
Asymptotically Tight Bounds for
Computing with Faulty Arrays of Processors

(Extended Abstract)

C. Kaklamanis' A. R. Karlint F. T. Leightont V. Milenkovic 5 P. Raghavanq
S. Rao 11 C. Thomborson** A. Tsantilas tt

Summary
In the paper, we analyze the computational power

of 2 and 3-dimensional processor arrays that contain a
potentially large number of faults. We consider both
a random a and worst-case fault model, and we prove
that in either scenario, low-dimensional arrays are sur-
prisingly fault-tolerant. For example, we show how to
emulate an n e x n m fault-free array on an
n x n array containing Q(n2) random faults with sIow-
down O(logn), the same slowdown that is used by a
fault-free n x n array to perform the simulation. We
also show how to route, sort, and perform systolic al-
gorithms for problems such as matrix multiplication in
optimal time on faulty arrays. In many cases, the run-
ning time is the same as if there were no faults in the
array (up to constant factors). On the negative side,
we show that any constant congestion embedding of
an n x n fault-free array on an n x n array with @ (n 2)
random faults (or 0(log n) worst-case faults) requires
dilation Q(1ogn). For 3-d arrays, we use knot theory
to prove that the required dilation is n(*.

*Aiken Computation Laboratory, Harvard University, Cam-
bridge, MA 02138. Supp. by NSF Grant NSF-CCR-87-04513

tDEC Systems Research Center, Palo Alto, CA 94301.
t Mathematics Department and Laboratory for Computer

Science, MIT, Cambridge, MA 02139. Research supported by
the Defense Advanced Research Projects Agency under Con-
tract N00014-87-K-825, the Office of Naval Researchunder Con-
tract N00014-86-K-0593, the Air Force under Contract OSR-89-
0271, and the Army under Contract DAAG0386-K-0171.

f Aiken Computation Laboratory, Harvard University, Cam-
bridge, MA 02138.

qIBM T.J. Watson Research Center, Yorktown Heights, NY
10598.

11 Aiken Computation Laboratory, Harvard University, Cam-
bridge, MA 02138. Supp. by ONR Grant # "14-88-K-0243.

**Computer Science Department, University of Minnesota,
Duluth, MN 55812. Research supported by the National Science
Foundation, through its Design, Tools and Test Program under
grant number MIP 8706139.

t t Aiken Computation Laboratory, Harvard University, Cam-
bridge, MA 01238. Research supported in part by NSF Grants
NSF-DCR-8600379 and NSF-CCR-8402500.

1 Introduction

In this paper, we study the problem of computing with
processor arrays that contain a potentially large num-
ber of faulty processors. We consider a very strict
model of processor failure; if a processor fails, it can
neither compute nor communicate with its neighbors.
(Messages cannot be routed through a faulty proces-
sor.) We consider both random and worst-case fault
models. In the random model, we assume that each
processor fails independently with some probability
p < p' where p' is a small constant. We refer to
an array with such failures as a pfaulty array. In
the worst-case model, we assume that an adversary
chooses k < n processors to fail.

The focus of our research is to devise algorithms for
faulty arrays that have nearly the same performance
as the best algorithms for fault-free arrays. Somewhat
surprisingly, we show that this is possible for many
problems, even if there is a relatively large number of
random or worst-case faults in the array. For example,
we show that almost every n x n pfaulty array (and
any array with at most n / 3 worst-case faults) can sort
n2 packets or multiply n x n matrices in O(n) steps,
the same time as it takes to do these operations on
a fault-free n x n array (up to constant factors). We
also show that almost all pfaulty arrays can route n2
packets in O(n) steps. In fact, we can route packets
between any pair of processors for which there is a
connection via a path of live processors in the network.
This substantially generalizes the result of Raghavan
[13], who devised a randomized routing algorithm that
runs in O(n1ogn) steps with queues of size O(1ogn).
In contrast, our algorithm is deterministic, runs in
O(n) steps, uses queues of size 0(1), and can support
combining. Similar results hold for an array with O(n)
worst-case faults.

More generally, we consider the problem of simu-
lating a fault-free m x m array on a faulty n x n
array. Once again, we find that arrays are surpris-
ingly resilient to faults. For example, we show that
almost every pfaulty n x n array can simulate an
nt/Iogn x n m fault-free array with O(1og n) slow-
down. The result demonstrates another application

CH2925-6/90/0000/0285$01 .OO 0 1990 IEEE
285

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

ctho065
Text Box
Copyright IEEE, 1990. This copy is posted here by the author, for your personal use, and is not authorised for redistribution. The definitive version is http://dx.doi.org/10.1109/FSCS.1990.89547.

for which pfaulty arrays are no worse than fault-free
arrays. The result is proved by embedding a fault-free
n x n array into a faulty n x n array with constant
load and congestion and optimal dilation 0(log n).

We also consider the problem of computing on
faulty 3-d arrays. As with 2-d arrays, we find that
faulty 3-d arrays have much the same power as fault-
free 3-d arrays, although the results are more difficult
and the bounds are slightly weaker. A highlight of
our work on 3-d arrays is the proof that any O(1)-
to-1 embedding of a fault-free n x n x n array into
most any pfaulty n x n x n array requires dilation
Cl($=). The proof makes use of knot theory,
and provides the first lower bound for reconfiguring ar-
rays in higher dimensions. (The corresponding lower
bounds for 2-dimensional arrays follow rather straight-
forwardly from earlier work on wafer-scale integration
[5, 8, 91 that makes use of winding numbers.)

In summary, the results in this paper reveal that
low-dimensional arrays are highly resilient to large
numbers of randomly occurring faults as well as lesser
numbers of worst-case faults. Although it was known
that high bandwidth networks such as the hypercube
[6] and multibutterfly [ll] have strong fault-tolerance
properties, relatively few such results were known for
low-dimensional arrays [5, 8, 91. In fact, we do find
that low-dimensional arrays are somewhat less re-
silient to faults than hypercubes (e.g., a fault-free hy-
percube can be embedded into a pfaulty hypercube
with constant dilation and congestion for any p < 1,
but the corresponding result for 2-d arrays only works
for small constant p, and only with Q(1og n) dilation),
but the differences are surprisingly small.

The remainder of the paper is divided into sections
as follows. The results for 2-dimensional arrays are
contained in Section 2. The upper bounds and algo-
rithms for 3-dimensional arrays are contained in Sec-
tion 3. Section 4 contains the lower bound on dilation
for any embedding of fault-free 3-d array into a p
faulty array of the same size. Because of space limita-
tions, we have omitted several details and some proofs
from this extended abstract.

