
Breaking Abstractions and Unstructuring Data Structures

Christian Collberg Clark Thomborson Douglas Low
Department of Computer Science,

The University of Auckland,
Private Bag 92019, Auckland, New Zealand.

fcollberg,cthombor,dlow001g@cs.auckland.ac.nz

Abstract
To ensure platform independence, mobile programs are

distributed in forms that are isomorphic to the original
source code. Such codes are easy to decompile, and hence
they increase the risk of malicious reverse engineering at-
tacks.

Code obfuscationis one of several techniques which has
been proposed to alleviate this situation. Anobfuscatoris
a tool which – through the application of code transforma-
tions – converts a program into an equivalent one that is
more difficult to reverse engineer.

In a previous paper [5] we have described the design
of a control flow obfuscator for Java. In this paper we
extend the design with transformations that obfuscate data
structures and abstractions. In particular, we show how
to obfuscate classes, arrays, procedural abstractions and
built-in data types like strings, integers, and booleans.

1 Introduction
Mobile programs are distributed in architecture-neutral

formats (such as Java bytecode [8]) that contain much of
the same information as the original source code. While
this achieves platform independence, it also makes pro-
grams easy to decompile and reverse engineer.

This is of particular concern to small software devel-
opers who can ill afford to protect their software secrets
throughlegal [17] means against larger and more powerful
competitors [12]. As an alternative, several forms oftech-
nical [1, 7] protection against theft of software secrets have
been suggested:

Server-Side ExecutionThe user connects to the software
developer’s site to run the program remotely, paying a
small amount of electronic money every time. A soft-
ware thief will never gain physical access to the appli-
cation and will be unable to reverse engineer it. The
downside is that the application will perform much
worse than if it had run locally.

Native Code When down-loading the application, the
user’s site identifies its architecture, and the corre-

sponding native code version of the application is
transmitted. Digital signatures should be attached to
the code to assure authenticity and harmlessness. De-
compilation of the native code is still possible [3], but
much more difficult, if, as is usual, symbol naming
and type information is suppressed.

Encryption Encrypting [11, 21] the application will only
protect against theft if the entire decryption/execution
process takes place in hardware. If the code is exe-
cuted in software by a virtual machine interpreter it
will always be possible to intercept and decompile the
decrypted code.

Obfuscation Before distributing the application, the soft-
ware developer runs it through an automaticobfusca-
tor. This tool transforms the program into one that is
functionally identical to the original but which is more
difficult to decompile and reverse engineer.

Unlike server-side execution and hardware-based en-
cryption schemes, code obfuscation can never completely
protect an application from malicious reverse engineering
efforts. Rather, obfuscation should be seen as a cheap way
of making reverse engineering so technically difficult that
it becomes economically infeasible. To ensure this, the
techniques employed by an obfuscator have to be powerful
enough to thwart attacks by automaticdeobfuscatorsthat
attempt to undo the obfuscating transformations.

The remainder of the paper will examine various code
transformations that obfuscate the abstractions and data
structures used in an application. The paper is structured as
follows. In Section 2 we give a brief overview of the design
of a code obfuscator for Java which is currently under con-
struction. Section 3 describes the criteria used to evaluate
different types of obfuscating transformations. Sections 4,
5, and 6 present a catalogue of obfuscating transformations.
Section 7 summarizes our results.

2 The design of a Java obfuscator
Figure 1 outlines the design of our Java obfuscation tool.

In a first phase the obfuscator reads and parses all refer-

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

ctho065
Text Box
Copyright IEEE, 1998. This copy is posted here by the author, for your personal use, and is not authorised for redistribution. The definitive version is http://dx.doi.org/10.1109/ICCL.1998.674154.

methodM3S2
S3 BB1 basic block

ID Name Kind

Source Code Objects

S3 f+,*,throwg

ID Uses

S1
fif,while,intgS2

fthread,floatg

Pragmatic Information Appropriateness

S2 ! fT1; T4g

S3 ! fT9g

S1 ! fT2; T5g

Call Graph Annotated
Control Flow

Graphs

12
5

12

Inheritance
Hierarchy

Rewrite
obfuscated
class files.

Obfuscation
Priority
Queue

S3

S2

S1

S1

Pool

low highpotency

C1 class

low highmax cost

Build Internal

Execution Profiling

Pragmatic Analysis

Load Class files

Representation

Profiling
Data

C1 C2 C3

(Java Class files)
Application

T1
T3

T2

exceeded?

obf level

or max cost
� Apply Tj to Si;

appropriate for Si;

� Si Source code object
with highest priority;

No

� Tj Transformation most

Graph, Call Graphs, Priority;

Yes

� Update CFGs, Inheritance

(Java class files)
Obfuscated Application

C0

1 C0

2 C0

3 C0

4

Transformation

Figure 1: Architecture of a Java obfuscator.

enced class files. The second phase builds various internal
data structures:

� A Source Code Object Tablestores information about
all parts of the program which may be the subject of
obfuscation: methods, classes, variables, etc.

� An inheritance graphstores the class structure of the
program.

