
920 IEEE TRANSACTIONS ON COMPUTERS, VOL. 4i , NO. 8, AUGUST 1992

Delay Optimization of Carry-Skip Adders
and Block Carry-Lookahead Adders Using
Multidimensional Dynamic Programming

Pak K. Chan, Member, IEEE, Martine D. F. Schlag, Member, IEEE, Clark D.
Thomborson, Member, IEEE, and Vojin G. Oklobdzija, Senior Member, IEEE

Abstract-The worst-case carry propagation delays in carry-
skip adders and block carry-lookahead adders depend on how
the full adders are grouped structurally together into blocks as
well as the number of levels.

We report on a multidimensional dynamic programming para-
digm for configuring these two adders to attain minimum latency.
Previous methods are applicable only to very limited delay models
that do not guarantee a minimum latency configuration. Under
our delay model, critical path delay is calculated not only taking
into account the intrinsic gate delays, but also the fanin and
fanout contributions.

Index Terms-Block carry-lookahead adders, carry-skip add-
ers, CMOS, computer arithmetic, delay optimization, multidi-
mensional dynamic programming, VLSI design.

I . INTRODUCTION

HE worst-case carry propagation delays in carry-skip T adders depend on how the full adders are grouped to-
gether (into blocks). The problem of configuring carry-skip
adders to minimize the carry propagation delay has been
the subject of several papers. Lehman has shown that carry-
skip adders with variable-size blocks are faster than adders
with fixed-size blocks [l]. Later, Majerski suggested that
multilevel implementation of the variable-block-size carry-
skip adders would provide further improvement in speed
121. The optimization technique developed for the choice
of block sizes by Majerski is limited to a specific ratio
between the carry-generate and carry-skip propagation delay.
Almost two decades later, Oklobdzija and Barnes developed
algorithms for determining near-optimal block sizes for one-
level and two-level implementations, and a generalization
of their method was given by Guyot er al. [3] , 141. Their

Manuscript received October 14, 1991; revised April 29, 1992. P. K. Cban
was supported in part by NSF Grant MIP-9111607. M. D. F. Schlag was
supported in part by NSF Presidential Young Investigator Grant MIP-8896276.
C. D. Thomborson was supported by the National Science Foundation,
through its Design, Tools and Test Program under Grant MIP 9023238. Based
on “Delay Optimization of Carry-Skip Adders and Block Carry-Lookahead
Adders” by P. K. Chan, M. Schlag, C. D. Thomborson, and V. G. Oklobdzija
which first appeared in Proceedings of the 10th Symposium on Computer
Arithmetic, Grenoble, France, June 26-28, 1991, pp. 1.54-164. 0 1991 IEEE.

P. K. Chan and M. D. F. Schlag are with the Department of Computer
Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064.

C. D. Thomborson is with the Department of Computer Science, University
of Minnesota, Duluth, MN 55812.

V. G. Oklobdzija is with the Department of Electrical and Computer
Engineering, University of California, Davis, CA 9.5616.

IEEE Log Number 9201911.

algorithms have very elegant geometrical interpretations but
do not guarantee optimality of the design. Moreover, their
algorithms work only if the carry-skip propagation delay is
a constant. In [5] it is noted that in CMOS Manchester
adders with carry-skip, the carry-skip propagation delay is
not necessarily a constant, but depends on the number of
bits in the adder. Chan and Schlag developed a polynomial
time algorithm to configure block sizes to attain minimum
latency for one-level carry-skip adders under a linear carry-
skip delay model. Simultaneously, an indirect enumeration
approach was taken by Turrini to generate (multilevel) block
distributions containing the maximum number of bits under a
specified delay constraint 161. Unfortunately, this approach is
applicable only to constant carry-skip delay models, since it
constructs a configuration from the top down by calculating
delay constraints for lower-level blocks without knowing the
number of bits encompassed in these blocks; when the lowest
level is reached each block is filled with the maximum number
of bits satisfying its delay constraints.

The idea of varying block sizes to further reduce delays
was also suggested in 171, where an exhaustive search was
employed to search for an optimum block carry-lookahead
adder. Much earlier, Montoye and Cook used an analytical
delay model to guide an iterative search for area-time optimal
parallel prefix adders generated by a binary recursion [SI.
They supplied no run-time analysis of their search technique,
although they did indicate that an optimal 34-bit adder could
be found in 30 min of IBM 3033 time. Wei and Thomborson
[9] devised a dynamic programming technique that found, in
O(n2h2) time, all area-time optimal parallel-prefix adders in
a class generated by a binary recursion similar to Montoye’s.
Here, h is the height of the minimum-delay adder of data
width n. They found optimal 66-bit adders in a few seconds
of SUN-3 CPU time.

In this paper, we formulate the problems of configur-
ing carry-skip adders and variable-block-size block carry-
lookahead adders as dynamic programs. The resulting dynamic
programs have multidimensional objective functions. It is
thus necessary to carry forward a list of optimal structures
from each stage of the dynamic program. In the traditional
(unidimensional) dynamic program, only a single optimum
structure is carried forward. The existence of multidimensional
dynamic programs was noted in an early paper by Dantzig
[lo]. Weingartner 1111 was apparently the first to suggest that

0018-9340/92$03.00 0 1992 IEEE

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

ctho065
Text Box
Copyright IEEE, 1992. This copy is posted here by the author, for your personal use, and is not authorised for redistribution. The definitive version is http://dx.doi.org/10.1109/12.156534.

92 1 CHAN el al.: DELAY OPTIMIZATION OF CARRY-SKIP ADDERS AND BLOCK CARRY-LOOKAHEAD ADDERS

this would be an effective method of solving multidimen-
sional knapsack problems. Subsequent researchers [121 - [141
refined Weingartner’s algorithm, adding more sophisticated
data structures and list-pruning strategies.