2 Algorithms for 2-d Arrays

Nearly all of our algorithms and upper bounds for 2-
d arrays are based on a property that measures how
much a grid with faults differs locally from a fault-free
grid. In particular, we say that a faulty n x n array is
(a, r)-gridlike (0 5 a < 1 , 0 < r 5 n) if for every r x r
subarray, there are a t least (1 - a)r fault-free paths
connecting the left and right sides of the subarray and
at least (1 - a)r fault-free paths connecting the top
and bottom of the subarray. Moreover, we require
that the paths all have length at most 2r, and that
the horizontal (respectively vertical) paths be vertex-

disjoint. Since we will mostly be concerned with the
case when a = 1/3, we also define an array to be
r-gridlike if it is (a, r)-gridlike for a = 1/3.

In Subsection 2.1, we will show that almost all p
faulty n x n arrays are O(log,l, n)-gridlike, and that
all n x n arrays with k 5 n / 3 faults are O(k)-gridlike.
We will then show in later subsections that r-gridlike
arrays can perform many of the same tasks as fault-
free arrays (and in about the same time) provided that
r is not too big. In particular, we will show in Subsec-
tion 2.2 how to embed an n x n fault-free array in an
n x n r-gridlike array with load O(l) , congestion O(1)
and dilation O(r) . As a result, we will show how to
simulate any m x m array on an n x n r-gridlike ar-
ray with slowdown O(r + $). For m = SI(,/%), this
is the same as the slowdown required to simulate an
m x m array on a fault-free n x n array, which means
that the faulty array performs as well as a fault-free
array (up to constant factors) for this application. If
m = n, then we experience a slowdown of O(r) for
the simulation. When applied to pfaulty arrays, and
arrays with k worst-case faults, the construction gives
optimal results.

Many problems can be solved very efficiently on r-
gridlike arrays. For example, in Subsection 2.3, we
show how to sort and multiply matrices in O(n) steps
on an r-gridlike array (r 5 n). We also show how to
route in O(n + r 2) steps. When applied to pfaulty
arrays or arrays with k worst-case faults, these algo-
rithms again give optimal performance.

It is worth noting that although we will use proba-
bilistic methods to prove that a random pfaulty array
is O(log,/, n)-gridlike with high probability, all of the
algorithms for r-gridlike arrays are deterministic. In
particular, when we show how to sort in O(n) steps
on a pfaulty n x n array with high probability, the
sorting algorithm is deterministic and guaranteed to
work provided that the array is O(log,/ n)-gridlike.
At no time do we use the randomness inierent in the
fault pattern as a basis for pseudorandom coins in the
algorithms.

2.1 Showing that Faulty Arrays are Gridlike

In what follows, we show that a worst case array with
k faults is O(k)-gridlike, and that a pfaulty array is
O(logl/p n)-gridlike with high probability. The result
for worst-case faults is particularly straightforward.

Lemma 1 An n x n-array with k < n faults i s
(a, k/a) -gr id l ike for any k/n 5 a < 1.

Proof. Consider any k / a x k / a subarray. (We know
that k / a 5 n since Q 2 k / n .) Since there are at most
k faults, the subarray has a t least klcu-k = (l -a)k/a
fault-free rows and columns. 0

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Theorem 2 An n x n array with k 5 n/3 faults is
3k-gridlike.

Proof. Use a = 1/3 in Lemma 1. 0

The result for pfaulty arrays is a little more inter-
esting, and makes use of the following simple pigeon-
hole argument.

Lemma 3 If there are (1 - a/2)r node-disjoint paths
from one side of an r x r array to the opposite side,
then at least (1 - a)r of the paths have length at most
2r.

Proof. If more than 4r of the (1 - 4)r paths have
length 2r or more, then the total number of nodes in
all the paths would be more than (1-a)?+ 4 r (2 r) =
r2. This is not possible since there are only r2 nodes

0 in an r x r array.

Lemma 4 Given any constant a > 0, there is a con-
stant pa > 0 such that a p-faulty n x n array i s
(a, r)-gridlike with probability at least 1 - l /n , where
r = O(logl/, n) and p 5 pa.

Proof. If the array is not (a,r)-gridlike, then by
Lemma 3, we know that it contains an r x r subarray
R for which we cannot construct (1 - f) r node-disjoint
paths from one side to the other. By Menger's The-
orem [3] this means that there is a set of fewer than
(1 - f)r live nodes whose removal from R (along with
the faulty nodes) disconnects one side of R from the
opposite side. Any set of nodes whose removal from
an array disconnects the left side from the right side
(say) contains a subset of nodes that form a simple
path from the top to the bottom of the array, allow-
ing 45 degree connections.

Hence, R must contain a simple path from one side
of the subarray to the opposite side which contains
fewer than (1 - 4). live nodes. The number of such
paths of length l (1 2 r) is at most 2r7I-l < r7', since
there are 2r places where we can start or end the path
and at most 7 ways to continue at each step. By
only considering minimal paths, this quantity can be
reduced to r5' since we can rule out the possibility
of extending to a neighbor of the previous node in
the path. Given a particular path of length I , the
probability that it has fewer than x = (1 - f) r live
nodes is at most (L)P' -~.

Combining the previous arguments, we find that the
probability that there exists such a bad subarray R is
at most

'For a proof of a generalization of this fact, see [12]

provided that (1 - a/2) < In($). Substituting z =
(1 - a / 2) r , and simplifying, we find that this proba-
bility is at most

(... [e1-q5Pa/2 13
(1 - a/2)'-42 '

For any constant a > 0, there is a constant pa >
0 such that for p 5 pa and r 2 O(logn/log(l/p)),
the expression above is at most l /n . Hence, for any
constant a > 0 and p 5 pa, a pfaulty array is (a, r)-
gridlike with probability at least 1 - l /n , where r =
O(lOgl/p n). 0

Theorem 5 There is a constant p' > 0 such that for
any p 5 p', a p-faulty n x n array i s O(logll,n)-
gridlike with high probability.

Proof. Apply Lemma4 with Q = 1/3. 0

2.2 Simulating a Fault-bee Array with a
Gridlike Array

In what follows, we describe an efficient embedding
of an n x n fault-free array in an r-gridlike faulty ar-
ray. Nodes of the fault-free array are mapped O(1)-
to-1 to live nodes of the faulty array, and edges of the
fault-free array are mapped to live paths of the faulty
array. We then apply this result to show how faulty
arrays can simulate fault-free arrays with relatively
little degradation in performance.

