
A PROVABLE SCHEME FOR HOMOMORPHIC OBFUSCATIONS IN
SOFTWARE SECURITY

William Zhu and Clark Thomborson∗

Department of Computer Sciences, The University of Auckland,
Private Bag 92019, Auckland, New Zealand

email: fzhu009@ec.auckland.ac.nz, cthombor@cs.auckland.ac.nz

ABSTRACT
Computer and communication industries develop so
rapidly that the demand for software becomes larger and
larger and the demand for software protections, such as
copyright and anti-tampering defense, are more and more
important to software users and developers. There are
some technical measures for software protections, such
as hardware-based protections, network filters, cryptosys-
tems, etc. Software obfuscation is one of these measures. It
protects software from unauthorized modification by mak-
ing software more obscure so that it is hard for the poten-
tial attacker to understand the obfuscated software. In soft-
ware obfuscation, we can obfuscate the control flow and
the data flow of the software. In this paper, we explore
an obfuscation based on residue number coding, which is
a method widely used in hardware design, high precision
integer arithmetic, and cryptography [1]. Recently, it has
used as an obfuscation that encoded variables in the origi-
nal program to hide the true meaning of these variables [2].
There is some discussion about the division of residue num-
bers in [2], but the technique proposed there is incorrect. In
this paper, we establish a provable residue number encod-
ing for software obfuscation, especially a provable algo-
rithm for division by several constants in residue numbers.

KEY WORDS
software obfuscation, residue number coding, homomor-
phic obfuscation.

1 Introduction

The growth of computer and communications networks in-
creases problems in the software security [3, 4]. Software
obfuscation [5, 6, 7, 8, 9] is a branch of software secu-
rity. It transforms a program into a new one that is harder
to understand than the original one. In software obfusca-
tion, variable transformation is a major method to trans-
form software into a new one that is hard for attackers to
understand. Residue number coding [1] is an approach
used in hardware design, high precision integer arithmetic,
and cryptography. It is also used for software obfuscation

∗Research supported in part by the New Economy Research Fund of
New Zealand.

[2, 10]. In this paper, we propose the concepts of homomor-
phic obfuscations, a potential area for further exploration.
Based on these concepts, we establish a sound grounding
for residue number coding for software obfuscation. Espe-
cially, we use this to develop an algorithm for division by
several constants, correcting an error in an earlier publica-
tion [2].

This paper is structured as follows. Section 2 de-
scribes basic concepts about residue numbers. Section 3
establishes a systematic theory for a solution to the divi-
sion of residue numbers. Section 4 is the focus of this pa-
per. It proposes a solution to the division of residue num-
bers which is easy to implement. This paper concludes in
section 5.

2 Basic concepts about residue numbers

Let Z be the set of all integers, n a given positive integer.
For any x ∈ Z, denote [x]n = {y ∈ Z | y − x is divisible
by n} and we call [x]n the residue class of x modulo n. We
omit the subscript when there is no confusion. Let Z/nZ
be the set of all these residue classes with respect to modulo
n, where Z/nZ = {[0], [1], . . . , [n − 1]}.

For Z/nZ, we introduce a natural order relation ≤
among its members as [0] ≤ [1] ≤ . . . ≤ [n− 1]

Z/nZ has three operations +, -, × defined as follows:
for any two [x], [y] ∈ Z/nZ, [x]+[y] = [x+y], [x]−[y] =
[x− y], [x]× [y] = [x× y].

The product Z/m1Z × Z/m2Z × . . . × Z/mkZ
also has three operations +, −, × defined as follows:
for any two ([x1]m1 , . . . , [xk]mk ), ([y1]m1 , . . . , [yk]mk) ∈
Z/m1Z × . . .× Z/mkZ,

([x1]m1 , . . . , [xk]mk) + ([y1]m1 , . . . , [yk]mk)

= ([x1 + y1]m1 , . . . , [xk + yk]mk)

([x1]m1 , . . . , [xk]mk) − ([y1]m1 , . . . , [yk]mk)

= ([x1 − y1]m1 , . . . , [xk − yk]mk)

([x1]m1 , . . . , [xk]mk) × ([y1]m1 , . . . , [yk]mk)