� Control flow graphsare built for all methods. The
CFGs are annotated with execution counts (estimated
or provided through profiling) andpragmatic infor-
mation. Execution counts are used to guide the obfus-
cator so that frequently executed parts of the applica-
tion are not obfuscated by very expensive transforma-
tions. Pragmatic information expresses what sort of
language constructs a class/method contains.

� An appropriatenessfunction – mapping each source
code object to the transformations appropriate for that
object – is constructed from the pragmatic informa-
tion. This function is used to selectstealthyobfusca-

tions, i.e. obfuscations that introduce code that is as
similar as possible to the original code.

� A priority queueof source code objects is constructed
based on user input and/or heuristics. The queue en-
sures that sensitive source code objects (i.e. parts of
the program that the programmer particularly wants to
protect from theft) are given higher levels of obscurity
than “bread-and-butter” code.

The third phase repeatedly applies code transformations to
the application until the required level of obfuscation has
been achieved or the maximum execution time/space cost
accepted by the user has been exceeded. Finally, the ob-
fuscator generates a new version of the application; obfus-
cated but functionally equivalent to the original one.

3 Obfuscating transformations
Obfuscating transformationswere first introduced in

Collberg [5]. P
T
�! P 0 is an obfuscating transformation,

if

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

a) T transforms source programP into target program
P 0,

b) P andP 0 have the sameobservable behavior(except
in cases of non-termination or error-termination), and

c) T is a potenttransformation, i.e. it rendersP 0 more
obscure thanP .

Observable behavior is defined loosely as “behavior as
experienced by the user.” This means thatP 0 may have
side-effects (such as creating files, sending messages over
the Internet, etc.) thatP does not, as long as these side
effects are not experienced by the user. Note that we do
not requireP andP 0 to equally efficient. In fact, many of
our transformations will result inP 0 being slower or using
more memory thanP .

3.1 Transformation quality
Collberg [5] also introduces the concept ofqualityof an

obfuscating transformationT , a combination of four mea-
sures:

potency The potency ofT measures how much moreob-
scure(or complexor unreadable) T renders the appli-
cation.

resilience The resilience ofT measures how well the
transformation holds up under attack from an auto-
matic deobfuscator. Some highly resilient transforma-
tions areone-way, in the sense that they can never be
undone. This is typically because theyremoveinfor-
mation (such as variable names or abstractions) from
the program. Other transformationsadd useless in-
formation to the program that does not change its ob-
servable behavior, but which increases the “informa-
tion load” on a human reader. These transformations
can be undone with varying degrees of difficulty.

stealth The stealth ofT measures how well obfuscated
code blends in with the rest of the program. IfT intro-
duces new code that differs wildly from what is in the
original program it will be easy to spot for a reverse
engineer.

cost The cost ofT measures the execution time/space
penalty which a transformation incurs on an obfus-
cated application. While some trivial transformations
(such as scrambling identifiers) arefree (i.e. they in-
cur no run-time cost) many of the transformations pre-
sented in this paper will incur a varying amount of
overhead.

3.2 Increasing potency
Before we can design any obfuscating transformations

we must first define what it means for a programP 0 to be

more obscure than a programP . Any such measure of po-
tency will, at best, be approximate since we cannot hope to
measure exactly a human’s ability to understand a program.

Fortunately, we can draw upon the vast body of work in
the Software Complexity Metricsbranch of Software En-
gineering. The detailed complexity formulas found in the
metrics’ literature are of little interest to us, but they can be
used to derive general statements such as: “if programsP

andP 0 are identical except thatP 0 contains more of prop-
erty q thanP , thenP 0 is more complex thanP .” Given
such a statement, we can attempt to construct a transfor-
mation which adds more of theq-property to a program,
knowing that this is likely to increase its obscurity.

Of particular interest to us are the Henry [10], Chi-
damber [2], and Munson [14] metrics.

The Munson metric states that the complexity of a pro-
gramP increases with the complexity of the static data
structures declared inP . The complexity of a scalar vari-
able is constant; the complexity of an array increases with
the number of dimensions and with the complexity of the
element type; and the complexity of a record increases with
the number and complexity of its fields.

The Henry metric states that the complexity of a func-
tion F increases with the number of formal parameters to
F , and with the number of global data structures read or
updated byF .

The Chidamber metric applies to object oriented pro-
grams. The complexity of a classC increases with the
number of methods inC, the depth (distance from the root)
of C in the inheritance tree, the number of other classes to
whichC is coupled, and the number of methods that can
be executed in response to a message sent to an object of
C.

Other metrics express that the complexity of a pro-
gram grows with the number of predicates it contains (Mc-
Cabe [13]) and with the nesting level of conditional and
looping constructs (Harrison [9]).

3.3 Classifying transformations
There are some aspects of program understandability

that are not covered directly by software metrics. For ex-
ample, it should be obvious that there is much valuable in-
formation about a program in comments, strings, and iden-
tifiers, although these do not enter into any metrics for-
mula.

