
latency for one-level carry-skip adders under a linear carry- 
skip delay model. Simultaneously, an indirect enumeration 
approach was taken by Turrini to generate (multilevel) block 
distributions containing the maximum number of bits under a 
specified delay constraint 161. Unfortunately, this approach is 
applicable only to constant carry-skip delay models, since it 
constructs a configuration from the top down by calculating 
delay constraints for lower-level blocks without knowing the 
number of bits encompassed in these blocks; when the lowest 
level is reached each block is filled with the maximum number 
of bits satisfying its delay constraints. 

The idea of varying block sizes to further reduce delays 
was also suggested in 171, where an exhaustive search was 
employed to search for an optimum block carry-lookahead 
adder. Much earlier, Montoye and Cook used an analytical 
delay model to guide an iterative search for area-time optimal 
parallel prefix adders generated by a binary recursion [SI. 
They supplied no run-time analysis of their search technique, 
although they did indicate that an optimal 34-bit adder could 
be found in 30 min of IBM 3033 time. Wei and Thomborson 
[9] devised a dynamic programming technique that found, in 
O(n2h2)  time, all area-time optimal parallel-prefix adders in 
a class generated by a binary recursion similar to Montoye’s. 
Here, h is the height of the minimum-delay adder of data 
width n. They found optimal 66-bit adders in a few seconds 
of SUN-3 CPU time. 

In this paper, we formulate the problems of configur- 
ing carry-skip adders and variable-block-size block carry- 
lookahead adders as dynamic programs. The resulting dynamic 
programs have multidimensional objective functions. It is 
thus necessary to carry forward a list of optimal structures 
from each stage of the dynamic program. In the traditional 
(unidimensional) dynamic program, only a single optimum 
structure is carried forward. The existence of multidimensional 
dynamic programs was noted in an early paper by Dantzig 
[lo]. Weingartner 1111 was apparently the first to suggest that 
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this would be an effective method of solving multidimen- 
sional knapsack problems. Subsequent researchers [ 121 - [ 141 
refined Weingartner’s algorithm, adding more sophisticated 
data structures and list-pruning strategies. 

Multidimensional dynamic programming formulations have 
not been applied elsewhere to configure carry-skip and block 
carry-lookahead adders.’ In contrast to previously-published 
optimization techniques for finding efficient adders, our method 
immediately generalizes to a wide class of gate delay models 
and is guaranteed to find minimum latency circuits. 

11. CARRY-SKIP ADDERS 

A. Constructing a Stage from Blocks 

Fig. 1. Forming a stage from blocks 

y bits 

Internal-carry delay 

We group several full adders together to form an adder 
block. Each block has a block-level carry skip mechanism SI, 
which can be implemented with a multiplexor selected by the 
group propagate. The basic structure of a stage of a 2-level 
carry-skip adder is illustrated in Fig. 1. Each stage encom- 
passes several blocks, and contains a second-level carry skip 
mechanism. The pertinent components of carry-propagation 
delays in a block are shown in Fig. 2. 

p%f z:!y-generate delay 

ep t!!y-assimilate delay 

B. Glossary of Terms 

The basic notations used in this section are listed below. 
The meanings of the notations are illustrated in Figs. 1 and 2. 

1) I(y)-internal-carry delay, the maximum delay it takes 
a carry to generate within a block of y full-adder units 
and assimilate within the block. 

2) G(y)-carry-generate delay, the maximum delay it takes 
a carry to generate within a block of y full-adder units. 
This also includes the time it takes a carry to propagate 
through the buffer (the triangle). Typically, the buffer 
computes the logical “OR” of its two carry-input signals. 

3) A(y)-carry-assimilate delay, the maximum delay it 
takes a carry to enter a block of y full-adders and 
assimilate within the block. 

4) Sl(y)--lth level carry-skip delay, the time it takes a 
carry to skip through y full-adder units using the Zth- 
level carry skip mechanism. For 1 = 0, this is the time 
for a carry to propagate through a block consisting of y 
full-adder units. For 1 2 1, this is the time to compute the 
logical “AND” of a carry-in signal with the skip-enable 
signal of the block. This also includes the time it takes 
a carry to propagate through the buffer. 

5 )  Set-upl(y)-Zth level setup time, the amount of time it 
takes to enable the skip circuitry at level 1, see Fig. 3. 
This reflects the delay to generate a group propagate for 
y bits (IIy=lp,, where p ,  is the carry propagate of the 
,ith full adder). 

s1 ( X I  

Carry-skip delay 

Fig. 2. Characterization of delays at the block level 

11 I I Fitst-level skip enadlea 

II Q~econd-1eve~ skip enable I 
Fig. 3. Skip enable generation, inputs to the first level AND gates are the 

carry propagates p , .  

we start the discussion with a two-dimensional optimization 
problem based on one-level carry-skip adders. The method we 
derive in this section delivers the same results as a previously- 
published algorithm [5] ,  but at a much higher computational 
cost. However, this section’s method can be easily generalized 
to more complicated timing models and to higher-dimensional 
optimizations. 