Note that, in general, when a guest graph G is em-
bedded in a host graph H, we are interested in three
properties: (1) load the maximum number of nodes
of G mapped on some node of H; (2) congestion: the
maximum number of edges of G whose mappings pass
through an edge of H; and (3) dilation: the maximum
length of a path of H, that is the image of some edge
of G.

Theorem 6 An n x n array can be embedded in an
n x n r-gridlike array with O(r) dilation, 0(1) load,
and O(1) congestion.

Proof. We first embed an n/3 x n/3 array, and then
adjust the load and congestion by a factor of 9 to
obtain our n x n array. Without loss of generality,
we will assume that (r - 1) divides (n + 1). Then
we can evenly divide up the faulty array into edge-
disjoint but abutting blocks of r x r nodes, so that
adjacent blocks are bridged by a row or column of
r edges. Since 2r/3 of the nodes on each boundary
of a block are connected by vertex-disjoint paths to

287

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

the opposing boundary, there are a t least r/3 vertex-
disjoint paths across any pair of contiguous blocks.
We call these paths highway segments. Each highway
segment spans 2r - 1 rows or columns and has length
at most 4r.

By connecting the highway segments in adjacent
pairs of blocks, we will build fullfledged highways that
span the entire faulty array. In particular, we will
construct r/3 nodedisjoint live paths of length O(n)
that go from one side of the faulty array to the other
through each row and column of r x r blocks. We
construct the highways from the highway segments by
using an interchange in each r x r block along the way.
The interchange is used to interconnect the r/3 high-
way segments in one pair of blocks to the r/3 high-
way segments in the next (overlapping) pair of blocks.
An interchange can be made in the middle block of
each set of three collinear blocks, using its r-gridlike
property in the horizontal and vertical directions to
define a 2r/3 x 2r/3 crossbar. In particular, assume
the three blocks are horizontally adjacent; the vertical
case is analogous. The highway segments entering the
middle block across its left edge will intersect every
vertical path through the crossbar; thus any traffic on
the ith entering highway can be switched onto the ith
vertical path in the crossbar, routed to the ith hori-
zontal path in the crossbar, then to the (2r/3 - i)th
vertical path in the crossbar, and then out on the ith
right-side highway segment. Note that our completed
highways are vertex-disjoint, they span the entire ar-
ray, and they are of length O(n). The last step in
the construction is to define the (j , k)th node of an
n/3 x n/3 virtual grid as the processor a t the first in-
tersection of the j t h horizontal highway with the kth
vertical highway.

This induces an embedding of an n/3 x n/3 array
in the r-gridlike array with congestion 2, load 1, and
dilation O(r) . The dilation bound follows from the
fact that the length of any highway within an r x r

0

Theorem 7 With probability 1 - O(l/n), a dilation
of 0(log1/, n) i s necessary and suficient for an O(1)-
load and O(1)-congest ion embedding of a 0(n) x 0(n)
array an a p-faulty array, for suficient ly small p.

Proof skelch. The upper bound is immediate from
Theorems 5 and 6. The lower bound is obtained
by techniques similar to those in previously-published
work on wafer-scale integration [5, 8, 91. The details

0

Theorem 8 A dilation of 0 (k) is necessary and suf i -
cient f o r an O(1)- load and O(1)-congestion embedding
of an Q(n) x O(n) virtual grid in an n x n array with
k faults, k < (1 - c)n, c > 0.

Proof sketch. The upper bound follows from Theo-
rems 2 and 6. The lower bound is derived by argu-

block is a t most O(r) .

will appear in the final version of the paper.

ments similar to those in [8]. Dead regions of area
8(log1/,n) in the proof of [8] are replaced by dead
strips of length 0 (k) . A constant number of such
strips are distributed throughout the array, one per
0(n) x 0 (n) square. The rest of the proof is identical

0 to that of Theorem 7.

Theorem 9 A n r-gridlike, n x n array can simulate
a fault-free m x m array with an O(r + m2/n2) fac tor
slowdown.

Proof. Partition the m x m array into blocks of size
3m/n x 3m/n. The i, j t h 3m/n x 3m/n block will be
simulated by the i , j t h node in the n/3 x n/3 virtual
array described in Theorem 6. This node can simu-
late the computation of the 3m/n x 3m/n block with
9m2/n2 slowdown. It can simulate the communication
of the block by sending 3m/n packets of information
to each of its neighbors for each step of the m x m
array. By Theorem 6, we know that all the packets
can be routed in O(r + m/n) steps by pipelining along
the highways. Hence, the slowdown of the simulation

0 is O(r + m2/n2), as claimed.

Theorem 10 With probability 1 - 1/n , a p-faulty
n x n array can simulate a fault-free n

array with O(logllp n) slowdown.

Proof. Immediate from Theorems 5 and 9 for any

The result in Theorem 10 is the best possible up
to constant factors (since the load is log n), and shows
that a pfaulty array has as much capability as a fault-
free array when simulating a slightly larger array.

small constant p . 0

2.3 Optimal Algorithms for Sorting, Routing,
and Matrix Multiplication

In what follows, we show how to route, sort and multi-
ply matrices in O(n) steps on an r-gridlike n x n array
for small r . For sorting and matrix multiplication we
assume that the data is input and output at the vir-
tual gridpoints of the array. The sorting result makes
use of the following simple fact.

Fact 11 [l] A n y f i t e d permutation of n2 elements can
be performed on a (fault-free) n x n array of proces-
sors, by a three-stage method: a row routing, a column
routing, then a row routing. By a row(co1umn) rout-
ing, we mean a rearrangement of the i tems in each
row(co1umn).

Theorem 12 A n r-gridlike n x n (r 5 n) array of
processors, each with O(1) storage, can sort O(n2) el-
ements in O(n) deterministic t ime.

288

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Proof. We adapt Columnsort [7] for this purpose.
Columnsort sorts an r x s matrix (r 2 s2) in 8 phases.
Phases 2,4,6 and 8 consist of a fixed permutation of
the matrix, and phases 1,3,5 and 7 consist of sorting
the columns of the matrix. By using a second iteration
of columnsort to sort the columns, we can devise an
O(1)-phase algorithm to sort an n x n matrix where
each phase consists of applying a fixed permutation to
the matrix or of sorting the columns.

By Fact 11, this means that we can reduce the prob-
lem of sorting n2 items to 0(1) routing and sorting
operations in the rows and columns of an n x n array.
Each row and column operation can be accomplished
in O(n) steps using the highways constructed for the
embedding of the fault-free array in the faulty array.
Although these highways have dilation O(r), their to-
tal length is O(n). Hence, we can treat the highways
as O(n)-cell linear arrays, on which routing and sort-
ing takes O(n) steps. (In the case of sorting, we first
pack the items to be sorted in the leftmost n cells of
the linear array, whereupon we use bubblesort.) 0

Corollary 13 With probability 1-l/n, a p-faulty n x
n array can sort O(n2) elements in O(n) deterministic
t ime.