Multidimensional dynamic programming formulations have
not been applied elsewhere to configure carry-skip and block
carry-lookahead adders.’ In contrast to previously-published
optimization techniques for finding efficient adders, our method
immediately generalizes to a wide class of gate delay models
and is guaranteed to find minimum latency circuits.

11. CARRY-SKIP ADDERS

A. Constructing a Stage from Blocks

Fig. 1. Forming a stage from blocks

y bits

Internal-carry delay

We group several full adders together to form an adder
block. Each block has a block-level carry skip mechanism SI,
which can be implemented with a multiplexor selected by the
group propagate. The basic structure of a stage of a 2-level
carry-skip adder is illustrated in Fig. 1. Each stage encom-
passes several blocks, and contains a second-level carry skip
mechanism. The pertinent components of carry-propagation
delays in a block are shown in Fig. 2.

p%f z:!y-generate delay

ep t!!y-assimilate delay

B. Glossary of Terms

The basic notations used in this section are listed below.
The meanings of the notations are illustrated in Figs. 1 and 2.

1) I(y)-internal-carry delay, the maximum delay it takes
a carry to generate within a block of y full-adder units
and assimilate within the block.

2) G(y)-carry-generate delay, the maximum delay it takes
a carry to generate within a block of y full-adder units.
This also includes the time it takes a carry to propagate
through the buffer (the triangle). Typically, the buffer
computes the logical “OR” of its two carry-input signals.

3) A(y)-carry-assimilate delay, the maximum delay it
takes a carry to enter a block of y full-adders and
assimilate within the block.

4) Sl(y)--lth level carry-skip delay, the time it takes a
carry to skip through y full-adder units using the Zth-
level carry skip mechanism. For 1 = 0, this is the time
for a carry to propagate through a block consisting of y
full-adder units. For 1 2 1, this is the time to compute the
logical “AND” of a carry-in signal with the skip-enable
signal of the block. This also includes the time it takes
a carry to propagate through the buffer.

5) Set-upl(y)-Zth level setup time, the amount of time it
takes to enable the skip circuitry at level 1, see Fig. 3.
This reflects the delay to generate a group propagate for
y bits (IIy=lp,, where p , is the carry propagate of the
,ith full adder).

s1 (X I

Carry-skip delay

Fig. 2. Characterization of delays at the block level

11 I I Fitst-level skip enadlea

II Q~econd-1eve~ skip enable I
Fig. 3. Skip enable generation, inputs to the first level AND gates are the

carry propagates p , .

we start the discussion with a two-dimensional optimization
problem based on one-level carry-skip adders. The method we
derive in this section delivers the same results as a previously-
published algorithm [5] , but at a much higher computational
cost. However, this section’s method can be easily generalized
to more complicated timing models and to higher-dimensional
optimizations.

A. Problem Statement: One-Level Carry-Skip Adder

Let yk denote the number of bits in block IC. We say that a
vector y’ = (y l , y2. . . . , ym) is an m-block configuration of a
one-level n-bit adder if 12, yk = n and all yk are positive
integers. L~~ c, be the set of all configurations of one-level
n-bit adders. We shall assume that all skip circuitries are set
up at time zero. The effect of nonzero setup time is treated

111. A 2-D DYNAMIC PROGRAMMING FORMULATION
FOR FINDING MINIMUM LATENCY CONFIGURATIONS

In order to Present the idea in a readily-understandable form,

‘The difficulty of using the dynamic programming technique to solve
optimization problems, as noted by Dreyfus 1151, lies in the formulation.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

in Section 111-E. The minimum-latency design problem for a
one-level carry-skip adder can now be stated as

Given timing models for internal-carry I () , carry-
generate GO, carry-assimilate A(), and carry-skips So()
and SI(), find the configuration 1J’. E C, with minimum
latency.
The carry-propagation delay between blocks cy and p of a

configuration i j is

The worst-case carry-propagation delay of a configuration y’
is therefore

t.
A

0 1 2 ... j-1 j th block

Fig. 4. Appending a new block.

propagation delays of an (2 , j)-adder, where

terminates before or at block j , and

emerges from block j .

t , is the worst-case delay of any “carry chain” that

t, is the worst-case delay of any “carry chain” that

We shall construct for each i and j , a list t (i , j) of
pairs (t a , t g) for all (i,j)-adders. The basis for the dynamic
programming is

t(i, 0) = (max{A(i), I (i) } , max{G(i), So(i) }) ;
for 0 5 i 5 n,

Then our problem is to find a minimum worst-case delay
Configuration y” for given carry-generate, carry-assimilate and
skip delay functions,

and for i 2 j 2 1, i - j + 1 2 yj 2 1, the minimal worst-case
delays of (i, j)-adders are formed by composing (i - yj , j - 1)
adders and a new j th block with y j bits. For each (th, t$) in
t(i - yj,j - l), we construct a pair (ta , tg) by (Fig. 4) D, E D(~J’ .) = p i n ~ (i j) . (1)

Y EC,

B. Algorithm: One-Level Carry-Skip Adder

We refer to i-bit, j-block carry-skip adders as (i,j)-adders.
Note that j 5 i, since each block must have at least one
bit. For small blocks, rippling through a single block may be
faster than using a one-level skip. This is handled in the carry-
propagation delay computation by using min{Sl(y), So(y)}
in place of SI(?/). That is, we take the minimum of the
propagation times through a block of y bits with or without
skip. But in so doing, we have no knowledge of whether the
carry will skip or ripple through a block. After extending our
algorithm to design multilevel carry-skip adders in Section III-
D, we shall incorporate setup time into the delay optimization.
For the formulation in Section 111-E in which setup time
is considered, it is crucial to know whether or not skip(s)
are used. For this reason, we assume that all skips are used
(even if the path through the block is faster) and we amend
the problem formulation of Section 111-A to explicitly allow
the possibility of having an initial and/or final block without
a skip. During our construction of an optimal configuration
we shall consider only (i.j)-adders consisting of an initial
(possibly empty) block with no skip, followed by j nonempty
consecutive blocks. By doing so, we are assuming that there is
an optimal configuration which does not have skip-less blocks
except at the ends. The optimal/suboptimal carry-skip adder
configurations published in the literature all have this form.