= ([x1 × y1]m1 , . . . , [xk × yk]mk)



mainProgram {
...
input(x);
licenseCheck(x);
...
}
void licenseCheck(int x){
int c,d,e,f;
if((c*x + d)/e == f)

exit();
}

Figure 1. An unobfuscated program

obfMainProgram {
...
input(x);
int[k] xe =residue encode(x, m1, . . . , mk);
licenseCheck(xe);
...
}
void obfLicenseCheck(int[k] xe){
int[] temp = ce * xe + de;
if(temp == ee * fe))

exit();
}

Figure 2. An obfuscated version of the program in Fig. 1

In software obfuscation, sometimes we need to hide
some constants. Generally, we will use some coding meth-
ods to encode these constants and decode them. A simple
example is shown in Fig. 1 and 2.

To obfuscate the program of Figure 1, we choose suit-
able moduli m1, m2, ..., mk. We then use these moduli
to compute obfuscated constants ce, de, ee, and fe corre-
sponding to the original constants c, d, e, and f . The ob-
fuscated constants are k-vectors of integers. When the user
of the obfuscated program of Fig. 2 inputs a valid license
key x, this key is converted into k-vector residue format
xe, and subsequent operations on xe are conducted in the
residue-encoded format.

As said in [6], software obfuscation makes a pro-
gram hard to understand, but, attackers can still find out
its meanings with sufficient expertise and time. Additional
protection can be obtained by additional layers of obfusca-
tion, making it more difficult for an attacker to discover the
values of m1, m2, ..., mk; de-obfuscating the sequence of
arithmetic operations to discover the acceptance function
for keys x; and then inverting this function to develop a
”cracked” key-generator for alternative acceptable keys x′.
Additionally, it would be important to tamper-proof or ob-
fuscate the conditional branch and the exit call, to prevent
an adversary from ”cracking” the program itself. See [5]

and [11].
There are an infinity of potential coding methods for

encoding and decoding, but, in practice, we should choose
one that is easy to implement. In this paper, we consider
only integer constants and variables. For integers, there are
4 common operations: +, -, ×, /.

3 Homomorphic obfuscations for product of
sets of integers

3.1 Basic definitions

Definition 1 If a function f : Z/nZ → Z/m1Z ×
Z/m2Z × . . .× Z/mkZ satisfies the condition that

for any two [x], [y] ∈ Z/nZ, we have
f([x] + [y]) = f([x]) + f([y]).

then we call it a homomorphic obfuscation from Z/nZ to
Z/m1Z × Z/m2Z × . . .× Z/mkZ.

If a homomorphic obfuscation from Z/nZ to
Z/m1Z × Z/m2Z × . . . × Z/mkZ is also a bijection,
we call it an isomorphic obfuscation from Z/nZ to
Z/m1Z × Z/m2Z × . . .× Z/mkZ.

For any Z/nZ and Z/m1Z×Z/m2Z×. . .×Z/mkZ,
there is always a trivial homomorphic obfuscation as fol-
lows.

f([x]n) = ([0]m1 , [0]m2, . . . , [0]mk) for any [x] ∈ Z/nZ.

For a homomorphic obfuscation f : Z/nZ →
Z/m1Z × Z/m2Z × . . .× Z/mkZ and [x], [y] ∈ Z/nZ,
it is easy to prove the following properties.

1. f([0]n) = ([0]m1 , [0]m2, . . . , [0]mk)

2. f([x] − [y]) = f([x]) − f([y])

3. f([x][y]) = f([x])f([y]), so f([x]n) =
([x]m1 , [x]m2, . . . , [x]mk)f([1]n)

3.2 Examples of homomorphic obfuscations

1. For any Z/nZ and Z/mZ, there is always a trivial
homomorphic obfuscation f : Z/nZ → Z/mZ:

f([x]n) = [0]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

2. For any Z/nZ, there is an identity homomorphic ob-
fuscation f : Z/nZ → Z/nZ as follows:

f([x]n) = [x]n, for any [x]n ∈ Z/nZ

In fact, it is an identity isomorphic obfuscation from
Z/nZ to itself.

