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Area-Time Optimal Adder Design 

Abstmct-In this paper, we present a systematic method of 
implementing a VLSI parallel adder. First, we define a family 
of adders, based on a modular design. Our design uses three 
types of component cells, which we implement in static CMOS. 
We then formulate the adder design as a dynamic programming 
problem, optimizing with respect to area and time. The result is 
an area-time optimal adder in our design family. We illustrate 
our approach by implementing a 66-bit adder for use in a float- 
ing point processor. In addition, we indicate how to use our 
method for implementations in technologies and design styles 
other than static CMOS. 

Index Terms- Carry look-ahead adders, domino logic design, 
dynamic programming, parallel prefix circuits, static CMOS de- 
sign, time-area optimization, TTL adder design, VLSI adders. 

I .  INTRODUCTION 

DDITION is the heart of computer arithmetics, and the A, rithmetic unit is often the work horse of a computational 
circuit. As a result, fast circuits for addition have been stud- 
ied extensively. Most authors study addition in the context of 
TTL design [1]-[4], for which gate count and delay are per- 
formance factors. These factors are not sufficient to evaluate 
a design for possible implementations in VLSI [ 5 ] .  Accord- 
ingly, in this paper, we optimize our adder circuit with respect 
to a refined model of VLSI delay and area. 

Since 1982, a few authors [6] have proposed various VLSI 
designs for fast addition. Their models have limited fan-out. 
This proves too restrictive for VLSI implementations, as fan- 
out can be traded off for shorter interconnects and a smaller 
area, which may result in a faster circuit. In other propos- 
als [7], [8], interconnect area and its attendant delay, crucial 
performance parameters for VLSI design, are not explicitly 
modeled and evaluated. 

In this paper, we present a realistic and systematic method 
for constructing an area-time optimal parallel adder. Our ap- 
proach is based on Ladner and Fischer’s “parallel prefix com- 
putation” [9], and is essentially a look-ahead addition. This is 
described in Section 11. In Section 111, we specify three basic 
circuit blocks of a parallel adder. Three types of cells used 
to implement the circuit blocks are designed and analyzed in 
Section IV. From the timing analysis of Section IV, we op- 
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timize our adder design with respect to latency by solving a 
dynamic programming problem. This is described in Section 
V. In Section VI, we extend the dynamic programming formu- 
lation to optimize both latency and area. Based on the results 
from Section VI, we implemented a 66-bit adder for use in 
SPUR (symbolic processing using RISC’s) floating point pro- 
cessor [lo]-[12]. The design and area-time tradeoff curve is 
presented in Section VII. In Section VIII, we show that our 
method is general to cover a wide range of technologies and 
circuit design styles. In the last section, we summarize our 
approach to adder designs, and indicate that our method is an 
efficient implementation scheme for wide data width addition. 

11. MATHEMATICAL DESCRIPTION 

In this section, we present and review briefly the mathe- 
matical formulations and terminologies to be used in the fol- 
lowing sections. It has been known that binary addition can be 
transformed into a parallel computation by introducing an as- 
sociative operator o [9]. If we define the carry generate term, 
g I N ; ,  and the carry propagate term, pZN; ,  for each bit po- 
sition i ,  then the carry c; for each bit obeys the following 
recurrence relation: 

gZN; =sib; 

P I N ;  = a; Q b; 

C; = G ;  for i = 1, 2,...,n 

where 

and o is a concatenation operator defined as follows: 

Note that o is not commutative. Its left argument ( g l ,  p l )  is 
treated differently from its right argument ( g r ,  p r ) .  After the 
carry bit ci is computed, the sum bit S; is 

S; = P I N ;  Q ci-1 for i = 2, .  . . , n 

SI = P I .  (2.3) 

Given the fact that o is aJsociative, we can choose a m such 
that i 2 m > 1 and rewrite (G;, 1 ,  P;, 1 )  as follows: 
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Fig. 1. Three functional blocks of an adder. 

where 

(gJNm, PIN,)  

if i=rn  I if i > m .  

(2.5) 
(glNi  9 PzNi)o(Gi- 1 ,  m 3 Pi- 1 ,  m )  

( G i , m ,  Pi,,) = 

We observe that (Gi,m, Pj,m) and (Gi-m+l, I ,  P;-m+i, 1) have 
similar functional forms. Both are functions of i - rn + 1 
consecutive input bits and both require i - rn applications of 
the associative operator 0. As a result, both can be computed 
by the same circuit. 