A. Problem Statement: One-Level Carry-Skip Adder 

Let yk denote the number of bits in block IC. We say that a 
vector y’ = ( y l ,  y2. . . . , ym) is an m-block configuration of a 
one-level n-bit adder if 12, yk = n and all yk are positive 
integers. L~~ c, be the set of all configurations of one-level 
n-bit adders. We shall assume that all skip circuitries are set 
up at time zero. The effect of nonzero setup time is treated 

111. A 2-D DYNAMIC PROGRAMMING FORMULATION 
FOR FINDING MINIMUM LATENCY CONFIGURATIONS 

In order to Present the idea in a readily-understandable form, 

‘The difficulty of using the dynamic programming technique to solve 
optimization problems, as noted by Dreyfus 1151, lies in the formulation. 
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in Section 111-E. The minimum-latency design problem for a 
one-level carry-skip adder can now be stated as 

Given timing models for internal-carry I ( ) ,  carry- 
generate GO, carry-assimilate A(), and carry-skips So() 
and SI(), find the configuration 1J’. E C, with minimum 
latency. 
The carry-propagation delay between blocks cy and p of a 

configuration i j  is 

The worst-case carry-propagation delay of a configuration y’ 
is therefore 

t. 
A 

0 1  2 ... j-1 j th block 

Fig. 4. Appending a new block. 

propagation delays of an ( 2 ,  j)-adder, where 

terminates before or at block j ,  and 

emerges from block j .  

t ,  is the worst-case delay of any “carry chain” that 

t, is the worst-case delay of any “carry chain” that 

We shall construct for each i and j ,  a list t ( i , j )  of 
pairs ( t a , t g )  for all (i,j)-adders. The basis for the dynamic 
programming is 

t(i, 0) = (max{A(i), I ( i ) } ,  max{G(i), So( i ) } ) ;  
for 0 5 i 5 n, 

Then our problem is to find a minimum worst-case delay 
Configuration y” for given carry-generate, carry-assimilate and 
skip delay functions, 

and for i 2 j 2 1, i - j + 1 2 yj  2 1, the minimal worst-case 
delays of (i, j)-adders are formed by composing (i - yj ,  j - 1) 
adders and a new j th  block with y j  bits. For each (th, t$)  in 
t(i - yj,j - l), we construct a pair ( ta , tg )  by (Fig. 4) D, E D(~J’ . )  = p i n  ~ ( i j ) .  (1) 

Y EC, 

B. Algorithm: One-Level Carry-Skip Adder 

We refer to i-bit, j-block carry-skip adders as (i,j)-adders. 
Note that j 5 i, since each block must have at least one 
bit. For small blocks, rippling through a single block may be 
faster than using a one-level skip. This is handled in the carry- 
propagation delay computation by using min{Sl(y), So(y)} 
in place of SI(?/). That is, we take the minimum of the 
propagation times through a block of y bits with or without 
skip. But in so doing, we have no knowledge of whether the 
carry will skip or ripple through a block. After extending our 
algorithm to design multilevel carry-skip adders in Section III- 
D, we shall incorporate setup time into the delay optimization. 
For the formulation in Section 111-E in which setup time 
is considered, it is crucial to know whether or not skip(s) 
are used. For this reason, we assume that all skips are used 
(even if the path through the block is faster) and we amend 
the problem formulation of Section 111-A to explicitly allow 
the possibility of having an initial and/or final block without 
a skip. During our construction of an optimal configuration 
we shall consider only (i.j)-adders consisting of an initial 
(possibly empty) block with no skip, followed by j nonempty 
consecutive blocks. By doing so, we are assuming that there is 
an optimal configuration which does not have skip-less blocks 
except at the ends. The optimal/suboptimal carry-skip adder 
configurations published in the literature all have this form. 

Given (2 . j )  there are ( f )  such adder configurations, since 
we have the freedom to distribute i - j  bits among j + 1 blocks. 
A final step will consider adding a block to the end with no 
skip. We use a pair (t,. t,) to characterize the worst-case carry 

t a  = rnax{tb, t$ + A ( Y ~ ) ,  I (Y~)} 
t ,  = max{G(Yj); t$ + Sl(Yj)). 