Given (2 . j) there are (f) such adder configurations, since
we have the freedom to distribute i - j bits among j + 1 blocks.
A final step will consider adding a block to the end with no
skip. We use a pair (t,. t,) to characterize the worst-case carry

t a = rnax{tb, t$ + A (Y ~) , I (Y~)}
t , = max{G(Yj); t$ + Sl(Yj)).

(2)
(3)

We then solve for D, = ming,c, D($) by 2-D dynamic
programming in a tableau that retains, for each t (i , j) , a list
of the minimal (ta , ts) pairs for all (i,j)-adders. The list in
tableau cell (i , j) , for j 2 1, is obtained by using the recursion
above to process the lists in cells (i - yj, j - 1) for all “last
block” sizes i - j + 1 2 y j 2 1. Once the entire tableau for
1 5 i 5 R and 0 5 j 5 i has been computed, the lists in
column i are concatenated into one list T (i) , and a final block
of n - i bits without a skip is added. D, is the minimum of
the set

This algorithm delivers the correct minimum for any non-
negative GO, A(), SO() , and SI() functions, but it potentially
requires exponential time and space. The next section ad-
dresses this issue by presenting techniques to prune the search
and limit the number of configurations generated.

There is a reason to expect good performance, however. If
the t , and t , values in the retained lists are independently
distributed, then each list will have O(1ogn) elements with
high probability [16], [17]. In this case, the optimization
algorithm for an n-bit adder will run in O(n310g3n) time,
with high probability. Positive correlation among the t , and
t, values would shorten the lists and hence the run-times; any
negative correlation would lengthen the lists. We expect to see

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

CHAN el al.: DELAY OPTIMIZATION OF CARRY-SKIP ADDERS AND BLOCK CARRY-LOOKAHEAD ADDERS

~

923

Fig. 5. Potential number of entries in the tableau.

a slight positive correlation for any reasonable delay model,
so we believe this method will prove feasible for optimizing
adders with hundreds of bits.

C. Number of Configurations in the Tableau

The maximum number of configurations for cell (i , j) in
the tableau is the binomial coefficient (3). Fig. 5 shows the
potential number of configurations for any 10-bit carry-skip
adder. There are ten possible configurations for a 10-bit one-
block adder because of the possibility of an initial block (0th
block) with no skip. This initial block can hold zero to nine
bits. Fortunately, many configurations can be thrown away
using the following pruning techniques.

In each tableau cell, t (i , j) , only the nondominated pairs
must be retained. For example, let (tu,t,) and (th,t$)
be pairs in cell t (i , j) of the tableau. We say (ta. t,) is
dominated if either (t , > t: and t , 2 t$) or (t , 2 tk
and t , > t$). From (2) and (3) it is clear that any
pair constructed by adding another block to (tar t g) will
be suboptimal to the corresponding pair generated by
adding the same block to (th,t$), and hence the former
can be discarded. If only one optimal configuration is
desired, further pruning can be achieved by breaking ties
arbitrarily and discarding all but one of the pairs involved
(pruning by domination [111).
Once the t (n , j) cell is filled in, we can examine its
entries and determine the minimum worst-case delay of
an (n , j)-adder. This delay, D,(j), is an upper bound on
the final delay, D,, and can be used to discard any pair
generated with either t , 2 D,(j) or t , 2 D n (j) . In order
to take full advantage of this bound, we fill each row of
the tableau from right to left so that D n (j) can be used
in filling the rest of the row (pruning by fathoming [13]).

Fig. 5 shows the potential number of configurations for any
10-bit carry-skip adder. However, by using the aforementioned
pruning techniques, the number of configurations can be drasti-
cally reduced. Fig. 6 shows the actual number of configurations

j ,Blocks

0 11 1 1 1 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ! 1 ;
bits c

1 2 3 4 5 6 7 8 9 1 0 ;

Fig. 6. Actual number of entries in the tableau.

generated in each cell of the tableau for the delay model

D. Algorithm: 1-Level Carry-Skip Adder

In this section, we generalize the one-level skip algorithm
to multiple levels. We shall assume that all skip circuitries are
set up at time zero. The effect of nonzero setup time is treated
in Section 111-E.

We shall construct carry-skip adders having a total of z
bits and j “stages” at level 1 and denote these as (i , j > I)-
adders. Again we shall consider only (i , j , 1)-adders where
the j nonempty stages are consecutive and follow an initial
number of bits (possibly none) forming an adder with only
lower-level skips. If we were going to apply the algorithm from
the one-level case, we would need to have available, Gl-l(y),
Al-l(y), and Il-l(y) functions. Unfortunately, these delays
are configuration-sensitive and cannot solely be characterized
by y. This difficulty is surmounted by determining the values
of these delays for all (i , j , l - 1)-adders. We use a 4-tuple
(t Z , t,, tu , t s) to characterize the worst-case carry propagation
delays of an (i , j , I)-adder, where

t , is the worst-case delay of any “carry chain” that
generates at or before stage j and terminates at or before
stage j (at level l) ,
t , is the worst-case delay of any “carry chain” that
generates at or before stage j and continues through stage

tu is the worst-case delay of any “carry chain” that enters

t , is the worst-case delay of any “carry chain” that enters

Again, we shall compute a tableau in which t c 3 (i , j . l)
contains the minimal 4-tuples for all (i,j,l)-adders. Fig. 7
shows a (E i k , j . 1)-adder. We also characterize the worst-
case delays of a “stage” of a carry-skip adder having i bits
and I levels regardless of the number of stages it contains,
with a (possibly zero) number of bits in lower-level blocks at

j ,

the adder and terminates at or before stage j ,

the adder and continues through stage j .

