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We propose an algorithm for computing a rectilinear Steiner minimal tree on n points in 20f,,r.ilo11n) 

time and O(n1) apace. This is an asymptotic improvement on the 2°Cn) tirn~ required by current 
algorithms. If the points are distributed uniformly at random on the unit square, the Steiner tree 
calculated by our algorithm is minimal with high probability. The "constant factors" of our algorithm 
are such that it should be feasible to obtain exact solutions for n-point problems whenever n ~ 25. 
Previously, only problems of size n ::; 20 were feasible. 

1 Introduction 

The earliest formulation of Steiner's Problr.m is attributed to Fermat in the early 17th century, but 
a generalization is the problem we know today: given as input a set Vin of verticea in the Euclidean 

plane, find a set S of points, called Steiner points, and a ·set E of edges on Vin US such that E forms 
a tree on l'in (JS and the sum of the lengths of the edges in E is minimal. 

Kuhn's excellent survey paper (141 traces the development of work on this Euclidean Steiner Tree 
Problem. It haa important applications, such as the design of telephone networks, and has capturnd 
the attention of computer scientists interested in its computational aspects. In 1977 Graham, Garey, 
and Johnson showed that the Euclidean Steiner Tree Problem is NP-Complete 171, dashing hopes 
of optimal algorithms for large sets V.n, but legitimi:iing interest in heuristics 14, 10,l 3, 19,20,241 and 
easier variants of the problem (1,22]. 

A variant of the Euclidean Steiner problem has important applications to circuit design. The 
Euclidean problem can be translated to the rectilinear (Li) metric by simply changing the distance 
function. The resulting Rectilinear Steiner Problem, surveyed by Hwang in [111, asks for a minimal 
Steiner tree with edges parallel to the x- and y-axes. Such a tree is called a Rectilinear Steiner 
Minimal Tree (RSMT). 

Any VLSI design system mu.at cope with RSMT problems (usually in suboptimal ways) in order 
to connect the terminals of subcircuits. The rectilinear restriction arises because of technological 
difficulties in creating non-rectilinear wiring paths on the surface of a semiconductor substrate. RSMT 
problems also arise at another level of circuit design, when one deposits metal on a printed circuit 
board in order to connect one chip's pins to another's. In both applications, it is important to have a 
minimal or neai-minimal length wiring path to reduce stray capacitance, and thus to increase circuit 
speed. A constraint of secondary importance is to minimize the number of bends in the RSMT. This 
makes it easier to perform the "detailed routing" that assigns slightly different positions to parallel 
edges in unconnected RSMTs. 

'Supported by the National Science FoundaUon, through Ill Design, Tools and Test Program under grant number 
MIP 84-06408. 

176 

, 



' 
Figure 1: A grid graph on five points. 

Most RSMT algorithms find Steiner trees that are subgraphs of a "grid graph" formed by drawing 
horizontal and vertical line segments through the vertices, where the segments are limited to the 
rectangle enclosing the vertices [9]. See Figure 1. Despite this restricted search space, the RSMT 
problem is NP-complete [8]. 

The publiRhed literature contains two exact algorithms for finding a RSMT on a set of points. 
Both algorithms are exponential and can only be used if the set is small. Yang and Wing describe 
a branch-and-bound algorithm running in 2°1r"l time and O(n2) space [23]. Apparently, Yang and 
Wing's algorithm is feasible for vertex set sizes up to n = 20. Dreyfus and Wagner use dynamic 
programming to solve the more general problem of computing a minimal Steiner tree for a graph [6j. 
Their alg<>rithm is easily adapted to solve the Rectilinear Steiner Problem in O(n23") time, where n 
is the number of vertices. Unfortunately, the Dreyfus and Wagner algorithm requires O(n23") space, 
making it infeasible for n ;::.: 18. 

In this algorithm we begin by dividing the vertex set of size n in half by a vertical cut line. Any 
RSMT on the vertex set has k ~ 1 edges that cross the cut line. (Our preliminary analyais shows 
that if n ;::.: 20 points arc uniformly distributed at random on the unit square, then with probability 
p > 0.9 there is a RSMT for which k ~ 2f vnl .) For ea.ch possible value of k, then, we choose k 
edges of the associated grid graph where the RSMT is assumed to cross the cut line. Next we find all 
pairs of forests that can join together at the k edges to form a Steiner tree. T.he foreat pairs define 
"terminals" on the edge of two Steiner tree subproblems. By solving all subproblema, and choosing 
the pair with minimal total length, we find a minimum Steiner tree with high probability. 