III. IMPLEMENTATION 
To implement the functions defined in Section 11, three cir- 

cuit blocks shown in Fig. 1 are required. The first circuit 
(labeled precondition circuit) gates in adder inputs a; and 
bi to generate the initial pINi  and gZN; for each bit po- 
sition i. The computed p and g terms are then fed into the 
fast carry generator which performs the operations defined 
in (2.1) and (2.2). It is the fast carry generator that allows 
accelerated carry computations and this is the focus of our 
study. The third block is a sum circuit, consisting of a row 
of @ gates, to combine the carry propagate bits ( p I N i )  from 
the first block with the carry bits (c i )  from the second block, 
according to (2.3). 

We use three basic types of tiling cells to implement the 
parallel carry computation: black cells, white cells, and driver 
cells. The terms “black” and “white cells come from Brent 
and Kung [6],  and are shown in Fig. 2. Note that some of 
the inputs to our black and white cells “pass through” the 
cells. Specifically, the ( g r ,  p r )  inputs of  the black cell are 
available as outputs. This convention greatly simplifies our 
wiring diagrams. 

The black cell performs the associative concatenation de- 
fined in (2.2). Based on a static CMOS implementation, the 
black cell is of two categories, ba and bb . The ba cell shown 
in Fig. 3(a) gates in positive-true signals and produces com- 
plemented outputs. The bb cell, shown in Fig. 3(b) gates in 
complemented inputs and outputs positive-true signals. Each 
bb or ba cell is further composed of p and g subcells. The 

sort P o d  PIN goutPoutPIN 

t t  

“ PIN PIN PIN 

- - 
90.1=91 sout=s1 

Po, l=PlP,  Poltl=Pr Pout=Pl 
- - 9out=91 + P I S ,  

Black Cell White Cell  Driver Cell  
Fig. 2. Three basic types of tiling cells. 
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Black cell implementations in static CMOS. (a) The black bn cell. 
(b) 

(b) The black bb cell. 

p subcell produces a pout signal and the g subcell produces a 

Definition: The fan-out f is the number of subcells that 
a signal drives. 

For example, the fan-out for P I  (or E )  inside a black cell 
is 2, as it drives both p and g terms. However, the fan-out 
for g l ,  g, , p r  and their complements is 1 as they each drive 
only one subcell. 

If we employ static CMOS implementations which feature 
inverting logic, sometimes we need inverters, called “white” 
cells, to ensure a proper signal polarity. These cells shown as 
w a  are depicted in Fig. 4. Also in Fig. 4 is a modified white 
cell, wb, which provides a “turning corner” for signals. In 
the case of long wire interconnects or large fan-outs, we use 
a specially ratioed inverting driver, either in single stage or 
cascaded stages. In summary, the black cell is the “compu- 
tation” cell. White cells are used for electrical requirements 
and driver cells are for performance improvements. 

Fig. 3. 

go”, signal. 

JV. CIRCUIT MODELS 
To construct a fast adder, we first evaluate the signal de- 

lay associated with each type of cell. Given a static CMOS 
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Fig. 4. White cells: wu and wb.  

design, we can estimate the cell resistances and capacitances, 
and compute the associated signal delay. Furthermore, we ex- 
plicitly model drivers which are an integral part of our circuit 
layout. 

In implementing the black and white cells, we use 
minimum-length transistors for the pull-down network of each 
subcell. PMOS pull-up transistors are ratioed so that the max- 
imum (over all possible input conditions) of pull-up and pull- 
down channel resistances are equal (examples of transistor 
ratios are shown in Fig. 3). We define this resistance as R t .  
For simplicity, we also assume that the capacitance Ci and 
resistance R; of the horizontal interconnect between neigh- 
boring cells are the same as the R and C values of the vertical 
interconnect. This condition depends on the specific imple- 
mentation and is discussed further in Section VI. 

In a static CMOS design, a pair of a PMOS pull-up and 
an NMOS pull-down transistors constitutes a basic inverting 
unit. The input signal drives the gates of both the pull-up and 
pull-down transistors. Let C ,  be the total gate capacitance of 
such an inverting unit, then we can approximate the generation 
time of its output signal, tout, as a function of its interconnect 
and channel resistances (Ri and R I ,  respectively), its load 
capacitance, its fan-out f ,  and its input ready time, rin:  

rout = tin + (Rt + R ; f  >(C; + C , ) f .  