3. For any Z/nZ and Z/2nZ, there is a homomorphic
obfuscation f : Z/nZ → Z/2nZ as follows:



f([x]n) = [2x]2n ∈ Z/2nZ, for any [x]n ∈ Z/nZ

4. For Z/10Z and Z/5Z, there is a homomorphic obfus-
cation f : Z/10Z → Z/5Z as follows:

f([x]10) = [2x]5 ∈ Z/5Z, for any [x]10 ∈ Z/10Z

that is

f([0]10) = [0]5, f([1]10) = [2]5, f([2]10) =
[4]5, f([3]10) = [1]5,

f([4]10) = [3]5, f([5]10) = [0]5, f([6]10) =
[2]5, f([7]10) = [4]5,

f([9]10) = [1]5, f([9]) = [3]5

5. For any Z/pZ and Z/qZ in which p, q are two distinct
prime numbers, there is only the trivial homomorphic
obfuscation from Z/pZ to Z/qZ.

3.3 Representation of homomorphic obfus-
cations

Theorem 1 (The first representation theorem for homo-
morphic obfuscations) For any Z/nZ and Z/m1Z ×
Z/m2Z × . . .× Z/mkZ, if l1, l2, . . . , lk are integers such
that mi|nli, for i = 1, 2, . . . , k, then the function

f([x]n) = ([l1x]m1 , [l2x]m2 , . . . , [lkx]mk), for any
[x]n ∈ Z/nZ

is a homomorphic obfuscation from Z/nZ to Z/m 1Z ×
Z/m2Z × . . .× Z/mkZ.
On the other hand, if f is a homomorphic obfuscation from
Z/nZ to Z/m1Z × Z/m2Z × . . .× Z/mkZ, then

f([x]n) = ([l1x]m1 , [l2x]m2 , . . . , [lkx]mk), for any
[x]n ∈ Z/nZ and

mi|nli, for i = 1, 2, . . . , k where
([l1]m1 , [l2]m2 , . . . , [lk]mk) = f([1]).
Furthermore, we can choose these integers such that
0 ≤ li < mi for i = 1, 2, . . . , k and we say the homomor-
phic obfuscation f has the representation (l1, l2, . . . , lk).

Theorem 2 (The second representation theorem for ho-
momorphic obfuscations) Assume that Z/nZ and that
Z/m1Z × Z/m2Z × . . . × Z/mkZ satisfy that
m1, m2, . . . , mk ∈ Z are pairwise relatively prime and
n = m1 × m2 × . . .× mk , we have the following results:

For any integer l, then the function

f([x]n) = ([lx]m1, [lx]m2 , . . . , [lx]mk), for any
[x]n ∈ Z/nZ

is a homomorphic obfuscation from Z/nZ to Z/m 1Z ×
Z/m2Z × . . .× Z/mkZ.

On the other hand, if f is a homomorphic obfuscation
from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ, then
there exists an integer l such that

f([x]n) = ([lx]m1, [lx]m2 , . . . , [lx]mk), for any
[x]n ∈ Z/nZ

Proof. We only need to prove the second part of our re-
sult. By Theorem 1, for a homomorphic obfuscation f from
Z/nZ to Z/m1Z×Z/m2Z× . . .×Z/mkZ, there integers
l1, l2, . . . , lk such that

f([x]n) = ([l1x]m1 , [l2x]m2 , . . . , [lkx]mk), for any
[x]n ∈ Z/nZ

By Theorem A.28 in [12, page 255], there is an integer
l such that [l]mi = [li]mi , for i = 1, 2, . . . , k. There-
fore, for any x, [lx]mi = [lix]mi , for i = 1, 2, . . . , k.
We get f([x]n) = ([lx]m1 , [lx]m2, . . . , [lx]mk), for any
[x]n ∈ Z/nZ

Theorem 3 (The representation theorem for isomorphic
obfuscations) Assuming that Z/nZ and thatZ/m1Z ×
Z/m2Z × . . .×Z/mkZ satisfy n = m1 ×m2 × . . .×mk

and m1, m2, . . . , mk ∈ Z are pairwise relatively prime in-
tegers, we have the following results:

For any integer l such that l and n are relatively
prime, the function

f([x]n) = ([lx]m1, [lx]m2 , . . . , [lx]mk), for any
[x]n ∈ Z/nZ

is an isomorphic obfuscation from Z/nZ to Z/m 1Z ×
Z/m2Z × . . .× Z/mkZ.