(2) 
( 3 )  

We then solve for D, = ming,c, D($) by 2-D dynamic 
programming in a tableau that retains, for each t ( i , j ) ,  a list 
of the minimal ( ta , ts)  pairs for all (i,j)-adders. The list in 
tableau cell ( i , j ) ,  for j 2 1, is obtained by using the recursion 
above to process the lists in cells (i - yj,  j - 1) for all “last 
block” sizes i - j + 1 2 y j  2 1. Once the entire tableau for 
1 5 i 5 R and 0 5 j 5 i has been computed, the lists in 
column i are concatenated into one list T ( i ) ,  and a final block 
of n - i bits without a skip is added. D, is the minimum of 
the set 

This algorithm delivers the correct minimum for any non- 
negative GO, A(), SO() ,  and SI() functions, but it potentially 
requires exponential time and space. The next section ad- 
dresses this issue by presenting techniques to prune the search 
and limit the number of configurations generated. 

There is a reason to expect good performance, however. If 
the t ,  and t ,  values in the retained lists are independently 
distributed, then each list will have O(1ogn) elements with 
high probability [16], [17]. In this case, the optimization 
algorithm for an n-bit adder will run in O(n310g3n) time, 
with high probability. Positive correlation among the t ,  and 
t, values would shorten the lists and hence the run-times; any 
negative correlation would lengthen the lists. We expect to see 
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~ 

923 

Fig. 5.  Potential number of entries in the tableau. 

a slight positive correlation for any reasonable delay model, 
so we believe this method will prove feasible for optimizing 
adders with hundreds of bits. 

C. Number of Configurations in the Tableau 

The maximum number of configurations for cell ( i , j )  in 
the tableau is the binomial coefficient (3). Fig. 5 shows the 
potential number of configurations for any 10-bit carry-skip 
adder. There are ten possible configurations for a 10-bit one- 
block adder because of the possibility of an initial block (0th 
block) with no skip. This initial block can hold zero to nine 
bits. Fortunately, many configurations can be thrown away 
using the following pruning techniques. 

In each tableau cell, t ( i , j ) ,  only the nondominated pairs 
must be retained. For example, let (tu,t,) and (th,t$) 
be pairs in cell t ( i , j )  of the tableau. We say (ta. t,) is 
dominated if either (t ,  > t: and t ,  2 t$) or (t ,  2 tk 
and t ,  > t$). From (2) and (3) it is clear that any 
pair constructed by adding another block to (tar t g )  will 
be suboptimal to the corresponding pair generated by 
adding the same block to (th,t$),  and hence the former 
can be discarded. If only one optimal configuration is 
desired, further pruning can be achieved by breaking ties 
arbitrarily and discarding all but one of the pairs involved 
(pruning by domination [ 111). 
Once the t (n , j )  cell is filled in, we can examine its 
entries and determine the minimum worst-case delay of 
an (n ,  j)-adder. This delay, D,(j), is an upper bound on 
the final delay, D,, and can be used to discard any pair 
generated with either t ,  2 D,(j) or t ,  2 D n ( j ) .  In order 
to take full advantage of this bound, we fill each row of 
the tableau from right to left so that D n ( j )  can be used 
in filling the rest of the row (pruning by fathoming [13]). 

Fig. 5 shows the potential number of configurations for any 
10-bit carry-skip adder. However, by using the aforementioned 
pruning techniques, the number of configurations can be drasti- 
cally reduced. Fig. 6 shows the actual number of configurations 

j ,Blocks 

0 11 1 1  1 1 ;  1 ;  1 ; 1 ;  1 ;  1 ;  1 ! 1 ;  
bits c 

1 2 3 4 5 6 7 8 9 1 0 ;  

Fig. 6. Actual number of entries in the tableau. 

generated in each cell of the tableau for the delay model 

D. Algorithm: 1-Level Carry-Skip Adder 

In this section, we generalize the one-level skip algorithm 
to multiple levels. We shall assume that all skip circuitries are 
set up at time zero. The effect of nonzero setup time is treated 
in Section 111-E. 

We shall construct carry-skip adders having a total of z 
bits and j “stages” at level 1 and denote these as ( i , j >  I)- 
adders. Again we shall consider only ( i , j ,  1)-adders where 
the j nonempty stages are consecutive and follow an initial 
number of bits (possibly none) forming an adder with only 
lower-level skips. If we were going to apply the algorithm from 
the one-level case, we would need to have available, Gl-l(y), 
Al-l(y), and Il-l(y) functions. Unfortunately, these delays 
are configuration-sensitive and cannot solely be characterized 
by y. This difficulty is surmounted by determining the values 
of these delays for all ( i , j , l  - 1)-adders. We use a 4-tuple 
( t Z ,  t,, tu ,  t s )  to characterize the worst-case carry propagation 
delays of an ( i ,  j ,  I)-adder, where 

t ,  is the worst-case delay of any “carry chain” that 
generates at or before stage j and terminates at or before 
stage j (at level l ) ,  
t ,  is the worst-case delay of any “carry chain” that 
generates at or before stage j and continues through stage 

tu is the worst-case delay of any “carry chain” that enters 

t ,  is the worst-case delay of any “carry chain” that enters 

Again, we shall compute a tableau in which t c 3 ( i , j . l )  
contains the minimal 4-tuples for all (i,j,l)-adders. Fig. 7 
shows a (E i k ,  j .  1)-adder. We also characterize the worst- 
case delays of a “stage” of a carry-skip adder having i bits 
and I levels regardless of the number of stages it contains, 
with a (possibly zero) number of bits in lower-level blocks at 

j ,  

the adder and terminates at or before stage j ,  

the adder and continues through stage j .  
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Fig. 7. A (E i k . .  j .  I )  adder 