Similarly, according to the Munson metric a two-
dimensional array is more complex than a one-dimensional
one. This fails to capture the fact that a programmer who
declares a two-dimensional array does so for a purpose: the
chosen structure somehow maps cleanly to the data that
is being manipulated. If the array is folded into a one-
dimensional structure the Munson metric would indicate
that the transformed program is less complex than the orig-

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

inal one, when, in fact, much useful information has been
lost.

With this in mind we can attempt to classify obfuscat-
ing transformations according to the kind of information
they target.Layout transformations are typical of current
Java obfuscators such as Crema [20]. They remove source
code formatting and scramble identifiers.Control trans-
formations increase the McCabe and Harrison metrics by
introducing predicated branches.Data transformations in-
crease the Munson, Henry, or Chidamber metrics.Abstrac-
tion transformations remove programmer-defined abstrac-
tions or introduce spurious ones.

In this paper we describe transformations that obfuscate
built-in data types and data and procedural abstractions in-
troduced by the programmer.

3.4 Opaque predicates
Most control transformations and, as we will see, some

data transformations, rely on the existence ofopaque pred-
icates. Informally, a predicateP is opaque if its value is
knowna priori to the obfuscator, but this value is difficult
for the deobfuscator to deduce. For a predicateP we write
PF (P T) if P always evaluates toFalse (True).

As an example, consider the following transformation
where the obfuscator has introduced a bogus if-statement:

main () f
S1;

S2;

S3;

g

T
)

main () f
S1;

if (7y2 � 1 6= x2)T S2;

S3;

g

In spite of the introduced if-statement, statementS2 will
always execute. The reason is that the opaque predicate
7y2 � 1 6= x2 will always evaluate toTrue. The trans-
formed code in this example is resilient to attack by any
deobfuscator ignorant of elementary number theory.

Being able to create opaque predicates which are dif-
ficult for an obfuscator to crack is a major challenge
to a creator of obfuscation tools, and the key to many
highly resilient obfuscating transformations. Collberg [5]
shows how it is possible to manufacture cheap and resilient
opaque predicates based on intractable problems such as
alias analysis.

4 Obfuscating data abstractions
In this section we will discuss transformations that ob-

scure the data abstractions used in the source application.
Most of the transformations are designed to directly in-
crease the Munson or Chidamber metrics.

4.1 Modify inheritance relations
In current object-oriented languages such as Java, the

main modularization and abstraction concept is theclass.

Classes are essentially abstract data types that encapsulate
data (instance variables) and control (methods). We write
a class asC = (V;M), whereV is the set ofC ’s instance
variables andM its methods.

In contrast to the traditional notion of abstract data types,
two classesC1 andC2 can be composed byaggregation
(C2 has an instance variable of typeC1) as well as byinher-
itance(C2 extendsC1 by adding new methods and instance
variables). Borrowing the notation used in [18], we write
inheritance asC2 = C1 ��C2. C2 is said to inherit from
C1, its super- or parent class. The� operator is the func-
tion that combines the parent class with the new proper-
ties defined in�C2. The exact semantics of� depends on
the particular programming language. In languages such
as Java,� is usually interpreted asunionwhen applied to
the instance variables and asoverriding when applied to
methods.

Extending the inheritance hierarchy tree.According to
the Chidamber metric, the complexity of a classC1 grows
with its depth(distance from the root) in the inheritance
hierarchy, and the number of its direct descendants. As
shown in Figures 2 (a) and (b), there are two basic ways
in which we can increase this complexity: we can split up
(factor) a class or insert a new, bogus, class.

When, as in Figure 2(a), we factor a classC into classes
C1 andC2 we cannot arbitrarily moveC ’s methods and
instance variables into the resulting classes. To see this, let
C = (fV g; fMg) where methodM references instance
variableV . Any factoring ofC must respect the scope of
V . For example, we cannot factorC intoC1 andC2 where
C1 = (fg; fMg),�C2 = (fV g; fg), andC2 = C1��C2.

To deal with this problem we build a dependence graph
G for classC. The nodes ofG are the members ofC, and
C itself. There is an edgea ! b in G if the declaration of
a must be in scope forb. If there is a pathC ; y in G,
theny must be declared in the child classC2. If there is a
pathx ; y in G then eitherx andy are both declared in
the same class orx is declared in the parent classC1. See
Figure 3 for an example.

Another problem with class factoring is its low re-
silience; there is nothing stopping a deobfuscator from sim-
ply merging the factored classes. To prevent this, factor-
ing and insertion are normally combined as shown in Fig-
ure 2(d). We can also insert bogus code which appears to
create instances of all introduced classes. For example, the
statementpif (PF) x=new C1q appears to create an in-
stance of classC1.