Figure 2: A minimum Steiner tree on tile graph of Figure 1. 

We have developed a new algorithm using fl- technique called nonseria/ dvnamic programming !Sj. 
When calculations on each half arc done recursively with cut lines alternating between vertical and 
horizontal, straightforward analysis shows that our algorithm runs In 2°!.fr\loin) time. This is a clear 
improvement oit the 2°(n) performance of the best previous algorithm, at least for large n. We believe 
it is also a significant improvement for feasibly-small n, say n :5 25. 
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2 Formal Description of the Problem 

Given a set V;,, of jV;,,j = n points in the plane, it is trivial to construct a grid graph like the one 
shown in Figure 1. Formally, the vertex set Vgg of the grid graph Ggg is X x Y, where X and Y arc 
the sets of x- and 11-coordinates appearing in the input point set V;,,. The edge set Egg of the grid 
graph is defined by the 4-neighborhoods of the points in Vn· If there are no degeneracies, there are 
2n(n - 1) edges in the grid graph on n points. The grid graph of Figure 1 has one y-degeneracy, so 
it has only (2n - l)(n -1) edges. 

To find a rectilinear Steiner minimal tree (RSMT) for V;,., it is sufficient to find a minimal-length 
connected subgraph of Gn containin1 all the,p.oints in V;,, [9]. Figure 2 shows one of the two RSMTs 
that can be obtained in this way for the points of Figure 1. Note that the RSMT would not be unique 
even if the y-degeneracy were removed. Another trivial observation is that there are in general many 
· RSMTs that are not subgraphs of a grid graph (because extra jogs can be inserted anywhere in an "L" 
shaped wire). In some applications [17], it is important to produce several RSM Ts or near-minimal 
rectilinear Steiner trees for a given set of points. Such algorithms are beyond the scope of this paper. 

A trivial algorithm for finding a RSMT is to search the space of subgraphs of Vgg, picking a shortest 
one that satisfies the connectedness and point inclusion properties. A naive imp)emen~ation of this 
algorithm would take 2°<n•) time. (Yang and Wing's algorithm, mentioned in the introduction, is 
a branch-and-bound improvement on the trivial algorithm. Unfortunately, they neither prove nor 
conjecture an asymptotic decrease in time [23j.) 

3 Description of the New Algorithm 

As outlined in the introduction, the new algorithm searches the space of subgraphs of Vu in a recursive 
fashion, solving RSMT subproblems on nearly-square subgrids. A typical subproblem is shown in 
Figure 3, The desired solution to a subproblem is actually a forest of RSMTs, one Steiner tree for 
each star graph in the subproblem. (Figure 3 has three star graphs. The one on the top right has 
degree one, the one on the bottom right has degree two, and the one on the left has degree four.) 
We seek a forest of RSMTs of minimal total length, connecting the terminals on the boundary of 
the subproblem in the same way as the star graphs. Additionally, we require the solution forest to 
contain every vertex in the input set V;,, that lies within the boundary of the subproblem. 

:-----------r-: 
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Figure 3: A 7-terminal subproblem with· three stars. 

A typical recursive subdivision of Figure 3 is shown in Figure 4. Here, we show how Figure 3 can 
be solved by two subproblems joined by three cut-edges. The left-hand subproblem has three stars 
and six termlv.als; the right-hand subproblem baa three stars and seven terminals. The gap shown 
between the subproblems is one "column" of the grid graph. It contains no vertices. 

To obtain an optimal solution to a (sub)problem, we must examine all possible subdivisions. A 
convenient way to generate all subdivisions Is outlined below. Before doing this, we note that, without 
loss of generality, no two star graphs intersect. If they did, their solution RSMTs would also intersect, 
forming a cycle; and a shorter composite RSMT could be formed by omitting one of the edges In that 
cycle. ThUB the star graphs divide the region inside a RSMT problem into a set of planar faces. 
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Figure 4: A vertical subdivision of Figure 3 into a 6-terminal problem and a 7·terminal problem. 

Graphically, a recursive subdivision of a RSMT problem is a pair of dashed lines running from ·• 
mid-bottom to mid-top of the problem region. See Figure 4. We start the subdivision process by 
enumerating the star graphs on the boundary of the planar face containing the mid-bottom "start» 
point of our subdividing line, After choosing (exhaustively) one of these star graphs, we have several 
options of how to generate a cut-edge. 