IT,=,(&[- 1)I T c 8 ( i ~ , l  - 1)I Tcd(i2,1 - 1 )  . . . , . 
Fig. 8. A ( b  + cfk.j.I) adder. 

the end. We call these ( i ,  *, I)-adders, as illustrated in Fig. 8. 
Their 4-tuples can be obtained from the ( i  - b, j ,  1)-adders, for 
all b 5 i, by appending a level I - 1 stage of b bits to the 
end. The equation for combining an ( i  - b ,  j ,  1)-adder and an 
( b ,  *, 1 - 1) adder is 

Here, Ti is the internal-carry delay, T, is the carry-generate 
delay, T, is the carry-assimilate delay, and T, is the carry-skip 
delay of the new (i, *, 1)-adder. The recurrence relationship 
for the set tcs(i, j ,  1) = {( t i ,  t,, t,, t,)} is defined below. The 
recurrence formula (5) expresses the worst-case propagation 
delays of ( i , j ,  I)-adders composed of (i - b , j  - l,Z)-adders 
and ( b ,  *, 1 - 1)-adders. This is the recurrence for appending 
a new stage at the same level. It corresponds to (2) and (3) 
in the one-level case. 

The basis for the dynamic programming is (1 = 0) 

In this expression, the worst-case delay of an n-bit adder 
using at most 1-level skips is the minimum Ti appearing in the 
sets T,,(n,k), for 1 5 k 5 1. 

We control the number of configurations in each set by 
adopting pruning techniques similar to those described in the 
previous section. In addition, once an additional skip-level 
produces only suboptimal 4-tuples for a given number of bits 
z, no more new skip levels are considered for i bits. 

E. Incorporation of Setup Time for the Skip Gates 

The setup time Set-upl(y) is the amount of time needed 
to enable the skip circuitry at level 1. This reflects the delay 
to generate a group propagate of y bits. Our dynamic pro- 
gramming formulation cannot be easily adapted to take care 
of the effects of setup time. The problem is that the worst-case 
assimilate and skip times computed for (2, *, I)-adders can no 
longer be used in generating ( i ,  j ,  1 + 1)-adders since the setup 
times have been incorporated assuming that carries arrive to 
the adder at time 0. A compromise is to charge the setup time 
only to the carry generate, subsequently the formulation is 
modified as 

In this formulation, the generate delay t ,  is exact, while the 
other three components may be underestimated. Care should 
be taken during the pruning to verify the actual delays of the 
current best delay for an (n ,  *, 1)-adder which will be used to 
discard configurations. 

Tcs(i, 0) = { ( I (+  G(i) .  A ( i ) ,   SO(^))}; for 0 F i 5 12, 
F. Results 

and for 1 L 1, t c s ( z . O . l )  is defined as We coded our dynamic programming formulation in the 
“T” programming language [18], and used Turrini’s [6] delay 
model and results to validate our algorithm. Turrini’s delay tcs(i,O.l) = Tc,(i.l - 1): for 0 5 i 5 n. 
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level 

915,P15 ... ... ... SO?PO 
. . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  

. . . . . . . .  . . . . . . . .  , , W ~ ~ ~ ~  . . . . . . . .  

C11ClOco I 

G ,  P 

. . . . . . . .  . . . . . . . .  ~W~~~~~ ........ 

c l Q C 5  I 

G,  P 

. . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  

I 
I I I - - - - - L  
I 1 I ca 

level 2 

I L1 L1 E t  I 

Fig. 9. A 16-bit two-level equal-block-size BCLA. 

model is a linear ripple, constant skip model: 

Despite the underestimation of the delay resulting from ignor- 
ing the setup time for skips in all but the generate delays, our 
algorithm was able to generate the same optimal size adders 
as Turrini [6]. However, we emphasize that our approach is 
applicable to any delay model. Turrini's analysis is limited to 
models with a constant value for the skip delay, regardless of 
the number of blocks being skipped. 