False refactoring. Figure 2(c) shows a variant of class
insertion, called false refactoring. Refactoring is a
(sometimes automatic) technique for restructuring object-
oriented programs whose structure has deteriorated [15].
Refactoring is a two-step process. First, it is detected

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

Root

C1 = (V1;M1)
C2 = (V2;M2)

V1
M1

V2
M2

C1 C2

Root

V1
M1

C1 = (V1;M1)
C2 = C1 � (V2;M2)

Root

V
M

Root

M =M1 �M2

V = V1 � V2

(a)

C = (V;M)

V1
M1

V2
M2

C1

C2

C2 = C1 � (V2;M2)
C1 = (V1;M1)

+T

V2
M2

Root

V1
M1

V3
M3

V2
M2

V1 \ V3 = ;
M1 \M3 = ;

C1 = (V1;M1)
C2 = C3 � (V2;M2)
C3 = C1 � (V3;M3)

C3 = C1 � (V3;M3)

C3

C2

C1

Root

V3 = V1 \ V2

V 0

1
= V1 � V3

V 0

2
= V2 � V3

C1 = C3 � (V 0

1
;M1)

C2 = C3 � (V 0

2
;M2)

C3 = (V3;M3)

V 0

1
V 0

2

M2M1

Root

V3
M3

Root

V
M

M =M1 �M2

V = V1 � V2

+T

(b)
C1

(d)(c)

C2

+T

V3
M3

C1

C3

C2

C = (V;M)

C3

+T

C1

C2

V1
M1

C1 = (V1;M1)

V2
M2

C2 = C1 � (V2;M2)

Figure 2: Modifications of the inheritance hierarchy. Root is the root of the inheritance tree (Object in Java). Triangles
represent subtrees. There is an arrow from class C1 to C2 if C2 inherits from C1. The two basic operations, class factoring
and class insertion, are shown in (a) and (b), respectively. After factoring class C, all references to C in the program should
be replaced by C2. Factoring and insertion are normally combined. This is done in (d), where the original class C is first split
into C1 and C2, and then an extra child C3 is created for C1. In (c) two classes C1 and C2 without common behavior are given
the same bogus parent C3.

that two, apparently independent classes, in fact imple-
ment similar behavior. Secondly, features common to both
classes are moved into a new (possibly abstract) parent
class. False refactoring is a similar operation, only it is
performed on two classesC1 andC2 that have no common
behavior. If both classes have instance variables of the
same type, these can be moved into the new parent class
C3. C3’s methods can be buggy versions of some of the

methods fromC1 andC2.

4.2 Restructure arrays
A number of transformations can be devised for obscur-

ing operations performed on arrays: we cansplit an array
into several sub-arrays,mergetwo or more arrays into one
array,fold an array (increasing the number of dimensions),
or flattenan array (decreasing the number of dimensions).

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

class C f
float f;

C v;

C (float s)ff=sg;
void P()ff=8.0g;
void Q()fv=new C; P()g;

g

constructor C

method Q

var vmethod P

class Cvar f

Figure 3: Example of a dependency graph built to facilitate
class factoring. Q, v and the constructor C must all be de-
clared in the child class. f and P may either be declared
in the parent or the child class, but if f is put into the child
class then so must P.

Figure 4 shows some examples of array restructuring. In
statements (1-2) an arrayA is split up into two sub-arrays
A1 andA2. A1 holds the elements ofA that haveevenin-
dices, andA2 holds the elements withodd indices. State-
ments (3-5) of Figure 4 show how two integer arraysB and
C can be interleaved into a new arrayBC. Statements (6-7)
demonstrate how a one-dimensional arrayD can be folded
into a two-dimensional arrayD1. Statements (8-9), finally,
demonstrate the reverse transformation: a two-dimensional
arrayE is flattened into a one-dimensional arrayE1.

5 Obfuscating Procedural Abstractions
In this section we will discuss transformations that ob-

scure the procedural abstractions used in the source appli-
cation. Some transformations affect the Henry or McCabe
metrics. Others merely break up user-defined abstractions
or introduce new bogus abstractions, and hence destroy the
“natural” structure of the programmer’s code.

5.1 Table interpretation
One of the most effective (and expensive) transforma-

tions istable interpretation.1 The idea is to convert a sec-
tion of code (Java bytecode in our case) into adifferent
virtual machine code. This new code is then executed by
a virtual machine interpreter included with the obfuscated
application. Obviously, a particular application can contain
several interpreters, each accepting a different virtual ma-
chine and executing a different section of the obfuscated
application. See Figure 5 for an example.

Since there is usually 1–2 orders of magnitude slowdown
for each level of interpretation, this transformation should
be reserved for sections of code that make up a small part
of the total runtime or which need a very high level of pro-
tection.

While the potency of this transformation is very high,
the resilience is rather low. A deobfuscator could always

1Thanks to Buz for pointing this out.

just inline the code for each bytecode instruction prior to
decompilation. There are two ways to increase the re-
silience. First, the bytecode string could be converted to
a program that produces it, as explained in Section 6.2.
Secondly, the original code can itself be obfuscated – for
example by inserting bogus predicated branches protected
by opaque predicates – prior to being translated to the spe-
cialized bytecode. This is illustrated by transformationT1
in Figure 5.

5.2 Inline and outline methods
Inlining is, of course, a important code optimization

technique. It is also an extremely useful obfuscating trans-
formation since it removes procedural abstractions from
the program. Inlining is a highly resilient transformation
(it is essentiallyone-way), since once a procedure call has
been replaced with the body of the called procedure and
the procedure itself has been removed, there is no trace of
the abstraction left in the code.