The simplest case is that of a degree-1 star. Figure 5 shows how we must always split such a star 
into a degree-I star and a degree-2 star, where the degree-1 star may be either on the left (Figure 5b) 
or the right (Figure 5c) of the cut-edge. After choosing one of· these options, the cut-edge can be 
assigned a y-coordinate to locate it precisely in the grid graph. If there are nr rows In this problem's 
region of the grid graph, then, there are 2n, ways of creating a cut-edge by splitting a degree-1 star. 

Similar reasoning gives an exhaustive analysis for generating cut-edges from a degree-2 star. Fig­
ure 6 shows the three possibilities, We may form two degree-2 stars, one on each side of the cut-edge, 
as in Figure 6b. Alternatively, we may form one degree-1 star and one degree-3 star, as in Figures 6c 

and 6d, 
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Figure 5a. Figure 5b. Figure 5c, 

Figure 5: Two options for splitting the degree-1 star of Figure Sa. 
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Figure 6a. Figure 6b. Figure 6c. Figure 6d. 

Figure 6: Three optiorul for splitting the degree-2 star of Figure 6a. 

,.------., ,.------., ,.------, r------, 
I 

m 
.. ______ .. 

Figure 7a. 

I I 

~ 
I I I I 
'"'--.L.J.--.J 

Figure 7b. 

I I 
I I 

"' - - .L .... - - .J 

Figure 7c. 
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Figure 7e. 

Figure. 7: Four ways of getting a degree-2 star from the degree-5 star of Figure 7a. 
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Higher-degree stars are a little more complicated. It seems best to start by enumerating all d - 1. 
planar partitions of a degree-d star into a degree-c star on the left (where O :5 c :5 d - 2), a degree-2 
star in the middle, and a degree-(d - c - 2) star on the right. See, for example, Figure 7. The 
middle degree-2 star can then be split in three ways, as in Figure 6. In all, then, there are 3(d - 1) 
topologically distinct ways of generating a cut-edge from a degree-d star, for all d 2'. 2. 

Lemma 1 There art fewer than k(3t + 5k)~ {";) distinct wa11s to subdittide a n,-row problem with t 
terminals into two subproblems joined b11 k cut-edges. 

Proof sketch. Each terminal gives rise to 2 topplogical options if it is attached to a degree-I star, 
and d terminals give rise to 3(d - 1) optfons If attached to a degree-d star. The number of options 
per terminal per cutedge is thus upper-bounded by 3. The operations of Figures Sb, Sc, and 6b add 
a degree-2 star to the problem, increasing the number of options for subsequent cuts by at most 3. 
(Note that fewer options are available, in general, because not all stars are be on the boundary of the 
planar face containing the current endpoints of the dashed lines.) The operations of Figure 6c and 6d 
add a degree-1 star and increase the degree of an adjoining star by one. This increases the number 
of options for subsequent cuts by at most 5. 

The factor of (".") arises because we must assign each cut-edge to one of then, rows in the current 
region of the grid graph. The leading factor of k is a (crude) allowance for the possibility of subdividing 
the problem with fewer than k cut-edges. O 

It remains to 11et up the basia and starting-point for the recursion. The moat convenient basis for 
the recursion ls formed by a zero-height, zero-width subproblem. Such a subproblem is solved by an 
RSMT with no edges. 

The RSMT problem we wish to solve at the outset has zero terminals and thus no stars. Figure 8 
shows how to generate the first cut-edge in this situation. Successive cut-edges can then be generated 
In the usual fashion, by splitting stars. 

One last difficulty: due to degeneracies, one may encounter a i;ubproblem of zero width but 
non-zero height. Such subproblems should be rotated by 90 degrees before being subdivided. This 
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Figure 8: First cut-edge through a 0-terminal problem. 

"rotation before subdivision" operation can be put to more general use to obtain the best solution 
time: one should always rotate a problem if there are more rows ti.an columns in its region of thP 

grid graph. 
We can now write a. recurrence for the time to run our algorithm on a. grid graph with n, rows 

and n. columns (n, s; n.), with a.t most /(n,) cut-edgtlll bridging the two sub-problems. We write the 
recurrence In terms of the perimeter m = 2n, + 2n.: 

T(m) < { 2/(m)(3m + 5/(m))/(m) (1(:1)T([m/2J), if m > .1; 
- 1, otherwise. 

In the next ~ction, we argue that /(n) = 2f vnl will yield a tree that is a RSMT with high probability. 