Iv. DELAY OPTIMIZATION OF 
BLOCK CARRY-LOOKAHEAD ADDERS 

This work was motivated by Wei and Thomborson [9] who 
used dynamic programming techniques to optimize parallel- 
prefix adders, as well as a study carried out by Lee [7]. In 
his paper, Lee discusses the possibility of varying the block 
sizes in a block carry-lookahead adder (BCLA) to further 
optimize the carry propagation delay. We begin by recalling 
the structure of block carry-lookahead adders. 

Fig. 9 shows a 16-bit 2-level equal-block-size block carry- 
lookahead adder. Each (block) box is a 4-bit carry-lookahead 
generator as shown in Fig. 10. These two figures illustrate the 
notation that we shall be using in this section. We use small 
letters to denote global signal names, e.g., go, c1, and capital 
letters to denote signal names relative to a block, e.g., Go, C1. 
The goal of our optimization is to minimize the worst-case 
delay of carries c1 to c,-1 of an n-bit adder. Notice in Fig. 
10 that there is no connection from the carry input CO of the 
block to the carry propagate P and generate G outputs. In 
terms of the structure of the BCLA, this means that P and 
G are the only signals which travel down the carry-lookahead 
tree; the carry outputs at the lower levels travel back up to 
determine the carry outputs of some of their ancestor blocks. 

An equal-block-size BCLA minimizes the height of the tree. 
The latency would be minimal if delays were measured merely 
by summing unit gate delays along paths. However, in practice 
the delay of a gate depends on fanin and fanout. The interior of 

CO - 

Y Y Y Y ' I /  
P G c 3  c, c1 

Fig. 10. A 4-bit carry-lookahead generator. 

925 

Fig. 11. An 8-bit variable-block-size BCLA. 

a "block" of a BCLA is a two-level network. Hence the delay 
of a block is a function primarily of the size of the gates (fanin) 
as well as the fanout of the signals feeding these gates. Each 
pair of generate and propagate signals G, P fanout to only 
one block, however within the block their fanout is linear and 
quadratic in the size of the block, respectively. These factors 
tend to limit the block size. In contrast, the carries fanout to 
multiple blocks (to each of their rightmost ancestor blocks) and 
hence their delay minimization is improved by decreasing the 
height of the tree. Smaller blocks are faster and their increased 
speed may offset additional levels of logic on interior paths, 
if the sizes of blocks can be varied to balance path delays. 

Fig. 11 shows an 8-bit variable-block-size BCLA. Lee 
shows that the (3-level, 8-bit) BCLA as shown in Fig. 12(a) 
has the minimum latency according to a gate delay model 
which considers fanouts and fanins; the next best adder has 
the configuration of Fig. 12(b). However, Lee found neither 
exact algorithms nor heuristics to configure a BCLA to attain 
minimum latency [7]. Two heuristics were introduced by Lee 
and Oklobdzija in [19], but optimality is not guaranteed. 

Here, we formulate a multidimensional dynamic program to 
solve the problem for a particular class of gate delay models, 
in which gate delay depends linearly on fanout and fanin. We 
refer to BCLA adders having i bits as i-adders. For a given m, 
we construct a BCLA i-adder by selecting m (smaller) BCLA 
adders of sizes io, 21, . . .  im-l, respectively, and combining 
them to form an ( i o  + i l  + . . .  + i,-l)-adder with an m-bit 
carry-lookahead generator. 

Instead of trying all possible combinations of i o ,  21, . . . .  
i,-l which total to .i bits, we construct a BCLA adder 
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97,  P , Po g7, I PO 

Fig. 12. Optimal 8-bit variable block size BCLA’s 

incrementally by filling in the positions in our m-bit carry- 
lookahead generator starting with the least significant position. 

A partially completed adder with i = io + il + . . . + Z,-l 

bits and an m-bit block having only positions 0,1, . . . , j - 1 
filled is called an (m, i ,  j)-adder, as shown in Fig. 13. Clearly 
this is only defined for 1 5 j < m. Since not all inputs of 
the m-bit block are provided, we assume temporarily that these 
are constants and compute worst-case delays of the adder only 
from the inputs to positions 0 through j - 1 of the m-bit block. 

Since our goal is to minimize the worst-case carry of an 
i-adder we must maintain enough delay information in our 
Gadders and (m.  i, j)-adders to compute accurately the worst- 
case carry delay and guarantee the minimum latency. Because 
of the structure of the carry-lookahead generator and the gate 
delay model, we shall be able to compute the delay of an 
(m. i. j + 1)-adder without retaining complete information 
about the arrival time of the inputs to the (m,i,j)-adder. 
(In fact, the only arrival time that must be retained is that 
of the most significant generate.) One complication with this 
construction is that the fanout of the carry-in to an a-adder 
increases when the i-adder is connected to another block; this 
may further increase its worst-case carry delay. Fortunately, 
since the dependence on fanout is linear we can account for the 
extra delay by maintaining two versions of the worst-case carry 
delay of an i-adder; one for paths originating from the carry- 
in and the other for the overall worst-case. Before discussing 
the delay components which will characterize our Gadders and 
(m.i.j)-adders in any more detail, we first present our gate 
delay model, 