Proof. Immediate from Theorems 5 and 12 for any

Since on-line packet routing can be reduced to sort-
ing [2, lo], we can immediately obtain the following
on-line routing result.

small constant p . 0

Theorem 14 A n r-gridlike n x n (r 5 n) array of
processors, each with 0(1) storage can solve any rout-
ing problem among i t s virtual grid points on-line in
O(n) deterministic time.

Proof. Follows directly from Theorem 12 and the re-

Note that Theorem 14 is stronger than the result in
Fact 11, since the routing problem needed to be known
in advance for Fact 11 to apply. The following result
is stronger still, in that it allows packets to start and
end at nodes of the faulty array that are not virtual
grid points. The time bound is weaker for r 2 6,
however.

ductions in [2, 101. o

Theorem 15 An r-gridlike n x n array with 0(1)
storage per processor can perform any on-line rout-
ing of packeis between live processors connected by live
paths in O(n + r2) deterministic time.

Proof. The vertical and horizontal highways parti-
tion the faulty array up into regions, consisting of pro-
cessors which lie between two adjacent vertical and
horizontal highways. By construction, each of these
regions has size at most O(r2). If a processor wishes

to route a packet to a processor in a different region,
and those processors are connected by live paths, then
there must be a path from the source processor to one
of the surrounding vertical or horizontal highways and
there must be a path from one of the vertical or hori-
zontal highways to the destination processor.

Consider a partition of the array into r x r blocks as
before. In an O(r2) step preprocessing phase, we will
construct spanning trees for all connected components
within each such block, including all regions which in-
tersect each block (i.e. all four regions surrounding
a virtual gridpoint are included in the spanning trees
for the block containing that virtual gridpoint.) Each
spanning tree has O(r2) processors, and if it contains
any virtual gridpoint, it contains all 4r2/9 virtual grid-
points. These virtual gridpoints can be ordered in a
well defined manner based on which highway intersec-
tions they correspond to. Furthermore, if we order
all ra processors (both live and faulty ones) in each
block in a canonical way, we can partition and asso-
ciate them canonically and 0(1)-to-l to the virtual
gridpoints of the block.

The routing process then consists of three steps:
packets destined for a different region (and connected
to their destination) are moved along an O(r2)-length
Hamiltonian tour of their spanning tree to their as-
sociated virtual gridpoint; thus in O(r2) time 0(1)
packets are delivered to each virtual gridpoint in the
source block. Packets then are routed in O(n) time
to the virtual gridpoint associated with their destina-
tion; the routing is done by a well-known reduction
to sorting. Finally packets are moved in O(r2) time
on the spanning tree to their destinations within the
destination block. Packets not destined for a different
block can be routed in the local spanning tree. U

Theorem 16 With probability 1 - l /n , a p-faulty n x
n array can route packets among all live processors
connected by live paths in O(n) time.

Proof. Immediate from Theorems 5 and 15 for any
small constant p . 0

Theorem 17 Routing packets among all live proces-
sors connected by live paths in an n x n array with k
faults, takes 0 (n + k 2) time.

Proof. The lower bound arises when the k faults are
situated in a continuous path around a square of area
Q (k 2) , with only one exit. We consider any permuta-
tion which requires routing all packets in the square
of area Q(k2) to processors outside that square. Since
all of these packets must go through the single exit,
the time it takes is at least Q (k 2) . As the diameter
of the network is n, we obtain the lower bound. The
upper bound follows from Theorems 2 and 15. 0

289

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Theorem 18 A n r-gridlike n x n array ofprocessors,
each with O(r) storage, can multiply two n x n matri-
ces in O(n) t ime.

Proof sketch. We simulate the standard systolic ap-
proach for multiplying matrices in a grid as follows.
We simulate the computation in r x r blocks of the vir-
tual grid, alternating O(r)-step computation phases
with O(r)-step communication phases. The compu-
tation phase and the communication phase together
simulate r steps of the standard algorithm. In a
communication phase, each r x r subarray forwards
O(rz) data elements to its neighboring r x r subar-
rays. Each processor stores every value appearing on
its row and column streams, taking an inner prod-
uct of these streams after the communication phase
is complete. The matrix product is complete after

Note that the technique of Theorem 18 will work for
any systolic algorithm with unidirectional data depen-
dencies. Also note that all our optimal algorithms de-
pended directly on the r-gridlike property of a faulty
array; if we were given only an O(r)-dilation embed-
ding, we could not avoid an O(r) slowdown.

O(n/r) computation phases. 0

3 Upper Bounds on 3-d Arrays

Our upper bounds for three-dimensional arrays are
similar in form and spirit to those for two-dimensional
arrays. In particular we say that an n x n x n array
with faults is (a,r)-cubelike, if for every r x r x r
subcube, at least (1 - a)r of the planar sections of the
subcube in each dimension satisfy the (a , r)-gridlike
properties (i . e . , they are (a , r)-gridlike). More simply,
we say that a 3-d array is r-cubelike if it is (cu,r)-
cubelike for a = 118.

In what follows, we show that a 3-d array with k
faults is O(fi)-cubelike, and that a pfaulty 3-d array
is O(log,/ n)-cubelike with high probability. $-
Lemma 19 A n n x n x n array with k faults is
(a , &/a)-cubelike f o r any a 2 kln.

Proof. Fix a and consider any r x r x r subcube
where r = f i / a . Since at most planar sections
of the r planar sections along each of the dimensions
can have more than fi faults each, at least r - fi =
(1 - a)r planar sections have at most 4 faults each.
By Lemma 1, each of these (1 - a)r planar sections is
(a, fila)-gridlike. 0

Lemma 20 For any constant a > 0 , there is a con-
stant pa > 0 such that a p-faulty n x n x n array
is (a , O (, / G)) - c u b e l i k e with high probability f o r
P I P a .

Proof. Similar to that of Lemma 4 except that we
need to show that for each of the 3 dimensions the
probability that ar planar sections of an r x r x r
subcube are not (a, r)-gridlike is very small when r =

By the analysis of Lemma 4, we know that the
probability that a specific planar section is not (a, r)-
gridlike is

e(j/=GzF).