In the case when metal is used for interconnects and 
Rt > Ri f ,  then rout becomes 

tout = tin + Ri(Ci + C g )  f .  

Let 7 be a normalized time constant, defined as 

7 = Rj(Ci + C, )  

then 

which is a simple, conventional timing model [ 131, [ 141. 
Notice that in (4.1), the fan-out f of a subcell is variable, 

depending on the type (p or g )  of the subcell, and on the 
type and number of its succeeding cells. This can be illus- 
trated using the example of a 5-bit adder shown in Fig. 5. In 
this circuit, each cell is identified by a pair of height and bit 
coordinates. 

Fig. 5 .  A 5-bit fast carry generator. 

For example, Cell (2,5) refers to the second cell on the 
vertical path of input bit number 5. It is a black cell. In to- 
tal, there are six black cells: (1,2), (1,4), (2,5), (3,3), (3,4), 
( 3 3 ,  four wa cells: (1,5), (2,1), (2,3), and four wb cells: 
( l , l ) ,  (1,3), (2,4), (3,2). Cell (2,2) is the single driver cell. 

Now let us consider the black cell at ( 3 3 .  Recall 
that a black cell implements the binary o operation: 
(si. p / ) o ( g r ,  P r )  = (gr + P / g r ,  P / P r ) .  The “left” operand of 
Cell ( 3 3 ,  namely ( g l , p / ) ,  is supplied by Cell (2,5) which 
precedes Cell (3,5) in a vertical connection. In other words, 
pout and gout of Cell (2,5) become black cell ( 3 3 ’ s  pi and 
g l ,  respectively. The fan-out for pout of Cell (2,5) is 2 as it 
drives both the p and g subcells of Cell ( 3 3 ,  and the fan-out 
is 1 for gout of Cell (2,5) as it drives only the g term of Cell 
( 3 3 .  We can extend the analysis to a vertical white-cell-to- 
black-cell connection. Consider Cell (2,4) to Cell (3,4). The 
fan-outs for the output signals of Cell (2,4) are the same as 
those previously obtained: f p o u t  = 2 ,  fgout = 1. 

The “right” operand of Cell ( 3 3 ,  namely ( g r ,  p r ) ,  comes 
from Cell (2,2) whose output signals make a turn in wb Cell 
(3,2) and continue on to supply the “right” operand to each 
of black cells (3,3), (3,4), and ( 3 3 .  This passing through a 
horizontal array of black cells is indicated by a bold wire in 
Fig. 5. The fan-out of gout (or pout) of the driver cell (2,2) 
is 4 ,  since it drives one subcell in each of (3,2), (3,3), (3,4), 
and (3,5). 

Signal propagation time through a cascaded driver d is a 
function of the driver’s fan-out f d ,  the ratio r between suc- 
cessive stages, and the number s of cascaded stages [ 131. The 
minimum delay can be obtained if the driver has the ratio of 

The corresponding minimum propagation delay, delay (s, 
. This is shown in Fig. 6. I/s+l 

= f d  

f d ) ,  of the cascaded driver is 

Thus, for an s-stage driver of fan-out f d ,  

tdout = fdin + delay (s, f d ) .  (4.3) 

Note that when s = 0 and no driver is used, (4.3) is the same 
as (4.1). 

Given the above analysis, we can evaluate the generation 
time for each circuit signal as the sum of its input ready time 
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Fig. 8.  R( 1) and R ( 2 )  blocks. 

Fig 9. Drivers used In building an R(n)  fast cany generator 

Fig. 6.  Multistaged driver. 

tfi.;! . . .  . . .  

fan-out from the most significant bit of the right block, that 
is, bit m, broadcasting it to all bit positions of the left block. 

Note that, in general, the depth of R(n - m) may be larger 
than the depth of R(m). This allows us to place a multistaged 
driver Fig. 9. on the output of the most significant bit of R(m). See 

We observe that there are two possible critical paths in 
R(n) .  One is the propagation through the leftmost verti- 
cal path. The other is the delay through the leftmost bit of 
R( m), which drives large fan-out and interconnect capaci- 

Fig. 7.  Recursive construction of an R ( n )  fast carry generator. 

and delay factor. Deline tgout as the time when signal gout is 
ready, tgl as tgout of the cell producing g / ,  and tgr as tgout 
of the cell producing g, . Similar deiinitions apply to t,/ and 
t p , ,  We can then formulate the input ready time for the g 
subcircuit of a black cell, tgin, as 

fg in  = max { t g / >  tp /  9 f g r } .  