Outlining (turning a sequence of statements into a sub-
routine) is a very useful companion transformation to inlin-
ing. Figure 6 shows how proceduresP andQ are inlined
at their call-sites, and then removed from the code. Sub-
sequently, we create a bogus procedural abstraction by ex-
tracting the end ofP ’s code and the beginning ofQ’s code
into a new procedureR.

In object-oriented languages such as Java, inlining may,
in fact, not always be a fully one-way transformation. Con-
sider a method invocationm:P (). The actual procedure
called will depend on the run-time type ofm. In cases
when more than one method can be invoked at a particu-
lar call site, we have to inline all possible methods [6] and
select the appropriate code by branching on the type ofm.
Hence, even after inlining and removal of methods, the ob-
fuscated code may still contain some traces of the original
abstractions.

5.3 Clone methods
When trying to understand the purpose of a subroutine a

reverse engineer will of course examine its signature and
body. However, equally important to understanding the
behavior of the routine are the different environments in
which it is being called. We can make this process more
difficult by obfuscating a method’s call sites to make it ap-
pear that different routines are being called, when, in fact,
this is not the case.

Figure 7 shows how we can create several different ver-
sions of a method by applying different sets of obfuscating
transformations to the original code. We use method dis-
patch to select between the different versions at runtime.

6 Obfuscating built-in data types
In this section we will present transformations that ob-

scure the basic data types (such as integers and strings)

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

(1) int A[10];

(2) A[i] = � � �;
� � �
� � �

(3) int B[10],C[20];

(4) B[i] = � � �;
(5) C[i] = � � �;

� � �
(6) int D[10];

(7) for(i=0;i<=9;i++)

D[i]=2*D[i+1];

� � �
� � �
� � �

(8) int E[3,3];

(9) for(i=0;i<=2;i++)

for(j=0;i<=2;i++)

swap(E[i,j], E[j,i]);

T
)

(1') int A1[5],A2[5];

(2') if ((i%2)==0) A1[i/2]=� � �
else A2[i/2]=� � �;
� � �

(3') int BC[30];

(4') BC[3*i] = � � �;
(5') BC[i/2*3+1+i%2] = � � �;

� � �
(6') int D1[2,5];

(7') for(j=0;j<=1;j++)

for(k=0;k<=4;k++)

if (k==4)

D1[j,k]=2*D1[j+1,0];

else

D1[j,k]=2*D1[j,k+1];

� � �
(8') int E1[9];

(9') for(i=0;i<=8;i++)

swap(E[i], E[3*(i%3)+i/3]);
0 1 2 3 4 5 � � � 9

A : A0 A1 A2 A3 A4 A5 � � � A9
0 1 2 3 4 5 � � � 9

B : B0 B1 B2 B3 B4 B5 � � � B9
0 1 2 3 4 5 � � � 19

C : C0 C1 C2 C3 C4 C5 � � � C19
0 1 2 3 4 5 � � � 9

D : D0 D1 D2 D3 D4 D5 � � � D9
0 1 2

E : 0 E0;0 E0;1 E0;2
1 E1;0 E1;1 E1;2
2 E2;0 E2;1 E2;2

T
)

0 1 2 3 4

A1 : A0 A2 A4 A6 A8
0 1 2 3 4

A2 : A1 A3 A5 A7 A9
0 1 2 3 4 5 6 � � � 29

BC : B0 C0 C1 B1 C2 C3 B2 � � � C19
0 1 2 3 4

D1 : 0 D0 D1 D2 D3 D4
1 D5 D6 D7 D8 D9

0 1 2 3 4 � � � 8

E1 : E0;0 E0;1 E0;2 E1;0 E1;1 � � � E2;2

Figure 4: Array Restructuring. Array splitting (statements (1-2)), array merging (statements (3-5)), array folding (statements
(6-7)), and array flattening (statements (8-9)). pint X[n]q is a shorthand for pint[] X = new int[n]q.

used in the source application. Generally, designing such
transformations is difficult since these types form such an
integral part of most programming languages. For this very
reason the transformations are often high in cost and low in
stealth. Nevertheless, combined with other transformations
these obfuscations can sometimes be quite effective.

6.1 Split variables
Boolean variables and other variables of restricted range

can be split into two or more variables. We will write
a variableV split into k variablesp1; � � � ; pk as V =
[p1; � � � ; pk]. Typically, the potency and resilience of this
transformation will grow withk. Unfortunately, so will the
cost of the transformation, so we usually restrictk to 2 or 3.

To allow a variableV of typeT to be split into two vari-
ablesp andq of typeU requires us to provide three pieces
of information: (1) a functionf(p; q) that maps the values

of p andq into the corresponding value ofV , (2) a function
g(V) that maps the value ofV into the corresponding val-
ues ofp andq, and (3) new operations (corresponding to
the primitive operations on values of typeT) cast in terms
of operations onp andq. In the remainder of this section
we will assume thatV is of type boolean, andp andq are
small integer variables.