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

924 lEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

Fig. 7. A (E i k . . j . I) adder

IT,=,(&[- 1)I T c 8 (i ~ , l - 1)I Tcd(i2,1 - 1) . . . , .
Fig. 8. A (b + cfk.j.I) adder.

the end. We call these (i , *, I)-adders, as illustrated in Fig. 8.
Their 4-tuples can be obtained from the (i - b, j , 1)-adders, for
all b 5 i, by appending a level I - 1 stage of b bits to the
end. The equation for combining an (i - b , j , 1)-adder and an
(b , *, 1 - 1) adder is

Here, Ti is the internal-carry delay, T, is the carry-generate
delay, T, is the carry-assimilate delay, and T, is the carry-skip
delay of the new (i, *, 1)-adder. The recurrence relationship
for the set tcs(i, j , 1) = {(t i , t,, t,, t,)} is defined below. The
recurrence formula (5) expresses the worst-case propagation
delays of (i , j , I)-adders composed of (i - b , j - l,Z)-adders
and (b , *, 1 - 1)-adders. This is the recurrence for appending
a new stage at the same level. It corresponds to (2) and (3)
in the one-level case.

The basis for the dynamic programming is (1 = 0)

In this expression, the worst-case delay of an n-bit adder
using at most 1-level skips is the minimum Ti appearing in the
sets T,,(n,k), for 1 5 k 5 1.

We control the number of configurations in each set by
adopting pruning techniques similar to those described in the
previous section. In addition, once an additional skip-level
produces only suboptimal 4-tuples for a given number of bits
z, no more new skip levels are considered for i bits.

E. Incorporation of Setup Time for the Skip Gates

The setup time Set-upl(y) is the amount of time needed
to enable the skip circuitry at level 1. This reflects the delay
to generate a group propagate of y bits. Our dynamic pro-
gramming formulation cannot be easily adapted to take care
of the effects of setup time. The problem is that the worst-case
assimilate and skip times computed for (2, *, I)-adders can no
longer be used in generating (i , j , 1 + 1)-adders since the setup
times have been incorporated assuming that carries arrive to
the adder at time 0. A compromise is to charge the setup time
only to the carry generate, subsequently the formulation is
modified as

In this formulation, the generate delay t , is exact, while the
other three components may be underestimated. Care should
be taken during the pruning to verify the actual delays of the
current best delay for an (n , *, 1)-adder which will be used to
discard configurations.

Tcs(i, 0) = { (I (+ G(i) . A (i) , SO(^))}; for 0 F i 5 12,
F. Results

and for 1 L 1, t c s (z . O . l) is defined as We coded our dynamic programming formulation in the
“T” programming language [18], and used Turrini’s [6] delay
model and results to validate our algorithm. Turrini’s delay tcs(i,O.l) = Tc,(i.l - 1): for 0 5 i 5 n.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

I

CHAN et al.: DELAY OPTIMI~ATION OF CARRY-SKIP ADDERS AND BLOCK CARRY-LOOKAHEAD ADDERS

level

915,P15 SO?PO
.

. , , W ~ ~ ~ ~

C11ClOco I

G , P

. ~W~~~~~

c l Q C 5 I

G, P

.

I
I I I - - - - - L
I 1 I ca

level 2

I L1 L1 E t I

Fig. 9. A 16-bit two-level equal-block-size BCLA.

model is a linear ripple, constant skip model:

Despite the underestimation of the delay resulting from ignor-
ing the setup time for skips in all but the generate delays, our
algorithm was able to generate the same optimal size adders
as Turrini [6]. However, we emphasize that our approach is
applicable to any delay model. Turrini's analysis is limited to
models with a constant value for the skip delay, regardless of
the number of blocks being skipped.

Iv. DELAY OPTIMIZATION OF
BLOCK CARRY-LOOKAHEAD ADDERS

This work was motivated by Wei and Thomborson [9] who
used dynamic programming techniques to optimize parallel-
prefix adders, as well as a study carried out by Lee [7]. In
his paper, Lee discusses the possibility of varying the block
sizes in a block carry-lookahead adder (BCLA) to further
optimize the carry propagation delay. We begin by recalling
the structure of block carry-lookahead adders.

Fig. 9 shows a 16-bit 2-level equal-block-size block carry-
lookahead adder. Each (block) box is a 4-bit carry-lookahead
generator as shown in Fig. 10. These two figures illustrate the
notation that we shall be using in this section. We use small
letters to denote global signal names, e.g., go, c1, and capital
letters to denote signal names relative to a block, e.g., Go, C1.
The goal of our optimization is to minimize the worst-case
delay of carries c1 to c,-1 of an n-bit adder. Notice in Fig.
10 that there is no connection from the carry input CO of the
block to the carry propagate P and generate G outputs. In
terms of the structure of the BCLA, this means that P and
G are the only signals which travel down the carry-lookahead
tree; the carry outputs at the lower levels travel back up to
determine the carry outputs of some of their ancestor blocks.

An equal-block-size BCLA minimizes the height of the tree.
The latency would be minimal if delays were measured merely
by summing unit gate delays along paths. However, in practice
the delay of a gate depends on fanin and fanout. The interior of

CO -

Y Y Y Y ' I /
P G c 3 c, c1

Fig. 10. A 4-bit carry-lookahead generator.