A. Gate Delay Model 

available time (tout) of a gate are related by 
We assume that the input arrival time (tin,j> and the output 

tout = max{ti,.j} + FO . T + B(FI)  (7) 
3 

where FO is the fanout of the output signal, F I  is the fanin 
of the gate, T is the delay per unit fanout, and B(FI) is the 
delay of a gate of fanin F I  under zero load. This assumption 
of linear dependence of gate delay on fanin and fanout is 
verified by [20]. We define specific delay functions B,,,d(FI), 
d a n d ( F I ) ,  and din” to model the behavior of “NAND” gates, 
“AND” gates, and inverters under zero load. The functions 
Onand, Band, and din” must be monotone nondecreasing, but 

i i bits 

I I 
1 

Fig. 13. An ( m ,  z .  j)-adder. 

may take infinite values beyond a certain point in their domain. 
This ensures that our designs will not contain 17-input-NANDs 
if an 8-input-NAND is the widest one available. 

For simplicity of presentation, we assume that NAND gates, 
AND gates, and inverters have the same 7 value, although this is 
not a limitation of our formulation. We must, however, require 
that all B functions take nonnegative values over their domains. 

We also define S to express the incremental change of delay 
per unit fanin: S(F1)  = O ( F I ) - B ( F I - l ) .  When considering 
different gates, we add a suffix to identify the gate in question, 
for example, Sand and Snand. Under our linearity assumption 
on 8 0 ,  6and and &and are nonnegative constants. 

The loading on the output signals of a &bit block connected 
to the j th  input of an m-bit block in a BCLA [21] can be 
expressed as 

Gj  of the k-bit block has fanout m - j ,  i.e., f ~ ( m , j )  = 
m - j .  Notice that the fanout is largest at the 0th input 
position. 
Pj of the k-bit block has fanout f p ( m , j )  = (m-  j ) ( j  + 
The carry-in CO to the m-bit carry-lookahead generator 
1). 

has fanout m - 1. 

B. Constructing BCLA Adders 

a 5-tuple, (TG, Tp, TWC, TWC,. , F p ) ,  where 
For this construction we need to characterize an i-adder with 

TG is the worst-case delay of the group generate output, 
Tp is the worst-case delay of the group propagate output, 
T W c L n  is the worst-case delay of any path from the carry 

T ~ c  is the worst-case delay of any carry output, and 
FC,, is the fanout of the carry input inside the adder. 

input to any carry output, 
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All the delay values above are calculated under the assump- 
tion of zero fanout. When we use these adders as building 
blocks for larger adders, we shall add appropriate multiples of 
7 to the delay. Note the two versions of the worst-case carry 
delay. As discussed, these are necessary in order to account 
for additional loading on the carry-in when the z-adder is 
connected to other blocks. 

Recall that an (m. 2, j)-adder has a partially completed m- 
bit block with z = zofzlf . .  .+zJ-l bits having only positions 
0.1.2.  . . . . J - 1 filled. We shall characterize an (m, 2, 3)-adder 
by an 8-tuple ( t G .  t p ,  ~ L G .  tc. tcln, tu c, t w c s n .  fc,.),where2 

tG is the worst-case delay of the group generate output, 
tp is the worst-case delay of the group propagate output, 
f L G  is the arrival time of the group generate G,-l, 
felt, is the worst-case path delay from the carry input 
to the currently last carry output C, of the m-bit carry- 
lookahead generator, 
tc is the overall worst-case delay of the currently last 
carry output C, of the m-bit carry-lookahead generator, 
tll c i n  is the worst-case path delay from the carry input 
to any carry output, 
t1t-c is the overall worst-case delay of any carry output, 
and 
fctt. is the fanout of the carry input inside the adder. 

The arrival time of the input G,-l ( ~ L G )  at the m-bit block 
is the only input arrival time retained. We shall be able to 
compute all the components of an (m,z,2 + 1)-adder from 
those of an (m, I - b, 3)-adder and a b-adder. 

As in the algorithm for carry-skip adders, we retain a tableau 
of lists for constructed adders: 

Three sets of equations in our dynamic programming for- 
mulation cover, respectively, filling in the first position of an 
m-bit block, an intermediate position, and the last position. 