Figure 8(a) shows a possible choice of representation for
split boolean variables. The table indicates that boolean
variableV has been split into two short integer variables
p andq. If p = q = 0 or p = q = 1 thenV is False,
otherwise,V is True.

Given this new representation, we have to devise substi-
tutions for the built-in boolean operations (&, |, ~, ^).
The easiest way is simply to provide a run-time lookup
table for each operator. Tables for& and| are shown in
Figure 8(c) and (d), respectively. Given two boolean vari-

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

int Sum(int A[]) f
int i, sum=0;

int n=A.length;

for (i=0;i<n;i++)

sum += A[i];

return sum;

g

+T1

int Sum'(int A[]) f
int i, sum=0;

int n=A.length;

for (i=0;i<n;i++)

if (p != q)T

sum += A[i];

return sum;

g

T2
)

int Sum(int A[]) f
int sum=0, i=0, pc=0;

int s[]=new int[5], sp=-1;

loop: while (true)

switch("fcghiabced".charAt(pc)) f
case 'a': sum += s[sp--]; pc++; break;

case 'b': i++; pc++; break;

case 'c': s[++sp] = i; pc++; break;

case 'd': if (s[sp--] > s[sp--]) pc -= 8;

else break loop; break;

case 'e': s[++sp] = A.length; pc++; break;

case 'f': pc += 7; break;

case 'g': s[sp] = A[s[sp]]; pc++; break;

case 'h': s[++sp] = (p != q)?1:0; pc++; break;

case 'i': if (s[sp--]==1) pc+=2 else pc++; break;

g
return sum;

g

Figure 5: The Java method Sum on the left is obfuscated by translating it into the bytecode "fcghiabced". This code is then
executed by a stack-based interpreter specialized to handle this particular virtual machine code. This is akin to Proebsting’s
superoperators [16]. To increase the resilience of this transformation, Sum is first obfuscated by inserting a bogus if-statement
whose opaque predicate (which depends on two un-aliased pointer variables p and q) will always evaluate to True. Even after
deobfuscating the interpreter, the resulting code is still obfuscated.

Pk

P1

� � �

Q1

Q2

Ql

� � �

Pk

Q1

Q2

Q3

R's code

Ql

Q4

� � �

P2

P1

Pk�1

� � �P2

TOutline

call R

call n:Q()

call m:P ()

.

.

.

Q1

Q2

Ql

Q's code

P2.
.
.

Pk

P1

P's code

)
TInline

)

Figure 6: Inlining and outlining transformations.

ablesV1 = [p; q] andV2 = [r; s], pV1&V2q is computed as
pAND[2p+ q; 2r + s]q.

In Figure 8(e) we show the result of splitting
three boolean variablesA=[a1,a2], B=[b1,b2], and
C=[c1,c2]. An interesting aspect of our chosen represen-
tation is that there are several possible ways to compute the
same boolean expression. Statements (3’) and (4’) in Fig-
ure 8(e), for example, look different, although they both as-
signFalse to a variable. Similarly, while statements (5’)
and (6’) are completely different, they both computepA&Bq.

The potency, resilience, and cost of this transformation
all grow with the number of variables into which the origi-
nal variable is split. The resilience can be further enhanced
by selecting the encodingat run-time. In other words, the
run-time lookup tables of Figure 8(b-d) are not constructed
at obfuscation-time (which would make them susceptible
to static analyses) but by algorithms included in the obfus-
cated application. This, of course, would prevent us from
using in-line code to compute primitive operations, as done
in statement (6’) in Figure 8(e).

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

class C f
void m (int x) f S1 � � �Sk g

g

main()f
C x = new C;

x.m(5); � � �; x.m(7);

g

T
)

class C1 f

void m (int x) f S
Bug

1
� � �S

Bug

k
g

void m1 (int x) f Sa
1
� � �Sa

k
g

g
class C2 extends C1 f

void m (int x) f Sb
1
� � �Sb

k
g

g
main()f

C1 x;

if (PF) x=new C1 else x=new C2;

x.m(5); � � �; x.m1(7);

g

Figure 7: Cloning methods. C2.m and C1.m1 have been generated by applying different obfuscating transformations to the
body of C.m. The calls px.m(5)q and px.m1(7)q look as if they were made to two different methods, while in fact they go to
different-looking methods with identical behavior. C1.m is a buggy version of C.m that is never called.

g(V) f(p; q)
p q V 2p+ q

0 0 False 0
0 1 True 1
1 0 True 2
1 1 False 3

p
VAL[p,q] 0 1
q 0 0 1

1 1 0

A
AND[A,B] 0 1 2 3

0 3 0 0 0
B 1 3 1 2 3

2 0 2 1 3
3 3 0 0 3

A
OR[A,B] 0 1 2 3

0 3 1 2 3
B 1 1 1 2 2

2 2 2 1 1
3 0 1 2 0

(a) (b) (c) (d)

(e)

(1) bool A,B,C;

(2) A = True;

(3) B = False;

(4) C = False;

(5) C = A & B;

(6) C = A & B;

(7) C = A | B;

(8) if (A) � � �;
(9) if (B) � � �;
(10) if (C) � � �;

T
)

(1') short a1,a2,b1,b2,c1,c2;

(2') a1=0; a2=1;

(3') b1=0; b2=0;

(4') c1=1; c2=1;

(5') x=AND[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;

(6') c1=(a1 ^ a2) & (b1 ^ b2); c2=0;

(7') x=OR[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;

(8') x=2*a1+a2; if ((x==1) || (x==2)) � � �;
(9') if (b1 ^ b2) � � �;
(10') if (VAL[c1,c2]) � � �;

Figure 8: Variable splitting example. Tables (b-d) are used to compute boolean operations. They are either constructed at
obfuscation-time and stored as static data in the obfuscated application, or generated at run-time by the obfuscated application
itself.