And fpin for the p subcircuit of a black cell becomes 

fpin = max { t p / ,  t p r } .  

If we defme f g  (resp., fp) to be the fan-out of the subcell 
under analysis, then 

(4.4) tgout = t g  in + delaY(s, f g )  

f p m  = Cpin + delay (s, fp). 

A similar formulation can be written for signal pout: 

(4.5) 
Equations (4.4) and (4.5) parameterize the signal delay with 
respect to fan-out which is determined by the interconnection 
of modular cells. 

V. FAST CARRY GENERATOR 
Having evaluated the timing behavior of basic cells, we are 

facing the problem of how to place and interconnect them into 
the fastest circuit. Consider the design space of a family of 
circuits, R ( n ) ,  shown in Fig. 7 .  In this figure, black boxes 
represent the concatenation operation, and are either ba or 
bb cells as appropriate. 

The construction of R(n)  composes blocks of data sizes 
smaller than n, that is, m and n - m as shown. The R(m) and 
R ( n  - m) are, in turn, composed of blocks of even smaller 
sizes. In other words, we have a recursive construction of 
R(n).  The basis of the construction is R( 1) and R(2) .  R( 1 )  
and R(2) are shown in Fig. 8. The R ( n )  circuit has a large 

tances. Since the critical paths converge at the leftmost top 
cell, we focus our analysis on this cell. We can thus compare 
the adders in R( n) by comparing the times at which their left- 
most @, g )  outputs are produced. This “principle of optimal- 
ity ” validates a dynamic programming approach to choosing 
the best place m at which to decompose an n-bit adder into 
subcircuits R(n - m) and R(m).  Our design problem, then, 
is to evaluate tgln(n,  1) in the following recurrence: 

tgin(i ,  j )  = min {max [tgln(i ,  m + 1) + 17, 
/ < m e  

tpln(i, m + 1 )  f 2 7 ,  tgln(m, j )  + f  ( i ,  m, j ) ~ ] }  

t p i n ( i ,  j )  = min {max [tpln(i ,  m + 1) + 27, 
j s m < i  

tpin(m, j )  + f ( i ,  m,  j)71} (5.1) 

where 

tgln(i, j )  is the input ready time for the g term of the 
most significant bit of an adder block of size 
i - j + l ;  
is the input ready time for the p term of the 
most significant bit of an adder block of size 
i - j + l ;  
is the load function of the block of size m - 
j + 1 driving that of size i - m. 

t pm( i ,  j )  

f (i, m, j )  

The load function f ( i ,  m, j )  is defined as 

f ( i ,  m, j )  = min {delay(s, i - m + 1 ) )  (5.2) 
o<s<u 

and s =U mod 2 

where 
U = max (0, depth ( i ,  m + 1) - depth ( m ,  j ) } .  

In (5.2),  s is chosen to minimize the signal delay through the 
driver. The depth of the s-stage driver is limited to U ,  which 
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TABLE I 
OPTIMAL  BIT BLOCKS, 1 5 n 5 32 

is the depth difference between two component adder blocks, 
R(i - m) and R ( m  - j + 1). Furthermore, the output polarity 
of the driver must match that of the left adder block, R(i -m).  
Thus, the parity of s must be the same as that of U. 

Assume that the input signals to the adder, a, and b,, are 
available at time 0. Further, assume that the signals emerging 
out of the fast carry generator have unit fan-out, then the 
basis for the dynamic programming is 

f g i n ( j ,  J )  = f p i n ( j ,  = 7. (5.3) 
Lemma I :  The optimal circuit for adding bits j +r through 

j is identical to the optimal circuit for adding bits r + 1 through 
1. Thus, t p l n ( j  + r ,  j )  = tpln(r + 1 ,  1) and tgin( j  + r ,  j )  = 

Proof sketch: Equations ( 5 .  l), (5 .2) ,  and (5.3) are not 
sensitive to the absolute magnitude of i andj .  Only the dif- 

Note that in (5.1), the optimal m minimizing fgln(i ,  j )  may 
not be the same as the m minimizing fpln(i, j ) .  We have to 
keep a list of optimal: one for p and one for g. However, 
we prove, in the following lemma, that both p and g signals 
synchronize upon the p signal. The optimal splitting m value 
for the p signal is the same as that for the g signal. As a result, 
we have a one-dimensional dynamic programming problem, 
optimizing with respect to the generation of the p signal. 