Solving the recurrence a.hove, we find that the time to solve an n-polnt RSMT; T(4n), I.a n°<vnl, 
.. 

4 How Many Cut-Edges? 

We present here the preliminary results of our probabilistic analysi.a. 

Lemma 2 /9/ Let Vj,. be a aet of pointa in the plane, and let T be an11 RSMT on V;,.. Without 
changing the length of T, T can be transformed to a RSMT T' wi'th the propert11 that <ach edge of T' 
haa at l<aat one endpoint in V;,.. 



We say a RSMT 1' is in normal form if it obeys the end-point property of T' In Lem.ma 2. 

Lemma 3 Let S be a 1 x 1 Bquare, and let Vin be an11 aet of n pointa in S, Let C be a uerUcal line 
through X, and let R be the 2w + 1 rectangle consisting of all pointa of S withi'n diatance w of C, Let 
VR be the points of Vin l111'ng in R. Finall111 let T be a normal-form RSMT on Vin, and let E be the 
set of edges of T which croas C. Then 

IEI :5 IVnl + 2f ;1+2. 
Proof sketch. The key observation hllre is that the edges which cross C mus& either have length 

greater than w or have an endpoint in Vn. Long edges crossing C must be at least w units apart, 
otherwise we can develop a conf.radiction to T being an RSMT. [J 

By elementary probability theory, if n points are chosen uniformly at random in the·unit square, 
the probability of seeing at most j points in a predetermined 1 x l/{2yti) rectangle is 

I: (~) (-1 )'(1 - _1 r-·. 
OSIS/ • vn vn 

Thi~ sum is lower-hounded by I - E if we set 

j = .;ti/2 + (e - IJVVrJ4 In;, 

for any 0 < E <I [16,18). (Here, e = 2.718 ... , the natural base for logarithms.) . 
For our algorithm to find a RSMT, we must have a high-probability upper bound on the number 

of points near our n 2 - I recursive cuts (one of length I, six of length 1/2, twenty-four of length 1/4, 
etc.). We find that our algorithm will succeed with probability p if we use up to f (n,) cut-edges when 
subdividing a problem on n, grid-graph rows, where 

v ,,2 - 1 
/(»)=vn+(e-I)v'nln l-p' 

A simpler formula that gives a probability of success greater than OJ) for all n ;:: 20 is 

We note, in passing, that we can use Lemma 3 to bound the number of cut-edges to allow at each 
stage of the recursion. We would then obtain an exact algorithm for the RSMT that runs In O(nv'ri) 
time with high probability. 

5 Experimental llcsults 

We have not yet completed coding the general case of our.algorithm. We do, however, have experi­
mental results for the simple case off (n) = 1, in which at most one cut-edge separates subproblems. 
This algorithm runs in n°Ctoan) time, and is feasible for n $ .50 on a Sun-3/50 workstation. See Figure 
9 for the result of a 20-hour computation, in which 841 million subproblems were solved. Possibly 
this algorithm will be of value as a heuristic, although the competition is fierce: an O(n log n) time 
minimum spanning tree algorithm, suitably modified, is an excellent heuristic l4~13J. 

6 Future Work 

We have described an exact algorithm for computing a rectilinear minimal Steiner tree (RMST) on 
n points that runs with high probability in time noClfril, as well as an algorithm that runs In n°1v'"I 
deterministic time that with high probability produces a RMST. 

The results reported here are preliminary in nature. We intend to improve our algorithm in several 
ways. 

• We can reduce the fiize of the grid graph over which the algorithm must search for solutiona 
!24,12). 
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• We can tabulate the results of frequently-occurring intermediate computations (e.g., those with 
one terminal) so that these results need not be recomputed. 

• We can shor.t-circuit the algorithm when it reaches small cases that can be solved more quickly, 
using algorithms for point sets satisfying special constraints [I,3j. 

• We can terminate the algorithm before examining all cut sets, by proving that a previously 
obtained solution is in fact optimal. Such termination criteria are well established for the 
Euclidean TSP [15j, hut no one has applied this idea to the RSMT (but see [2,211). 

• Most Importantly, we don't have tv cut every point set at the same x-coordinate. By positioning 
the cut line appropriately, or possibly by applying the planar separator theorem, we can reduce 
either the expected or maximum number of cut edges, 

Using the techi;iiques listed above, we expect to develop faster approximate and exact algorithms for 
calculating an RSMT. 
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Figure 9: Rectilinear Steiner tree, minimal for cut size 1, on 50 random points. 
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