An (m, i .  1)-adder is generated from a 5-tuple (TG. Tp. 
, FcIll) in T( i ) ,  by 

For j > 1 (and j < m), an (m,i , j)-adder is generated 
by connecting the Gj-l, Pj-1 inputs of an (m,i  - b , j  - 1)- 
adder with the G ,  P outputs of a b-adder (see Fig. 14). AS 
discussed, the worst-case carry of the b-adder is adjusted by 
the increase in fanout of its carry-in. Notice that the logic 
network for Cj is similar to the one for computing Cj-1; it 
differs only in that the fanin of the gates have increased and 
the inputs Pj-l, GjPl,  and G,-2 must be incorporated (for 
example, compare the logic for C, and C, in Fig. 10). This 
is the reason for retaining the ~ L G  component. As a result, 
the delay of C, can be computed based on the arrival times 
of P,-l, GJpl (provided by the b-adder) and the t L G  and 
t r  components of the (m, i - b. 2 - 1)-adder. Specifically, if 

T(z)  = { ( T G . T ~ , T W ~ , T ~ ~ , ~ ,  Fen.) 1 for all e-adders} 

t(m. 2.1) = {(k .  tP, t L G .  f C ,  fclrl, t W C ,  twcin. f C 1 n )  1 
for all (m, i, j)-adders}. (8) (TG, Tp, Twc, Ttycln, Fcln) is the 5-tuple which character- 

izes the b-adder and (&, tb, tLG, t(c, t;,,, , f k rC ,  thrcln, f&) 

then the 8-tuple for our new (m, i ,  j)-adder is 
*The f c , l , ,  term is redundant since it will always he equivalent to f C l n  r+r, is the which characterizes the (m,  - b, j - 

hut is made explicit here to elucidate the delay equations. 
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.......... .......... SrP * 

Qi-b-lrpi-b-1 ... SO!PO - - _ - -  Carry - - . .  . .  . .  G, P . .  

time -w 

- - - -  
(m,  i - b,  j - I)-adder 

I 

_ - -  
I 
I 
I 
I 
I 
I 
I 
I 

1” c i n l  
G , P  ” Y Y 

c1 cj cj-1 

Fig. 14. Filling an intermediate position ( J  - 1 )  

When the mth position of an (m.i - 6,m - 1)-adder 
is filled in with a 6-adder, we obtain an i-adder. If 
(TA. Tf.. TArc, Tf,,,,, , F&) is the 5-tuple which character- 
izes the b-adder and ( tG.  t p ,  t L G .  tc, tel.. twc ,  twctn ,  fcln) 
is the 8-tuple which characterizes the (m, a - 6, m - 1)-adder, 
then the 5-tuple for our new a-adder is 

The basis for the dynamic programming is T ( l )  = 
{ (dand(2). 8,,(2). 0.0.0)). The first two components are the 
delays to generate the gZ and p , ,  respectively. 

The minimum worst-case delay of an n-bit BCLA adder is 
the minimum TU-C appearing in the set T ( n ) .  

C. Implementation 

Instead of a 2-D tableau to fill as in the case of the carry-skip 
adders, we must fill the three-dimensional volume as depicted 
in Fig. 15. To construct an (m. i.j)-adder for j > 1, we must 
have already constructed all (m. 6 . j  - 1)-adders and all 6- 
adders, for 1 5 6 < i .  To construct all i-adders we must have 
constructed all (m,i  - b , m  - 1)-adders for 1 5 6 < i and 
2 5 vi 5 i .  Finally, to construct an (m, i ,  1)-adder, we must 
have constructed all i-adders. These dependencies lead us to 

i 

Fig. 15. Filling the volume. 

the following steps depicted in Fig. 15 which are repeated for 
z = 2 , 3 , . . . . n  . 

1) Construct all ( z ,  b,  ])-adders for b = 1.2. .  . .  , z - 1. 
2) Construct all ( z ,  b, 3)-adders for 3 = 2 . 3 ,  . . . .  z - 1 and 

3) Construct all (m, z,j)-adders for m = 2,3 . .  . . .  z and 

are in fact the (m. z ,  m)-adders for vi = 2 .3 , .  . . .  z. )  

m = 2 , 3  . . . . .  2 .  

D. Pruning Techniques 

The maximum number of configurations in the volume 
even for a small number of bits is prohibitively high. We 
have employed the following pruning techniques to reduce 
the number of configurations. 

Set an upper bound on rn,  the maximum number of inputs 
to a block, based on a known technological constraint. 
Compute the worst-case delays of equal-block-size adders 
using the gate delay model. This sets an upper bound on 
any delay component of the variable-block-size adders 
that we are building in the “volume.” Hence any config- 
uration which has a delay component greater than this 
upper bound can be thrown away. 
Since the worst-case delays of equal-block-size adders 
are typically 20% higher than the minimal latency ones, 
a tighter upper bound can be obtained by temporarily 
disregarding some delay components during the ranking 
of the configurations (e.g., f p  or Tp), and running the 
algorithm to obtain a suboptimal configuration. In effect, 
this is optimization by a lower-order dynamic program. 
We then use the maximum delay component of this 
suboptimal configuration as the new upper bound for a 
new trial (after reinstating the deleted delay components). 
This iterative improvement scheme turns out to be very 
effective in pruning infeasible configurations and reaching 
the minimum latency configurations. 