925

Fig. 11. An 8-bit variable-block-size BCLA.

a "block" of a BCLA is a two-level network. Hence the delay
of a block is a function primarily of the size of the gates (fanin)
as well as the fanout of the signals feeding these gates. Each
pair of generate and propagate signals G, P fanout to only
one block, however within the block their fanout is linear and
quadratic in the size of the block, respectively. These factors
tend to limit the block size. In contrast, the carries fanout to
multiple blocks (to each of their rightmost ancestor blocks) and
hence their delay minimization is improved by decreasing the
height of the tree. Smaller blocks are faster and their increased
speed may offset additional levels of logic on interior paths,
if the sizes of blocks can be varied to balance path delays.

Fig. 11 shows an 8-bit variable-block-size BCLA. Lee
shows that the (3-level, 8-bit) BCLA as shown in Fig. 12(a)
has the minimum latency according to a gate delay model
which considers fanouts and fanins; the next best adder has
the configuration of Fig. 12(b). However, Lee found neither
exact algorithms nor heuristics to configure a BCLA to attain
minimum latency [7]. Two heuristics were introduced by Lee
and Oklobdzija in [19], but optimality is not guaranteed.

Here, we formulate a multidimensional dynamic program to
solve the problem for a particular class of gate delay models,
in which gate delay depends linearly on fanout and fanin. We
refer to BCLA adders having i bits as i-adders. For a given m,
we construct a BCLA i-adder by selecting m (smaller) BCLA
adders of sizes io, 21, . . . im-l, respectively, and combining
them to form an (i o + i l + . . . + i,-l)-adder with an m-bit
carry-lookahead generator.

Instead of trying all possible combinations of i o , 21,
i,-l which total to .i bits, we construct a BCLA adder

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

97, P , Po g7, I PO

Fig. 12. Optimal 8-bit variable block size BCLA’s

incrementally by filling in the positions in our m-bit carry-
lookahead generator starting with the least significant position.

A partially completed adder with i = io + il + . . . + Z,-l

bits and an m-bit block having only positions 0,1, . . . , j - 1
filled is called an (m, i , j)-adder, as shown in Fig. 13. Clearly
this is only defined for 1 5 j < m. Since not all inputs of
the m-bit block are provided, we assume temporarily that these
are constants and compute worst-case delays of the adder only
from the inputs to positions 0 through j - 1 of the m-bit block.

Since our goal is to minimize the worst-case carry of an
i-adder we must maintain enough delay information in our
Gadders and (m. i, j)-adders to compute accurately the worst-
case carry delay and guarantee the minimum latency. Because
of the structure of the carry-lookahead generator and the gate
delay model, we shall be able to compute the delay of an
(m. i. j + 1)-adder without retaining complete information
about the arrival time of the inputs to the (m,i,j)-adder.
(In fact, the only arrival time that must be retained is that
of the most significant generate.) One complication with this
construction is that the fanout of the carry-in to an a-adder
increases when the i-adder is connected to another block; this
may further increase its worst-case carry delay. Fortunately,
since the dependence on fanout is linear we can account for the
extra delay by maintaining two versions of the worst-case carry
delay of an i-adder; one for paths originating from the carry-
in and the other for the overall worst-case. Before discussing
the delay components which will characterize our Gadders and
(m.i.j)-adders in any more detail, we first present our gate
delay model,

A. Gate Delay Model

available time (tout) of a gate are related by
We assume that the input arrival time (tin,j> and the output

tout = max{ti,.j} + FO . T + B(FI) (7)
3

where FO is the fanout of the output signal, F I is the fanin
of the gate, T is the delay per unit fanout, and B(FI) is the
delay of a gate of fanin F I under zero load. This assumption
of linear dependence of gate delay on fanin and fanout is
verified by [20]. We define specific delay functions B,,,d(FI),
d a n d (F I) , and din” to model the behavior of “NAND” gates,
“AND” gates, and inverters under zero load. The functions
Onand, Band, and din” must be monotone nondecreasing, but

i i bits

I I
1

Fig. 13. An (m , z . j)-adder.

may take infinite values beyond a certain point in their domain.
This ensures that our designs will not contain 17-input-NANDs
if an 8-input-NAND is the widest one available.

For simplicity of presentation, we assume that NAND gates,
AND gates, and inverters have the same 7 value, although this is
not a limitation of our formulation. We must, however, require
that all B functions take nonnegative values over their domains.

We also define S to express the incremental change of delay
per unit fanin: S(F1) = O (F I) - B (F I - l) . When considering
different gates, we add a suffix to identify the gate in question,
for example, Sand and Snand. Under our linearity assumption
on 8 0 , 6and and &and are nonnegative constants.

The loading on the output signals of a &bit block connected
to the j th input of an m-bit block in a BCLA [21] can be
expressed as

Gj of the k-bit block has fanout m - j , i.e., f ~ (m , j) =
m - j . Notice that the fanout is largest at the 0th input
position.
Pj of the k-bit block has fanout f p (m , j) = (m- j) (j +
The carry-in CO to the m-bit carry-lookahead generator
1).

has fanout m - 1.

B. Constructing BCLA Adders

a 5-tuple, (TG, Tp, TWC, TWC,. , F p) , where
For this construction we need to characterize an i-adder with

TG is the worst-case delay of the group generate output,
Tp is the worst-case delay of the group propagate output,
T W c L n is the worst-case delay of any path from the carry

T ~ c is the worst-case delay of any carry output, and
FC,, is the fanout of the carry input inside the adder.

input to any carry output,

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

927 CHAN er 01.: DELAY OPTIMIZATION OF CARRY-SKIP ADDERS AND BLOCK CARRY-LOOKAHEAD ADDERS

All the delay values above are calculated under the assump-
tion of zero fanout. When we use these adders as building
blocks for larger adders, we shall add appropriate multiples of
7 to the delay. Note the two versions of the worst-case carry
delay. As discussed, these are necessary in order to account
for additional loading on the carry-in when the z-adder is
connected to other blocks.