6.2 Convert static to procedural data
Static data, particularly character strings, contain much

useful pragmatic information to a reverse engineer. A sim-
ple way of obfuscating a static string is to convert it into
a programthat produces the string. The program – which
could be a DFA, a Trie traversal, etc. – could possibly pro-
duce other strings as well.

As an example, consider the functionG in Figure 9.
This function was constructed to obfuscate the strings
"AAA", "BAAAA", and "CCB". The values produced by

G areG(1)="AAA", G(2)="BAAAA", G(3)=G(5)="CCB",
andG(4)="XCB" (which is not actually used in the pro-
gram). For other argument values,G may or may not ter-
minate.

Aggregating the computation of all static string data into
just one function would be unstealthy in most codes. Much
higher potency and resilience may be achieved if theG-
function were broken up into smaller components embed-
ded into the “normal” control flow of the source program.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

main() f
String S1,S2,S3,S4;

S1 = "AAA";

S2 = "BAAA";

S3 = "CCB";

S4 = "CCB";

g

T
)

+T

main() f
String S1,S2,S3,S4,S5;

S1 = G(1);

S2 = G(2);

S3 = G(3);

S4 = G(5);

if (PF) S5 = G(9);

g

static String G (int n) f
int i=0;

int k;

char[] S = new char[20];

while (true) f
L1: if (n==1) fS[i++]='A'; k=0; goto L6g;
L2: if (n==2) fS[i++]='B'; k=-2; goto L6g;
L3: if (n==3) fS[i++]='C'; goto L9g;
L4: if (n==4) fS[i++]='X'; goto L9g;
L5: if (n==5) fS[i++]='C'; goto L11g;

if (n>12) goto L1;

L6: if (k++<=2) fS[i++]='A'; goto L6g
else goto L8;

L8: return String.valueOf(S);

L9: S[i++]='C'; goto L10;

L10: S[i++]='B'; goto L8;

L11: S[i++]='C'; goto L12;

L12: goto L10;

g
g

Figure 9: A function producing the the strings "AAA", "BAAAA", and "CCB". Note that this type of code cannot be coded directly
in Java, since the language lacks gotos. It can, however, be coded at the bytecode level.

6.3 Merge scalar variables
Two or more scalar variablesV1 � � �Vk can be merged

into one variableVM , provided the combined ranges of
V1 � � �Vk will fit within the precision ofVM . For example,
two 32-bit integer variables could be merged into one 64-
bit variable. Arithmetic on the individual variables would
be transformed into arithmetic onVM . As a simple exam-
ple, consider merging two 32-bit integer variablesX andY
into a 64-bit variableZ. Using the merging formula

Z(X; Y) = 232 � Y+ X

we get the arithmetic identities in Figure 10(a). Some sim-
ple examples are given in Figure 10(b).

The resilience of variable merging is quite low. A de-
obfuscator only needs to examine the set of arithmetic
operations being applied to a particular variable in or-
der to guess that it actually consists of two merged vari-
ables. We can increase the resilience by introducing bo-
gus operations that could not correspond to any reason-
able operations on the individual variables. In the exam-
ple in Figure 10(b) we could insert operations that appear
to mergeZ’s two halves, for example by bitwise rotation:
pif (PF) Z = rotate(Z,5)q.

7 Summary
In a previous paper [5] we showed that it is possible to

obfuscate the control flow of an application with a high

degree ofresilience(resistance to attack by automatic de-
obfuscators) and at low time/spacecost. In this paper we
have shown that data structures and abstractions can also
be obfuscated, in many cases with only minor impact on
execution time/space cost.

The transformations presented in this paper are only a
few of a large catalogue [4] of obfuscations which target
every aspect of a program. The extra complexity that an
obfuscator adds to a program will depend on the complex
interaction between all the different types of transforma-
tions which have been applied to it.

While all transformations described in this paper have
been cast in terms of Java, it should be clear that most ap-
ply equally well to other languages. In fact, our obfuscator
(which targets Java class files) is already able to obfuscate
programs written in a variety of languages. The reason,
of course, is the existence of translators from many lan-
guages (including Ada and Scheme) into Java source or
bytecode [19].