Since faults are independent from each other, the
probability that ar or more of the planar sections in
a given dimension are faulty is at most

For any a > 0, there is a constant p a > 0 such that for
p 5 p a and r = O (J G) , the above expression is

at most 1/3n4. Hence the probability that any r x r x r
subcube fails the cubelike condition is at most l /n . 0

We next show how to embed an n x n x n array into
an r-cubelike array with 0(1) load, O(r) congestion
and O(r) dilation. The embedding is similar to that
for 2-d arrays, but the details are more complicated.
We begin our 3-d embedding by building highways
in all r x r x r subcubes. Our highway network is
anisotropic, having somewhat better connectivity in
two dimensions (dim 1 and 2, below) than in the third.
Note: the “dim i faces” of a cube or subcube are those
orthogonal to dimension i .

Lemma 21 A 7r/8 x 7r/8 x 7r/8 virtual grid can be
embedded into any r x r x r subcube of an r-cubelike
array with 0(1) load, O (r) dilation, and O(r) conges-
tion.

Proof. Map virtual grid point (i , j , k) to the (i,j)
gridpoint in the kth dim 3 planar section that is r-
gridlike. To complete the construction, we need only
make connections in dim 3. A constant fraction of
the virtual grid points in the kth dim 3 planar sec-
tion will be used to make the connections between
the kth and k + 1st sections. Since 7r/8 of the dim
1 planar sections are r-gridlike, the kth and k + 1st
gridlike dim 3 planar sections are connected by 7r/8
sets of 7r/8 vertex-disjoint paths, where each path is
restricted to the nodes on or between adjacent grid-
like planar sections. At least (2(7/8)2 - l)r2 of these
(7/8)2r2 paths have one endpoint which is a virtual
grid point on the kth plane. Of those paths at least
(3(7/8)2 - 2)r2 > r2/4 have as their other endpoint a
virtual grid point on the k + 1st plane. Call the end-
points of these r2/4 paths on the kth plane Ek and

290

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

their endpoints on the k+lst plane Ek+l. The embed-
ding of the edge between virtual grid point (i , j, k) and
virtual grid point (a', j, k + 1) is constructed from three
subpaths: from (i , j, k) to some virtual grid point in
Ek using the kth dimension 3 highway system, from
that virtual grid point in Et to the corresponding vir-
tual grid point in Ek+1 and from the virtual grid point
in Ek+1 to (i , j , k + 1) using the k + 1st dimension 3
highway system. Since there are at least r2 /4 grid-
points in Ek (and in Eb+l) we can construct the first
and third parts of these paths so that only a constant
number of paths have any particular gridpoint in Ek
and Ek+1 as their intermediate point and hence the
congestion due to the 2nd part of each path is con-
stant. To see that the first and third parts of the
paths have only O(r) congestion, we observe that the
O(1) to 1 mappings between virtual grid points on the
kth plane and gridpoints in Ek can be implemented
in a constant number of (partial) permutation steps.
Since these permutation routing steps can be executed
in O(r) time, at most O(r) packets can use any edge.
Hence, the embedded virtual grid has 0(1) load, O(r)

Surprisingly, it is possible to route on a subcube in
O(r) time, despite the congestion and dilation on its
embedded subgrid. We use this result to complete the
construction of our grid, and to design some of our
optimal algorithms.

dilation, and O(r) congestion. 0

Lemma 22 A n r-cubelike r x r x r subarray of pro-
cessors, each with 0 (1) storage, can perform any fi ted
routing of O(r3) packets among the processors in the
virtual subcube, in O(r) t ime.

Proof. By Theorem 14, we can route packets among
the virtual grid points in O(r) steps within each dim 3
planar section. The tricky part is routing between dim
3 sections. To route packets between dim 3 sections,
we will use the (7 ~ - / 8) ~ paths contained in the 7r /8
(7/8, r)-gridlike dim 2 sections described in the proof
of Lemma 21. The problem is to assign each of the
O(r3) packets to one of the (7r/8)2 paths so that no
more than 0 (1) packets enter or exit a path in the
same dim 3 section.

By the proof of Lemma 21, we know that for any
pair of gridlike dim 3 sections (not necessarily consec-
utive), at least r 2 / 4 of the (7r/8)2 paths intersect vir-
tual grid points on both sections. Hence each packet
has at least r2 /4 paths that it might use to go to the
correct dim 3 plane. To make an assignment, we con-
struct a coloring problem on a graph with one node
for each packet, and an edge between two packets if
they begin or end on the same dim 3 section. We have
one color for each of our vertex-disjoint paths, so that
each node has at least r2 /4 legal colorings. The degree
of each node is at most 2r2, so we can color nodes so
that each has 0(1) neighbors with the same color.

We have now partitioned the routing problem into 3

phases. In the first phase, we route each packet within
its dim 3 section to the virtual grid point that inter-
sects its desired dim 3 path (i.e., the path correspond-
ing to the packet's color). By the coloring argument,
at most 0 (1) packets are routed to any node, and we
can use Theorem 15 to accomplish the routing in O(r)
steps. In the second phase, we treat the (7r/8)2 paths
as linear arrays and route each packet to its correct
dim 3 section. Since at most 0(1) packets start or end
at any point of each path, this can be accomplished
in O(r) steps. We complete the routing in the third
phase by routing each packet to its correct destination
within its dim 3 section, again taking O(r) steps.

0

We now show that a 3-d grid embedded in a pfaulty
array has O (4 G) dilation, and that a 3-d grid

embedded in an array with k faults has O (4) dila-
tion. In Section 4, we proved that the dilation bound
for pfaulty arrays is tight.

Theorem 23 A n n x n x n grid graph can be embedded
in a r-cubelike n x n x n array with O (r) dilation, O(r)
congestion, and O(1) load.

Proof sketch. We will embed a 7n/8 x 7n/8 x 7n/8
grid graph, then adjust the load and congestion by
(8/7)3 to obtain an embedding of an n x n x n grid.

By Lemma 21, we have defined a 7r/8 x 7r/8 x 7r/8
grid in all our r x r x r subcubes that has O(r) dila-
tion, O(r) congestion and load 1. It remains only to
connect up the outermost virtual gridpoints in adja-
cent subcubes. For dimension 3 connections, we can
use the same argument as in the proof of Lemma 21
to route the wires using O(r) dilation and O(r) con-
gestion. (This is because the dim 3 sections to be
connected can be at most 3r/4 apart and are thus
contained in a single r x r x r subcube that overlaps
the original subcubes.) For dim 1 and dim 2 connec-
tions, we use the fact that adjacent r x r x r blocks have
at least (2(7/8) - l)r common dim 3 planes that are
gridlike in both subcubes. Choose one of the common
planes and notice that the planes are connected by
at least (2(7/8) - 1)' highway segments. By Lemma
22, this means that we can make all of the connec-
tions with O(r) congestion and dilation using a single
common dim 3 plane. 0

By being more careful and using O(r) of the com-
mon dim 3 planes in the proof of Theorem 23, we
could reduce the congestion of the dim 1 and dim 2
connections to O(1). Unfortunately, we do not know
how to reduce the congestion in all dimensions simul-
taneously. Nevertheless, we can still obtain an optimal
simulation of an m x m x m array on an n x n x n
r-cubelike array for m 2 n r , as we show in what fol-
lows.