Cgin(r  + 1, 1) 

ference i - j is important. 

Lemma 2: rgln(i, j )  = tpln(i ,  j )  for i 2 j .  
Proof: We prove the lemma by induction on i. From 

(5 .3) ,  the basis j = i is trivially true. If i > j ,  and t g ln ( i ,  j )  = 

fpln(i, j ) ,  then from Lemma 1: 

f g l n ( i  + 1, m + 1) = tgln(i, m )  

tpln(i + 1, m + 1) = t p l n ( i ,  m)  
and by inductive hypothesis, 

t gm( i ,  m )  = tPm( i ,  m )  

tgln(m, j )  = tpln(m, j )  

for j 5 rn 5 i 

f o r j  5 m 5 i .  

From (5.1), 

tgln(i + 1, j )  = min {max [tgIn(i + 1, m + 1) + 17, 
J <m<l + I  

fpln(i + 1, m + 1) +27, tgln(m, j )  + f ( i  + 1, m ,  jb-1). 
Since 7 is an RC time constant, it must be nonnegative. Thus, 

tg,,,(i + 1, j )  = min {max [tpIn(i + 1, m + 1) + 27, 
J < r n < f + l  

tgln(m, j )  +f (i + 1, m ,  j)71 j. 
Substituting fp ln(m,  j )  for rgln(m,  j ) ,  we have 

rgln(i + 1, j )  = min {max [rpln(i + 1, m + 1) + 27, 
J < r n < l + l  

tpm(m, j >  +f (i + 1, m ,  jbl}  = t p d i  + 1, j )  

hence the lemma. 
We can use dynamic programming to calculate the optimal 

fast carry generator configurations for n up to any desired 
data width. The results are presented in Table I where, for 
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ease of discussion, the data width is limited to 32. Using this 
table to construct an optimal n-bit fast carry generator, the 
left block should be left bits wide and the right block should 
be right bits wide. The column labeled driver stages indicates 
the number of stages in the driver connected to the output of 
the most significant bit of the right block. The height entries 
indicate the number of rows of modular cells in the optimal 
n-bit block. The generation time of the most significant bit for 
the n-bit structure is shown in the column labeled tpl,,(gl,,). 

construction of H structures is identical to that of R circuits 
shown in Fig. 7. The difference lies in the component blocks. 
The component blocks for the H circuits can be either R or 
ripple blocks. The ripple blocks are generated as the base case 
of minimum area (height = 2)  and are shown in Fig. 1 1. 

The best H ( n )  circuit is characterized by an optimal trade- 
off between area and speed. the algorithm for producing the 
optimal H ( n )  structure is a two-dimensional dynamic pro- 
gramming. It is presented as follows: 

initialize the recursion basis of Data Width = 1; 
f o r  Data Width := 2 to n do 

begin 

initialize the recursion basis of Height = 2 ripple adders; 
f o r  Height := 3 to RCkt[Data Width].Height do 

begin 
(f ind the optimum fast carry generator of (Data Width,Height) 

in terms of two smaller blocks. j 

HCkt[Data WidthJ[HeightJ.Delay = INFINITY; 

fo r  Split := I to Data Width - I do 
begin 

LeftDelay = HCkt[SplitJ[Height - I].Delay 

{evaluate the right block delay in terms of its 

f o r  RHeight := I to (Height - I )  do 
begin 

+ BlackCellTime; 

datawidth and all possible heights } 

RightDelay : = HCkt[Split][RHeight].Delay -t 
Delayo fSelectedDriver(Fanout, 
Height - 1 - RHeight); 

{select the fastest driver which drives 
the fan-out of Split and f i t  
the area of Height - I - RHeight }; 

Delay := MAX(LeftDelay, RightDelay); 

if( Delay < HCkt[Data WidthJ[HeightJ.Delay) 
{Found a better block than 
what we had previously; 
Update the set of values fo r  
HCkt[Data WidthJ[Height] }; 

end { for  RHeight } 
end { for  Split j 

end { f o r  Height } 
end. { fo r  Data Width j .  