Acknowledgments
We thank the anonymous referees for their insightful

comments on a draft of this paper. We would also like to
thank Todd Proebsting, Chris Fraser, Mark Burgess, An-
drew Wright, and Bob Uzgalis for stimulating discussions.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

(a)

Z(X+ r; Y) = 232 � Y+ (r + X) = Z(X; Y) + r

Z(X; Y+ r) = 232 � (Y+ r) + X = Z(X; Y) + r � 232

Z(X � r; Y) = 232 � Y+ X � r = Z(X; Y) + (r � 1) � X
Z(X; Y � r) = 232 � Y � r + X = Z(X; Y) + (r � 1) � 232 � Y

(b)

(1) int X=45,Y=95;

(2) X += 5;

(3) Y += 11;

(4) X *= c;

(5) Y *= d;

T
)

(1') long Z=167759086119551045;

(2') Z += 5;

(3') Z += 47244640256;

(4') Z += (c-1)*(Z & 4294967295);

(5') Z += (d-1)*(Z & 18446744069414584320);

Figure 10: Merging two 32-bit variables X and Y into one 64-bit variable Z. Y occupies the top 32 bits of Z, X the bottom 32
bits. If the actual range of either X or Y can be deduced from the program, less intuitive merges could be used. (a) gives rules
for addition and multiplication with X and Y. (b) shows some simple examples. The example could be further obfuscated, for
example by merging (2') and (3') into pZ+=47244640261q.

References
[1] David Aucsmith. Tamper resistant software. InInformation

Hiding, pages 317–334, May/June 1986. LNCS 1174.

[2] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite
for object oriented design.IEEE Transactions on Software
Engineering, 20(6):476–493, June 1994.

[3] Cristina Cifuentes and K. John Gough. Decompilation
of binary programs. Software – Practice & Experience,
25(7):811–829, July 1995.

[4] Christian Collberg, Clark Thomborson, and Douglas Low.
A taxonomy of obfuscating transformations. Technical Re-
port 148, Department of Computer Science, University of
Auckland, July 1997. http://www.cs.auckland.

ac.nz/~collberg/Research/Publications/

CollbergThomborsonLow97a/index.html.

[5] Christian Collberg, Clark Thomborson, and Douglas Low.
Manufacturing cheap, resilient, and stealthy opaque con-
structs. InSIGPLAN-SIGACT POPL’98. ACM Press, San
Diego, CA, January 1998.http://www.cs.auckland.
ac.nz/~collberg/Research/Publications/

CollbergThomborsonLow98a/index.html.

[6] Jeffrey Dean. Whole-Program Optimization of Object-
Oriented Languages. PhD thesis, University of Washington,
1996.

[7] James R. Gosler. Software protection: Myth or reality? In
CRYPTO’85 — Advances in Cryptology, pages 140–157,
August 1985.

[8] James Gosling, Bill Joy, and Guy Steele.The Java Lan-
guage Specification. Addison-Wesley, 1996. ISBN 0-201-
63451-1.

[9] Warren A. Harrison and Kenneth I. Magel. A complex-
ity measure based on nesting level.SIGPLAN Notices,
16(3):63–74, 1981.

[10] Sallie Henry and Dennis Kafura. Software structure metrics
based on information flow.IEEE Transactions on Software
Engineering, 7(5):510–518, September 1981.

[11] Amir Herzberg and Shlomit S. Pinter. Public protection
of software. ACM Transactions on Computer Systems,
5(4):371–393, November 1987.

[12] Apple’s QuickTime lawsuit. http://www.

macworld.com/pages/june.95/News.848.html

andmay.95/News.705.html, May–June 1995.

[13] T. J. McCabe. A complexity measure.IEEE Transactions
on Software Engineering, 2(4):308–320, December 1976.

[14] John C. Munson and Taghi M. Kohshgoftaar. Measurement
of data structure complexity.Journal of Systems Software,
20:217–225, 1993.

[15] William F. Opdyke and Ralph E. Johnson. Creat-
ing abstract superclasses by refactoring. In Stan C.
Kwasny and John F. Buck, editors,Proceedings of
the 21st Annual Conference on Computer Science,
pages 66–73, New York, NY, USA, February 1993.
ACM Press. ftp://st.cs.uiuc.edu/pub/papers/

refactoring/refactoring-superclasses.ps.

[16] Todd Proebsting. Optimizing ANSI C with superoperators.
In POPL’96. ACM Press, January 1996.

[17] Pamela Samuelson. Reverse-engineering someone else’s
software: Is it legal? IEEE Software, pages 90–96, Janu-
ary 1990.

[18] Antero Taivalsaari. On the notion of inheritance.ACM Com-
puting Surveys, 28(3):438–479, September 1996.

[19] Robert Tolksdorf. Programming languages for the Java
virtual machine, 1997.http://grunge.cs.tu-berlin.
de/~tolk/vmlanguages.html.

[20] Hans Peter Van Vliet. Crema — The Java obfuscator.http:

//web.inter.nl.net/users/H.P.van.Vliet, January
1996.

[21] Uwe G. Wilhelm. Cryptographically protected ob-
jects. http://lsewww.epfl.ch/~wilhelm/CryPO.

html, 1997.

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 03:52:47 UTC from IEEE Xplore. Restrictions apply.