29 1

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Theorem 24 A n r-cubelike n x n x n array of pro-
cessors, each with O(m”/n3) storage can simulate a
fault-free m x m x m array with O(m3/n3 + m2r/n2)
slowdown.

Proof sketch. Each virtual node of the n x n x n ar-
ray will simulate an 8m/7n x 8m/7n x 8m/7n block
of the n x n x n array. This requires O(m3/n3) slow-
down. For communication each virtual node needs to
send O(m2/n2) messages to its neighbors in the vir-
tual grid. By Lemma 22 and the construction in the
proof of Theorem 23, one message can be sent from
and delivered to each virtual processor in O(r) steps.
Hence the communication slowdown is O(m2r/n2). 0

Theorem 25 With probability 1 - 1/n, a p-faulty
n x n x n array can simulate a fault-free n

n , / G x n Jogl/pn array with O(log:;i n) slow-
down.

log,/p Fx

Proof. Immediate from Lemma 20 and Theorem 24.
0

We can also generalize most of the routing and sort-
ing results from Section 2.3 to hold for r-cubelike ar-
rays. For example, an r-cubelike n x n x n array can
sort or route n3 items stored in its virtual gridpoints
in O(n) time for r 5 n. Although we do not have room
to explain the details here, the basic idea is to emu-
late r steps of columnsort (or linear array routing) in
O(r) steps on the r-cubelike array by using Lemma 22
to map the dim i highway segment operations to the
0(1) existing congestion dim 1 or 2 highway segments
in each r x r x r block, and to facilitate the passing of
€I(?) items from one block to any of its neighboring
blocks in O(r) steps.

In fact, the only routing or sorting result from Sec-
tion 2.3 that does not nicely generalize is Theorem
15. The reason is that we can construct examples of
w(r3)-size connected components in an r-cubelike ar-
ray that do not intersect any of the highway segments.
We can still generalize Theorems 16 and 17, however,
since the nasty examples for r-cubelike arrays cannot
occur for the special cases when the array is pfaulty or
has only k faults. For pfaulty arrays, we can on-line
route between all live processors that are connected
by live paths in O(n) time with high probability, and
for arrays with I: worst-case faults, we can perform the
routing in O(n + k3f2) time. The details will appear
in the final version of the paper.

4 Lower Bound on 3-d pFaulty Arrays

In what follows, we prove that with high probability
any embeddingofan Q (n) x Q (n) x Q (n) a r r a y i n t o a p
faulty n x n x n array requires dilation of Q(

Figure 1: A W x W x W subcube, one of the three cylin-
ders of cross section A through its center, and dead cross-
sections.

We do this by considering the embedding of the live
mesh into the faulty mesh to be a mapping of the live
mesh into 3-dimensional space. We then use concepts
from knot theory to show that some edge must be
mapped to a long path in space.

Our main theorem is stated in terms of the follow-
ing structural property of faulty arrays. Consider a
set of parallel planes at distance W apart, in all di-
mensions, partitioning the n x n x n array into (n/W)”
W x W x W subcubes with sides parallel to the coor-
dinate planes. Call this a W-subdivision of the array.
For each such subcube consider the three right circu-
lar cylinders (in the 151 “Manhattan” metric) of cross-
sectional area A, each of whose central axis passes
through the center of the cube and is parallel to a
coordinate axis. A planar cross-section of a cylinder
is dead if all A nodes in that cross-section are faulty.
If for all cylinders in every subcube the distance be-
tween consecutive dead cross-sections is a t most 6, we
say that the faulty array is (W, A, 6)-defective (see Fig-
ure 1).

We now state the main results of the section, defer-
ring the proof of our first theorem.

Theorem 26 A n an x an x an grid, G, cannot be
embedded in a (W, A, 6)-defective n x n x n array, F ,
with dilation d a / 8 and load 1 or less when

0 an 2 542W3A15f3, and

e an 2 W/d 2 max(lA6/32,2).

Theorem 27 For any constant a > 0 there exist con-
stants €, c > 0 with the constraint c+c < 1/3 such that,
for large enough n, any constant load embedding of an
an x an x an grid in a p-faulty n x n x n array has

than 1 - O (7 1 - ” ‘ + ~) .

with probability greater

292

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Cl has a nonzero linking number with C2.

Proof. Consider a pfaulty n x n x n array and its
W-subdivision. A cross-section is dead when all its A
nodes are faulty and the probability that this happens
is pA . The array is non-defective if one or more of the
three cylinders in one or more of the n3/W3 subcubes
is non-defective, that is, if one of the cylinders has
a run of 6 non-dead cross-sections. The probability
that a cylinder of length W has a run of 6 non-dead
cross-sections is at most W(l - pA)6. Therefore, the
probability that the array is not (W, A, 6)-defective is

We choose A = clogl/, n, 6 = In n and W =
l ~ ~ / ~ n ~ + ~ (l n n)5/2. Then the above probability is at
most 3n3W-2n-"e. If 6 + c < 113 and if we choose n
large enough, then the constraints of Theorem 26 are

0 satisfied. We have thus proved Theorem 27.

4.1 Proof of 3d Lower Bound

In this section we present a proof of a central lemma
in the proof of Theorem 26. In what follows, we use
G to denote the an x an x an grid and F the faulty
array.

First, we present an elementary concept from knot
theory ([14, 151). Consider two non-intersecting cy-
cles (closed curves) C1 and CZ in 3-dimensional space,
and suppose each cycle has an orientation (traversal
direction). Intuitively, these cycles are linked if they
cannot be pulled apart without one of the cycles pass-
ing through the other cycle (Figure 2). C1 is allowed
to intersect or pass through itself, and similarly for
CZ. A quantity called the linking number of C1 and
Cz is nonzero if and only if the cycles are linked in this
intuitive sense. We denote this quantity by (Cl, CZ).
The absolute value of this quantity is the minimum
number of times C1 has to pass through CZ in order
for the cycles to be unlinked (e.g., it is two in Figure
2). The orientation of the cycles affects only the sign
of the linking number. For now, this is all that we
need to know about the linking number.