The time unit T is a normalized RC time constant. Fig. 10 
illustrates the optimal 32-bit fast carry generator. 

VI. AREA AND LATENCY TRADEOFF 
Using the formulation in Section V, we can find the fastest 

fast carry generator for data width between 1 and n. We also 
know that the ripple circuit features the smallest area among 
all blocks. Between these two extremes of speed and area, we 
can generate a “hybrid” structure called the H circuit. The 

We observe from the above algorithms that we use Black- 
CellTime. DelayofSelected-Driver, and RippleCellTime 
(used for the basis) to evaluate the circuit delay. These timing 
parameters come from our analysis in Section IV. 

VII. LAYOUTS 
Since our design algorithms are optimization driven, “what 

if” questions can be answered easily. For example, so far we 
have assumed that there is no limit to the number of driver 
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Fig. 10. The optimal 32-bit R ( n )  fast carry generator. 

4 

Fig. 11. The ripple block. 
1 t 1 t 

TABLE I1 
OPTIMAL 66-srr H CIRCUITS 

10 5 1 24.375 1 3 
66 I 12 1 55 I 11 I 11 I 5 I 25 3 

Area (Number of Rows) 

Fig. 12. Area-time tradeoff for 66-bit H circuits. 

stages we can use. In practice, we want to get away with the 
minimum number of driver stages as to minimize layout ef- 
forts. We can make the number of stages an input to the algo- 
rithm, and evaluate the performance of corresponding design. 
In addition, the driver ratio between successive stages is usu- 
ally an integer two or three instead of the “optimal” fractional 
ratio discussed in Section IV. If this is the case, we can use 

(4.1) instead of (4.2), where f becomes the driver ratio, to 
compute the delay through the driver. 

Using three-stage drivers with a ratio of two, we have cal- 
culated the optimal H ( n )  circuits for n from l to 66. These 
circuits are indexed by both data width (66) and height. For 
ease of discussion, we tabulate only H(66) results. See Table 
I1 and Fig. 12. 
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Note that the fastest 66-bit fast carry generator has height 
11. Decreasing the height by 4 saves 36% in area, but in- 
creases adder delay from 24.3757 to 387, a 56% increase. 
Also note that the possibility of using small ripple blocks 
makes our H ( n )  class a superset of the R(n)  class. 

The 66-bit H circuit of height 10, H(66,10), emerges as 
the best choice in terms of area and latency. It has been im- 
plemented in 1.6 pm, double-metal CMOS technology, and is 
used in the SPUR floating point processor [ 101. Its SPICE [ 151 
simulation shows a latency of 21.13 ns, which compared to 
24.8757 of Table I1 results in a 7 being 0.85 ns. As indicated 
in Fig. 1, a complete 66-bit adder can be built from a precon- 
dition circuit, an H(66,lO) fast carry generator, and a sum 
circuit. According to SPICE, this 66-bit adder has a latency 
of 31.5 ns. Its layout area is 4757 X x 395 X for H(66,lO); 
4757 X x 473 A-3806 x 378 pm2-for the complete adder. 

VIII. EXTENSIONS TO OTHER TECHNOLOGIES AND DESIGN STYLES 

Our discussion has centered on a static CMOS implemen- 
tation. We can extend the proposed algorithm to NMOS and 
bipolar technologies. In addition, the algorithm is valid to dy- 
namic circuit design such as domino logic. 

It is rather straightforward to adopt the algorithm for an 
NMOS design. The timing analysis for static NMOS is similar 
to that of CMOS. The difference is the magnitude of param- 
eters in the timing models. For example, in a static NMOS 
circuit, the input signals drive the gates of NMOS pull-down 
network. This is in contrast with static CMOS whose inputs 
drive both pull-up and pull-down networks. As a result, the 
C ,  value of part of (4.1) is different for NMOS. Nevertheless, 
since the optimization is based on a normalized time constant 
7 ,  changes in 7 will not affect the solution determining the 
interconnection of modular cells. 