Recall that an (m. 2, j)-adder has a partially completed m-
bit block with z = zofzlf . . .+zJ-l bits having only positions
0.1.2. J - 1 filled. We shall characterize an (m, 2, 3)-adder
by an 8-tuple (t G . t p , ~ L G . tc. tcln, tu c, t w c s n . fc,.),where2

tG is the worst-case delay of the group generate output,
tp is the worst-case delay of the group propagate output,
f L G is the arrival time of the group generate G,-l,
felt, is the worst-case path delay from the carry input
to the currently last carry output C, of the m-bit carry-
lookahead generator,
tc is the overall worst-case delay of the currently last
carry output C, of the m-bit carry-lookahead generator,
tll c i n is the worst-case path delay from the carry input
to any carry output,
t1t-c is the overall worst-case delay of any carry output,
and
fctt. is the fanout of the carry input inside the adder.

The arrival time of the input G,-l (~ L G) at the m-bit block
is the only input arrival time retained. We shall be able to
compute all the components of an (m,z,2 + 1)-adder from
those of an (m, I - b, 3)-adder and a b-adder.

As in the algorithm for carry-skip adders, we retain a tableau
of lists for constructed adders:

Three sets of equations in our dynamic programming for-
mulation cover, respectively, filling in the first position of an
m-bit block, an intermediate position, and the last position.

An (m, i . 1)-adder is generated from a 5-tuple (TG. Tp.
, FcIll) in T(i) , by

For j > 1 (and j < m), an (m,i , j)-adder is generated
by connecting the Gj-l, Pj-1 inputs of an (m,i - b , j - 1)-
adder with the G , P outputs of a b-adder (see Fig. 14). AS
discussed, the worst-case carry of the b-adder is adjusted by
the increase in fanout of its carry-in. Notice that the logic
network for Cj is similar to the one for computing Cj-1; it
differs only in that the fanin of the gates have increased and
the inputs Pj-l, GjPl, and G,-2 must be incorporated (for
example, compare the logic for C, and C, in Fig. 10). This
is the reason for retaining the ~ L G component. As a result,
the delay of C, can be computed based on the arrival times
of P,-l, GJpl (provided by the b-adder) and the t L G and
t r components of the (m, i - b. 2 - 1)-adder. Specifically, if

T(z) = { (T G . T ~ , T W ~ , T ~ ~ , ~ , Fen.) 1 for all e-adders}

t(m. 2.1) = {(k . tP, t L G . f C , fclrl, t W C , twcin. f C 1 n) 1
for all (m, i, j)-adders}. (8) (TG, Tp, Twc, Ttycln, Fcln) is the 5-tuple which character-

izes the b-adder and (&, tb, tLG, t(c, t;,,, , f k rC , thrcln, f&)

then the 8-tuple for our new (m, i , j)-adder is
*The f c , l , , term is redundant since it will always he equivalent to f C l n r+r, is the which characterizes the (m, - b, j -

hut is made explicit here to elucidate the delay equations.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTlONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

.......... SrP *

Qi-b-lrpi-b-1 ... SO!PO - - _ - - Carry - - G, P . .

time -w

- - - -
(m, i - b, j - I)-adder

I

_ - -
I
I
I
I
I
I
I
I

1” c i n l
G , P ” Y Y

c1 cj cj-1

Fig. 14. Filling an intermediate position (J - 1)

When the mth position of an (m.i - 6,m - 1)-adder
is filled in with a 6-adder, we obtain an i-adder. If
(TA. Tf.. TArc, Tf,,,,, , F&) is the 5-tuple which character-
izes the b-adder and (tG. t p , t L G . tc, tel.. twc , twctn , fcln)
is the 8-tuple which characterizes the (m, a - 6, m - 1)-adder,
then the 5-tuple for our new a-adder is

The basis for the dynamic programming is T (l) =
{ (dand(2). 8,,(2). 0.0.0)). The first two components are the
delays to generate the gZ and p , , respectively.

The minimum worst-case delay of an n-bit BCLA adder is
the minimum TU-C appearing in the set T (n) .

C. Implementation

Instead of a 2-D tableau to fill as in the case of the carry-skip
adders, we must fill the three-dimensional volume as depicted
in Fig. 15. To construct an (m. i.j)-adder for j > 1, we must
have already constructed all (m. 6 . j - 1)-adders and all 6-
adders, for 1 5 6 < i . To construct all i-adders we must have
constructed all (m,i - b , m - 1)-adders for 1 5 6 < i and
2 5 vi 5 i . Finally, to construct an (m, i , 1)-adder, we must
have constructed all i-adders. These dependencies lead us to

i

Fig. 15. Filling the volume.

the following steps depicted in Fig. 15 which are repeated for
z = 2 , 3 , n .

1) Construct all (z , b,])-adders for b = 1.2. . . . , z - 1.
2) Construct all (z , b, 3)-adders for 3 = 2 . 3 , z - 1 and

3) Construct all (m, z,j)-adders for m = 2,3 z and

are in fact the (m. z , m)-adders for vi = 2 .3 , z.)

m = 2 , 3 2 .

D. Pruning Techniques

The maximum number of configurations in the volume
even for a small number of bits is prohibitively high. We
have employed the following pruning techniques to reduce
the number of configurations.