We proceed by considering a (W, A, 6)-defective

I I

Figure 3: E(C) links E.

cube and its subdivision into subcubes. Two subcubes
are said to be adjacent if and only if they share a face.
A simple cycle of subcubes can be defined relative to
this adjace_ncy relation. Notice that given a cycle of
subcubes C, a cycle consisting of paths between cen-
ters of adjacent subcubes through their cores can be
traced. We call this cycle, the core cycle of the cycle
of subcubes. For the sake of convenience assume that
W is even, hence the center of a cube does not lie on a
mesh vertex and the core cycle dzea not intersect any
mesh vertices or edges. We use C to denote both the
cycle of subcubes and its core cycle as it will be clear
from the context which of the two is meant.

Now consider a simple cycle in the graph, G. We
call a cycle, C, a planar simple cycle if and only if all
its nodes lie in a single plane in the cube.

Consjder a cycle C in G, and a simple cycle of sub-
cubes C in F. Consider an embedding, &, of the guest
cube G in the faulty cube, F. In what follows, we use
E (.) to refer to the image of a node, an edge, a set of
nodes, or a set of edges.

Definition 1 W e say that C links 6 under & if no
node in E(C) is embedded in any of the subcubes an C
and the linking number of E(C) and the core cycle of
6 is nonzero (Figure 3).

With these definitions we can state a central lemma:

Lemma 28 For any embedding, &, of an an x an x an
mesh, G, in a (W, A , 6)-faulty mesh, F , with mazi-
mum load I , such that an 2 W/d 2 max(lA6/32,2),

either: there is an edge whose embedding has length
greater than d = A'/'/8,

or: no _planar simple cycle of G links any cycle of
subcubes C under E .

Proof. The proof is by contradiction. Thus, we assume
that all the embedded edges have length at most d =

293

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Three decompositions of a planar cycle C into 4-cycles.

A1I2/8 and we assume that some cycle in C in some
plane II links some cycle of subcubes E . (Without loas
of generality we can assume that C lies in the plane II
consisting of the set of nodes whose third coordinate
is fixed.)

Here is an intuitive outline of the proof we consider
many 4-cycle decompositions of the cycle C (i.e., de-
compositions into cycles of length four). Since E(C)
links the core cycle of then the embedding of some
4-cycle in each decomposition must link the core cycle.
In fact, we can show that if these decompositions are
carefully chosen then each will contain a distinct 4-
cycle which links the core-cycle. Unlike f (C) , the em-
bedding of an individual 4-cycle is very small because
we have assumed a small dilation, and therefore the
embedding of the Ccycle will closely encircle the core
cycle. Then we will show that the embeddings of all
the distinct 4-cycles lie between the same two consec-
utive dead cross-sections. Finally, we argue that there
is not enough space between successive dead planes of
a core for all the 4-cycles to fit. This is the desired
contradiction.

To proceed, we formally define the above concepts.
First, recall that the linking number of two cycles
is computed in terms of oriented cycles, so we con-
sider oriented traversals of cycles and their decomp-
sitions. We use standard notions from graph theory
(see for example [3] chapter 2, or [4] chapter 12). Let
G = (V, E) be a graph and E = { e l , e 2 , . . . , e m } its set
of edges. Assign an arbitrary direction to the edges.
Consider a cycle in (the undirected) G together with
a traversal orientation. Then this cycle can be written
as a vector of length m with entries {-l,O, 1) where
the ith entry is 0 if the edge is not contained in the
cycle and +1 or -1 depending on whether the cycle
traverses the edge along its direction or its opposite.
These vectors span a subspace of Rm, called the cy-
cle space, which for connected graphs has dimension
IEI - IVI + 1. [N.B. Here we are interested only in
scalars which are integers. For a given set of cycles
each entry in the corresponding vector denotes the
number of times each edge is traversed and in what

direction.] In the case of the 3-dimensional mesh con-
sider the set of its oriented Ccycles (cycles of length
four). We can easily see that these form a spanning
set of the cycle space (though not a base). Hence ev-
ery oriented cycle in the mesh can be decomposed into
4-cycles.

Our planar cycle C has many decompositions into
4-cycles. (We are in fact interested in the images of
these decompositions under E.) We define a set of
W/2d such decompositions as follows (see Figure 4).
Recall that C is a simple planar cycle. Assume an
arbitrary orientation of it. Consider the right cylin-
ders defined by C and having a base in the plane of
C and a base in a plane parallel to it a t distance h
(1 5 h < W/2d). (This can be done since an > W/d.)
For each such cylinder, the 4-cycles in its sides and
in its top base, when appropriately oriented, consti-
tute a decomposition of C into 4-cycles. To complete
our discussion of the decompositions of C, we describe
a way to transform one decomposition into another.
Define an incremental change to a decomposition to
be one obtained by the addition or deletion of a set
of 4-cycles belonging to a single unit (1 x 1 x 1) cube,
each appropriately oriented. The following fact holds:

Fact 29 A n y of our decompositions of C can be ob-
tained f rom the planar decomposition of C by a se-
quence of incremental changes.

Text we discuss a decomposjtion of the core cycle
of C. Consider the points on C where the core cycle
intersects the dead cross-sections. Join these points
to a point at infinity via lines perpendicular to the
core cycle through the dead cross-sections. We thus
decompose the core cycle into section cycles by ex-
pressing it as the sum of the cycles formed by the
section of the core cycle between two dead planes and
the paths to and from its endpoints and the point at
infinity (Figure 5) .

Before we proceed, we mention the following fact
about cycle decompositions and linking numbers. It
is a direct consequence of the definition (in fact, of

294

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

00

-
Figure 5: Decomposition of C into section cycles (e.g.
mABoo). Points on the core cycle are intersection points
with dead cross-sections.

the many equivalent definitions [15]) of the linking
number.

Fact 30 Consider two cycles C' and C2 and two de-
compositions C' = Ci C; and C2 = cj Cj". Then

Recall we assumed that (E(C), 2;) # 0. Having de-
scribed the decomposition of C into 4-cycles and of 2;
into section cycles we now prove the following claim:

Claim 31 There is a section cycle such that for each
one of the W/2d decompositions of C there exists a 4-
cycle whose image has non-zero linking number with
both that section cycle and the core cycle. Further,
these 4-cycles are distinct for each decomposition.