6 J , J  + l , . . . . ~  - 1. 

J = 2 ,3 , .  . *  , m. (We now have all z-adders, since they 

4) Construct all (m, z ,  1)-adders from the z-adders, for 

E. Results 

We use a gate delay model obtained by fitting data from an 
ASIC-CMOS standard cell library [22] to linear d functions 
[20]. We select T to be 5 so that all the parameters in the 
equations are scaled to integers. Note that an unloaded inverter 
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TABLE I 
DELAYS OF EQUAL-BLOCK-SIZE VERSUS VARIABLE-BLOCK-SIZE ?,-BIT BCLA’S. CONFIGURATIONS FOR 2-BIT TO 16-BIT ADDERS ARE OPTIMAL (IN LATENCY) 

2 
3 
4 

6 

7 

8 

16 

24 

32 

48 

64 

66 

84 

T < ; T I J T I ~  c 
152 124 152 
202 154 202 
309 258 247 
252 184 252 
424 350 314 
337 251 319 
399 318 347 
362 281 364 
424 355 369 
382 286 379 
317 251 434 
347 251 499 
559 477 489 
489 410 506 
407 350 569 
437 311 597 
479 385 609 
532 378 789 
621 544 627 

532 378 879 
716 599 716 

577 408 932 
789 639 797 

622 438 977 
794 649 802 

717 505 977 
803 674 856 

762 530 1069 

has delay of 12 units. 

7 = 5  

tS.A?iD,out = t in  + F O  ’ r + F I  20 
t ~ ~ , ~ ~ t  = t i ,  + FO . T + F I  ’ 2 0  + 17 

t.kyD.out = tilL + FO . T + F I  . 20 + 17 

tIy\.,out = ti,, + FO . T + 12. (12) 

We shall represent the carry-lookahead adder tree in paren- 
theses notation. For example, the adder structures shown in 
Figs. 12(a) and (b) are represented as ( ( 1 1 3 ) 1 1 1 ) and 
( ( 1 1 1 3 ) 1 1 ),  respectively; and the equal-block-size 
16-bit BCLA of Fig. 9 appears as ( 4  4 4 4 ) .  The numbers 
in the expression represent the block sizes at the top level. 

For an n-bit adder, Tl1-c in Table I indicates the worst- 
case delay to generate the carries c1 to c,-1. The overflow 
condition is indicated by the final carry c,, which depends 
on the carry generate and propagate (TG and Tp). Table I 
shows the delays of variable-block-size BCLA’s versus their 
equal-block-size counterparts. These results are generated by 

restricting the maximum fanin of any CMOS gate to 4. The 
delay of an inverter in a typical 1.5 pm CMOS technology is 
roughly 0.3 ns, so we can convert our integer delay values in 
Table I to nanoseconds in such a technology by multiplying by 
(0.3/12) ns. For 8-bit adders we have 9.225 ns, and for 16-bit 
adders we have 12.225 ns. 

Except for the 71 5 8 cases, T l l , ~  is the dominant delay 
component. This experiment demonstrates that variable-block- 
size BCLA’s outperforni their equal-block-size counterparts by 
15-2S%, in terms of their Tl4.c. However, variable-block-size 
adders are not as modular as equal-block-size adders. The best 
variable-block-size BCLA’s tend to have more levels but less 
fanins than their equal-block-size counterparts. This suggests 
that the number of levels is not a good measure of latency for 
VLSI technology. 

V. CONCLUSION 

We have formulated the problems of minimizing the la- 
tencies in carry-skip and block carry-lookahead adders as 
multidimensional dynamic programs. Based on these formula- 
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tions, we implemented programs to carry out the minimization. 
The dynamic programming formulations are appealing because 
of their generality. On the other hand, the computational 
requirement of the optimization process is also high. All the 
algorithms presented are coded in the “T” language (181. The 
program requires 60 megabyte of swap space and ran for over 
3 hours before completion on a SPARC station. 

For the carry-skip adder formulations, we validate our 
results with known optimal results from [6]. However, we 
emphasize that our approach is applicable to a more general 
delay model. Turrini’s analysis is limited to models with a 
constant value for the skip delay, regardless of the number of 
blocks being skipped. 

For the block carry-lookahead adder formulations, the algo- 
rithms generate adder configurations that are not modular, but 
the adders’ latencies are 15-25% less than their modular coun- 
terparts. The delay model that we have established considers 
fanin and fanout, and is therefore more realistic than counting 
the number of levels. However, we do not account for the 
effect of wire lengths in the model-this will be considered 
in future work. 
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