Signal delay of bipolar TTL parts is insensitive to fan- 
out and interconnect capacitances, thus eliminating the need 
for driver circuits. This insensitivity is in contrast with static 
CMOS/NMOS circuits whose delay is linearly proportional to 
fan-out and interconnect capacitances (4.1). CMOS/NMOS 
and TTL circuits have different granularity of implemented 
logic functions. In static CMOS/NMOS, a single network can 
perform complex logic functions. For example, the G subcell 
of a black cell uses a single pull-down and a corresponding 
pull-up network to implement an AND-OR function (Fig. 3). If 
the G subcell has a unit fan-out, then based on (4.1) there is 
a single time-constant ( 7 )  delay through the subcell for all the 
inputs: PI, g r ,  and gr.  On the other hand, we use two TTL 
gates to implement the AND-OR function of the G subcell: one 
for AND; one for OR. Consequently, pi and g ,  have a two- 
gate delay through the G subcell, and gl has a one-gate delay. 
Another difference between CMOS/NMOS and TTL circuits 
is that the latter has a “hard” fan-out limit whose violation 
results in a failed circuit. 

Using the proposed algorithm with an objective function 
minimizing the gate delay through the critical path and timing 
behavior unique to TTL parts, we have calculated optimal 
TTL fast carry generator configurations for n from 1 to 32. 
A fan-out limit of 10 is used. See Table 111. 

The design algorithm is also applicable to dynamic circuit 

implementations such as NORA (No-Race) and domino logic, 
as long as their timing behavior satisfies the linearity of the 
recursion step described by (5.1). There may be differences in 
the magnitude of delay constants and load functions. For ex- 
ample, consider the domino circuit which features an NMOS 
pull-down network, an NMOS evaluation device, and a PMOS 
precharging device. The output of this domino stage is fol- 
lowed by a static inverter before it drives another domino 
stage. Because of this required inverter, there is an extra de- 
lay of 17 between inputs of successive domino stages. Con- 
sequently, the delay constants 17 and 27 of (5.1) are replaced 
by 27 and 37, respectively. As for the load function, con- 
sider the following. The ratio of the required inverter can be 
modified to drive a large load. The modified inverter thus 
becomes a built-in first-stage driver. Any additional driver 
comes in the form of even stages to preserve the noninverting 
property of domino logic circuits. These design considerations 
can be incorporated into the load function, either in the form 
of f ( i ,  m, j )7  in (5.1) or DelayofSelected Driver() of the 
design routine in Section VI. 

IX. DISCUSSIONS AND CONCLUSIONS 

We have formulated the adder design as a dynamic pro- 
gramming problem with latency and/or area as the perfor- 
mance variables to be optimized. We illustrated our design 
algorithm with an example of CMOS VLSI implementations. 
The algorithm incorporates factors crucial to VLSI design: 
modularity, routing, speed, area, and driver design. It takes 
as inputs timing parameters associated with component mod- 
ules, and generates an area-time optimal adder as the output. 
Not limited to static CMOS implementation, our formulation 
has been shown to be general enough to cover a wide range 
of implementation technologies: MOS and TTL, as well as 
design styles: dynamic and static circuits. 

A natural extension to our formulation is to include in- 
creased cell “fan-in’’ and to use a more elaborate timing 
model. The first issue arises from the fact that the black cells 
we have used feature a cell “fan-in” of two as they imple- 
ment the didactic associative operator 0. An increase in their 
“fan-in” may result in a reduced number of logic levels and 
corresponding improvement of circuit latency. Nevertheless, 
the advantage of increased “fan-in’’ has to be addressed in 
the context of a specific implementation technology and cir- 
cuit style. 

The second issue relates to the timing model we have used 
to introduce our dynamic programming formulation. There we 
have assumed negligible parasitic capacitances and used a sim- 
plistic 7 model. We can use a more sophisticated timing model 
as long as the adder latency is monotonically nonincreasing 
with respect to the data width, thus satisfying the “principle 
of optimality ” of a dynamic programming formulation. 

Our structured approach lends itself to design automation. 
The solution to our algorithm, specifying an arrangement of 
modular tiles (Fig. lo), can feed an automatic VLSI lay- 
out tool such as MQUILT [16]. MQUILT, along with user- 
supplied modular tiles, generates the adder layout in MAGIC 
[17] format, and this is how we obtained our layout discussed 
in Section VII. 
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TABLE 111 
OPTIMAL   BIT TTL ADDERS WITH FAN-OUT = 10, 1 5 n 5 32 

32 9 

We have proposed a realistic and practical approach to the 
design of optimal adders. The implementation result shows our 
approach is extremely competitive to alternative implementa- 
tion schemes such as variable-block carry-skip adders [ 181, 
[19]. This is especially true for large data width additions. 

12] 

[31 

L41 
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