Proof of Claim: First observe that every 4-cycle that
links the core cycle links exactly one section cycle.
This follows from the fact that every node in the image
of such a 4-cycle has to be within distance 2d of the
core cycle. Hence the j-cycle is confined to a cylinder
between two consecutive dead cross-sections (Figure
6). The linking number of such a 4-cycle with the core
cycle is equal to its linking number with the unique
section cycle that it links.

Let S be the set of section cyclesjn the section-
cycle decomposition of the core cycle C. Let A be the
images of the 4cycles in some 4-cycle decomposition
of C. Under this notation, E(C) = CaEA a and C =
CUES U. From Fact 30 we have

I

Figure 6: The embedding of a 4-cycle that links the core
cycle as well as the section cycle m A B m is confined to a
cylinder between two consecutive dead crosksections.

Therefore,

The constraints, (& , E) # 0 and (a,.) # 0, could be
added since, clearly, the a's that do not satisfy them
do not contribute in the above sum.

We know that (&(e), e) # 0, and thus

3 uo E S such that (a, bo) # 0.

Since this sum is non-zero, there must be some 4-cycle
in the decomposition A of C whose image has non-zero
linking number with both the section cycle uo and the
core cycle.

The sum in (*) has the same value for each of our
W/2d decompositions. We show this by using the fact
that we can transform any of these decompositions to
any other decomposition by a sequence of incremen-
tal changes. Recall that an incremental change is the
addition of the set of cycles, 0, of a single unit cube

295

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

(appropriately oriented). An incremental change adds

- r € c (O)
(7 * . p O

(7,C)ZO

to the value of (*) for the new decomposition. Thus,
we must simply show that the sum (**) is zero.

The sum (**) is nonzero only if there exists yo E
E(Q) satisfying (yo,(?) # 0 and (y0,uo) # 0, since
these are constraints on the sum. Whcn this hap-
pens, we argue that for all y E f(G), (y, C) = (7, CO).

The argument is essentially the same as the one given
in the Fginning of this proof if 70 encircles a sec-
tion of C between two consecutive dead cross-sections,
then the embedding of the entire cube is confined to
the cylinder between these two cross-sections, since an
embedded edge of G cannot be stretched more than
d. Finally, the sum of the cycles in Q is zero, thus
C7EE(& CO) = 0- so

V E & (O) -7EE(O)
(r,.o)#O (7,0_0)+0

(r,C)#O

(We safely added the second constraint, (y,(?) # 0,
since (y, C) = (7, uo).) Hence an incremental change
does not change the sum (*), and (*) is the same for
all our decompositions.

We therefore conclude that each decomposition con-
tains a 4-cycle whose image links the core cycle at a
particular section. These 4-cycles are distinct since
there are cycles on the top bases of the cylinders on
which the decompositions were defined. The common
cycles of the decompositions are cycles on the sides
of the cylinders. These are a t distance at most W/2d
from C, therefore their embeddings are at lest W/2
away from the core cycle and therefore cannot link it.

0

Finally we finish the proof of the lemma as follows:
There must be at least W/2d times 4 points with dis-
tance 2d of a 6 length line. But the volume is at most
4d26. So only 41d26 points can fit in this volume. So
when W/d > I(A/32)6 all the points cannot fit. Thus
we have our contradiction, and Lemma 28 has been

We now sketch the final stage of the proof. We want
to prove the theorem by contradiction. Assume that
there exists a small dilation embedding of G in F.
We are going to show that there exist two points on
the same plane in G whose embeddings are far apart.
Furthermore, we show the existence of a path between
these two points whose embedding passes through a
small diameter doughnut (consisting of W x W x W
subcubes). In addition, we show that the two points
are connected by many paths. By Lemma 28 all these

-

This concludes the proof of Claim 31.

proved. 0

paths must pass through the doughnut. But there is
not enough room, which leads to a contradiction. This

0 concludes the proof sketch of Theorem 26.

Acknowledgments

We are extremely grateful to Greg Nelson for numer-
ous helpful discussions. We would also like to thank
Nati Linial, Yanzhang Lu and Shiaoling Peng for use-
ful discussions.

References
F. Annexstein and M. Baumslag. A unified approach
to off-line permutation routing on parallel networks.
In Second ACM Annual Symposium on Parallel Algo-
rithms and Architectures, pages 398-406, 1990.
K. Batcher. Sorting networks and their applications.
In Proceedings of the AFIPS Spring Joint Computing
Conference, volume 32, pages 307-314, 1968.
C. Berge. Graphs. North-Holland, 1985.
J . A. Bondy and U.S.R. Murty. Graph Theory With
Applications. American Elsevier, 1977.
J.W. Greene and A. El Gamal. A framework for solv-
ing VLSI graph layout problems. Journal of the ACM,

J. Hastad, F.T. Leighton, and M. Newman. Recon-
figuring a hypercube in the presence of faults. In 19th
Annual Symposium on Theory of Computing, pages

F.T. Leighton. Tight bounds on the complexity of
parallel sorting. IEEE Transactions on Computers,

F.T. Leighton and C.E. Leiserson. A Surveyfor Algo-
rithms for Integrating Wafer-Scale Systolic Arrays, In
Wafer Scale Integration, (G. Saucier, J. Trilhe eds.),
pp. 177-195, North-Holland, 1986.
F.T. Leighton and C.E. Leiserson. Wafer-scale in-
tegration of systolic arrays. IEEE Transactions on
Computing, (3-34, 1985.
F.T. Leighton, C.E. Leiserson, and Dina Kravets. Ad-
vanced parallel and VLSI computation: Lecture notes
for 18.435/6.848, May 1990. MIT/LCS/RSS 8.
F.T. Leighton and B. Maggs. Expanders might be
practical: Fast algorithms for routing around faults in
multibutterflies. In 90th Annual Symposium on Foun-
dations of Computer Science, pages 384-389, 1989.
Nathan Linial and Mike Saks. Low diameter graph
decomposition. Manuscript, 1990.
P. Raghavan. Robust algorithms for packet routing in
a mesh. In First ACM Annual Symposium on Parallel
Algorithms and Architectures, pages 344-350, 1989.
K. Reidemeister. Egebnisse der Mehtematik and ihre
Grenzgebiete(A1te Folge). Band 1, Heft 1, Springer-
Verlag, 1932. Reprint, Chelsea 1948; English Transla-
tion, Knot Theory, BCS Associates, Moscow, Idaho,
1983.
D. Rolfsen. Knots and Links, Mathematics Lecture
Series 7. Publish or Perish, 1976.

31:694 - 717, 1984.

274-284, 1987.

C-34(4):344-354, April 1985.

2%

Authorized licensed use limited to: The University of Auckland. Downloaded on April 16,2010 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.