Set an upper bound on rn, the maximum number of inputs
to a block, based on a known technological constraint.
Compute the worst-case delays of equal-block-size adders
using the gate delay model. This sets an upper bound on
any delay component of the variable-block-size adders
that we are building in the “volume.” Hence any config-
uration which has a delay component greater than this
upper bound can be thrown away.
Since the worst-case delays of equal-block-size adders
are typically 20% higher than the minimal latency ones,
a tighter upper bound can be obtained by temporarily
disregarding some delay components during the ranking
of the configurations (e.g., f p or Tp), and running the
algorithm to obtain a suboptimal configuration. In effect,
this is optimization by a lower-order dynamic program.
We then use the maximum delay component of this
suboptimal configuration as the new upper bound for a
new trial (after reinstating the deleted delay components).
This iterative improvement scheme turns out to be very
effective in pruning infeasible configurations and reaching
the minimum latency configurations.

6 J , J + l , ~ - 1.

J = 2 ,3 , . . * , m. (We now have all z-adders, since they

4) Construct all (m, z , 1)-adders from the z-adders, for

E. Results

We use a gate delay model obtained by fitting data from an
ASIC-CMOS standard cell library [22] to linear d functions
[20]. We select T to be 5 so that all the parameters in the
equations are scaled to integers. Note that an unloaded inverter

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

CHAN et al.: DELAY OPTIMlZATlON OF CARRY-SKIP ADDERS AND BLOCK CARRY-LOOKAHEAD ADDERS 929

TABLE I
DELAYS OF EQUAL-BLOCK-SIZE VERSUS VARIABLE-BLOCK-SIZE ?,-BIT BCLA’S. CONFIGURATIONS FOR 2-BIT TO 16-BIT ADDERS ARE OPTIMAL (IN LATENCY)

2
3
4

6

7

8

16

24

32

48

64

66

84

T < ; T I J T I ~ c
152 124 152
202 154 202
309 258 247
252 184 252
424 350 314
337 251 319
399 318 347
362 281 364
424 355 369
382 286 379
317 251 434
347 251 499
559 477 489
489 410 506
407 350 569
437 311 597
479 385 609
532 378 789
621 544 627

532 378 879
716 599 716

577 408 932
789 639 797

622 438 977
794 649 802

717 505 977
803 674 856

762 530 1069

has delay of 12 units.

7 = 5

tS.A?iD,out = t in + F O ’ r + F I 20
t ~ ~ , ~ ~ t = t i , + FO . T + F I ’ 2 0 + 17

t.kyD.out = tilL + FO . T + F I . 20 + 17

tIy\.,out = ti,, + FO . T + 12. (12)

We shall represent the carry-lookahead adder tree in paren-
theses notation. For example, the adder structures shown in
Figs. 12(a) and (b) are represented as ((1 1 3) 1 1 1) and
((1 1 1 3) 1 1), respectively; and the equal-block-size
16-bit BCLA of Fig. 9 appears as (4 4 4 4) . The numbers
in the expression represent the block sizes at the top level.

For an n-bit adder, Tl1-c in Table I indicates the worst-
case delay to generate the carries c1 to c,-1. The overflow
condition is indicated by the final carry c,, which depends
on the carry generate and propagate (TG and Tp). Table I
shows the delays of variable-block-size BCLA’s versus their
equal-block-size counterparts. These results are generated by

restricting the maximum fanin of any CMOS gate to 4. The
delay of an inverter in a typical 1.5 pm CMOS technology is
roughly 0.3 ns, so we can convert our integer delay values in
Table I to nanoseconds in such a technology by multiplying by
(0.3/12) ns. For 8-bit adders we have 9.225 ns, and for 16-bit
adders we have 12.225 ns.

Except for the 71 5 8 cases, T l l , ~ is the dominant delay
component. This experiment demonstrates that variable-block-
size BCLA’s outperforni their equal-block-size counterparts by
15-2S%, in terms of their Tl4.c. However, variable-block-size
adders are not as modular as equal-block-size adders. The best
variable-block-size BCLA’s tend to have more levels but less
fanins than their equal-block-size counterparts. This suggests
that the number of levels is not a good measure of latency for
VLSI technology.

V. CONCLUSION

We have formulated the problems of minimizing the la-
tencies in carry-skip and block carry-lookahead adders as
multidimensional dynamic programs. Based on these formula-

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 8, AUGUST 1992

tions, we implemented programs to carry out the minimization.
The dynamic programming formulations are appealing because
of their generality. On the other hand, the computational
requirement of the optimization process is also high. All the
algorithms presented are coded in the “T” language (181. The
program requires 60 megabyte of swap space and ran for over
3 hours before completion on a SPARC station.

For the carry-skip adder formulations, we validate our
results with known optimal results from [6]. However, we
emphasize that our approach is applicable to a more general
delay model. Turrini’s analysis is limited to models with a
constant value for the skip delay, regardless of the number of
blocks being skipped.

For the block carry-lookahead adder formulations, the algo-
rithms generate adder configurations that are not modular, but
the adders’ latencies are 15-25% less than their modular coun-
terparts. The delay model that we have established considers
fanin and fanout, and is therefore more realistic than counting
the number of levels. However, we do not account for the
effect of wire lengths in the model-this will be considered
in future work.

ACKNOWLEDGMENT

The authors are grateful for the comments of the referees.

REFERENCES

1 M. Lehman and N. Burla, “Skip techniques for high-speed carry-
propagation in binary arithmetic units,” IRE Trans. Electron. Comput.,

S. Majerski, “On determination of optimal distribution of carry skips in
adders,” IEEE Trans. Electron. Comput., vol. EC-16, pp. 45-48, Feb.
1967.
A. Guyot, B. Hochet, and J.-M. Muller, “A way to build efficient carry-
skip adders,” IEEE Trans. Comput., vol. C-36, pp. 1144-1151, Oct.
1987.
V. G. Oklobdzija and E. R. Barnes, “Some optimal schemes for ALU
implementation in VLSI technology,” in Proc. 7th Comput. Arithmetic
Symp., 1985, pp. 2-8.
P. K. Chan and M. Schlag, “Analysis and design of CMOS Manchester
adders with variable carry-skip,’’ IEEE Trans. Comput., vol. 39, pp.

S. Turrini, “Optimal group distribution in carry-skip adders,” in Proc.
9th Comput. Arithmetic Symp., Santa Monica, Los Angeles, Sept. 1989,
pp. 96-103.
B. Lee, “VLSI implementation of fast arithmetic algorithms: Optimizing
delays in carry lookahead adders,” (32921: Class project rep., U.C.
Berkeley. Dec. 1989.
R. K. Montoye, “Area-time efficient addition in charge based tech-
nology,” in ACM IEEE 18th Design Automat. Conf. Proc., 1981, pp.

B. W. Wei and C. D. Thompson, “Area-time optimal adder design,”
IEEE Trans. Comput., vol. 39, pp. 666-675, May 1990.
G. Dantzig, “Discrete-variable extremum problems,” Oper. Res., vol. 5 ,
pp. 266-277. 1957.
H. Weingartner, “Capital budgeting of interrelated projects: Survey and
synthesis,” Management Sci., vol. 12, pp. 485-516, Mar. 1966.
H. Weingartner and D. Ness, “Methods for the solution of the multi-
dimensional O i l knapsack problem,” Oper. Res., vol. 15, pp. 83-103,
1967.
T. Morin and R. Marsten, “Branch-and-bound strategies for dynamic
programming,’’ Oper. Res., vol. 24, pp. 611-627, July-Aug. 1976.
R. Marsten and T. Morin, “A hybrid approach to discrete mathematical
programming,’‘ Math. Programming, vol. 1.5, no. 1, pp. 21 -40, 1978.
S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic
Programming. New York: Academic, 1977.
J. Bentley, H. Kung, M. Schkolnick, and C. Thompson, “On the average
number of maxima in a set of vectors and applications,” J . ACM, vol.
11, no. 1, pp. 536-543, 1978.

vol. EC-10, pp. 691-698, Dec. 1961.

983-992, Aug. 1990.

862-872.

[17] L. Devroye, “A note on finding convex hulls via maximal vectors,”
Inform. Processing Lerr., vol. 11, pp. 53-56, Aug. 1980.

[18] J. A. Rees, N. I. Adams, and J. R. Meehan, The TManual. New Haven,
CT: Yale Univ., Mar. 1983.

[19] B. D. Lee and V. G. Oklobdzija, “Optimization and speed improvement
analysis of carry-lookahead adder structure,” in Proc. Asilomur Conf.
Circuits, Syst. Comput., Nov. 1990.

[20] V. G. Oklobdzija and E. R. Barnes, “On implementing addition in VLSI
technology,” J . Parallel Distributed Comput., vol. 5, 1988.

[21] T. Rhyne, “Limitations on carry lookahead networks,” IEEE Trans.
Comput., vol. C-33, pp. 373-373, Apr. 1984.

[22] LSI Logic Corp., 1551 McCarthy Boulevard, Milpitas, CA 95035,
Compacted Arruy Technology Data Book, July 1987.

Pak K. Chan (S’77-M’86), for a photograph and biography, see the July
1992 issue of this T R A N S A ~ I O N S , p. 790.

Martine D. F. Scblag (S’85-M’86), for a photograph and biography, see the
July 1992 issue of this TRANSACTIONS, p. 793.

Clark D. Thomborson (M’86) received the B.S.
degree in chemistry, the M.S. degree in computer
scienceicomputer engineering from Stanford Uni-
versity in 1975 and the Ph.D. degree in computer
science from Carnegie-Mellon University in 1980.

He has been teaching at the Duluth campus of
the University of Minnesota since September 1986.
From 1979 to 1986, he was on the faculty of
U.C. Berkeley’s Computer Science Division. He
has published more than 40 articles on special-
purpose hardware implementations of algorithms,

VLSI theory, graph theory, algorithmic analysis, and the effects of military
funding on academic science and engineering. Many of these articles were
published under his birth name, Thompson: upon marriage to Barbara Borske
in 1983, he merged last names with his wife.

Vojin G. Oklobdzija (S’78-M’82-SM’88) re-
ceived the Ph.D. degree in computer science from
the University of California, Los Angeles, in 1982
and the MSc. degree from the same school in
1978.

He is currently on the faculty of the Department
of Electrical and Computer Engineering, University
of California, Davis, which he joined in July 1991.
He spent two years teaching courses in computer
architecture, computer arithmetic and computer
design at the University of California, Berkeley.

Prior to that he was with the IBM T. J. Watson Research Center in New
York working on development of RISC processor (801, ROMP) and super-
scalar RISC processors (RSi6000). He came to U.C.L.A. in 1976 as a
Fulbright scholar from Yugoslavia. He just recently returned from Peru
where he was lecturing and helping the Peruvian universities, as a Fulbright
Professor. Prior to 1976 he was faculty member of the Electrical Engineering
Department of the University of Belgrade where he received his degrees
(Dip.Ing.) in electronics and telecommunication in 1971. He has worked for
the microelectronic center of Xerox Corporation from 1979 to 1982 in the
area of fabrication and design of internal processors. His interest is in VLSI
and fast circuits, in particular efficient implementations of algorithms and
computation and his work on fast ALU scheme has been widely referenced.
His focus has also been on high performance architectures and he has been
working on development of RISC and super-scalar architectures. He holds four
U.S.A. and European patents in the area of computer design. Currently he has
a pending application for fast CLA scheme. He has published in the areas
of circuits and technology, computer arithmetic, and computer architecture.
He has over 30 publications and has given a number of invited talks in the
U.S.A., Europe, Latin America, and Japan.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 04:17:00 UTC from IEEE Xplore. Restrictions apply.