On the other hand, if f is an isomorphic obfuscation
from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ, then
there exists an integer l such that

f([x]n) = ([lx]m1, [lx]m2 , . . . , [lx]mk), for any
[x]n ∈ Z/nZ

Furthermore, ([l]m1 , [l]m2 , . . . , [l]mk) = f([1]) and l and
n are relatively prime.

Proof. By Theorem 2, for any integer l satisfying that
l and n are relatively prime, the function f([x]n) =
([lx]m1 , [lx]m2, . . . , [lx]mk), for any [x]n ∈ Z/nZ is
a homomorphic obfuscation from Z/nZ to Z/m1Z ×
Z/m2Z × . . . × Z/mkZ. We prove this function is also
a bijection. Firstly, we prove that

if f([x]n)=([0]m1 , [0]m2, . . . , [0]mk), then [x]n =
[0]n.

In fact, if f([x]n) = ([0]m1, [0]m2, . . . , [0]mk), then
([lx]m1 , [lx]m2, . . . , [lx]mk) = ([0]m1 , [0]m2, . . . , [0]mk),
that means mi|lx for i = 1, 2, . . . , k. Because m1, m2,
. . ., mk ∈ Z are pairwise relatively prime integers, we
have m1m2 . . .mk|lx. By n = m1 × m2 × . . . × mk

and l and n are relatively prime, we have n|x, that means
[x]n = [0]n. Secondly, by the property 2 of homomorphic
obfuscations, f([x] − [y]) = f([x]) − f([y])), we have if
[x]n = [y]n, then f([x]n) = f([y]n). Because Z/nZ and
Z/m1Z ×Z/m2Z × . . .×Z/mkZ are finite sets with the
same cardinality, the above function f must be a bijection,
so it is an isomorphic obfuscation.

On the other hand, if a function f from Z/nZ to
Z/m1Z × Z/m2Z × . . .× Z/mkZ is an isomorphic ob-
fuscation, by Theorem 2, we have an integer l such that



f([x]n) = ([lx]m1 , [lx]m2, . . . , [lx]mk), for any [x]n ∈
Z/nZ

We prove l and n are relatively prime. Otherwise, l
and n has a common divisor d > 1. Let n = n′d and
l = l′d, then [n′]n �= [0]n, but [ln′]mi = [l′d × n′]mi =
[l′×n′d]mi = [l′×n]mi = [0]mi, for i = 1, 2, . . . , k, that is
f([n′]n) = ([0]m1 , [0]m2, . . . , [0]mk). This concludes our
result.

4 A solution to division of integers by con-
stants

4.1 Division of integers by a constant

The division of residue numbers is a complicated problem.
In line 38 and 39 of a patent [2, page 17], Chow et al. wrote
“Most texts like Knuth also indicate that division is impos-
sible.” However, to our knowledge, Knuth has never stated
that residue division is impossible. Knuth, in [1], discusses
the division of residue numbers: “It is even more difficult
to perform division” in line 21 of pp. 285; see also Exer-
cise 4.3.2-11 at pp. 293. Chow et al’s patent [2, page 17]
describes a method for division of residue numbers, at line
39 and 40, “However, the invention provides a manner of
division by a constant.” We assert, and will prove, that this
method is invalid. The main problem is that the formula
(19) and (20) in the patent [2, page 17] are incorrect. Be-
cause these two equations are the basis for the techniques
of the division of residue numbers, the algorithm as de-
scribed in [2, page 17] is incorrect. The solution to division
by a constant d in the patent [2] has another problem: an
overly restrictive condition that such d can only be one of
its bases.

In Section 2 through 3 on this paper, we have laid
a sound grounding for constructing a mechanism for divi-
sion by constants. Now we give a method for division by a
constant d. Assume that Z/nZ and Z/m1Z × Z/m2Z ×
. . . × Z/mkZ satisfy n = m1 × m2 × . . . × mk and
m1, m2, . . . , mk are pairwise relatively prime integers and
l and n are relatively prime. We define an isomorphic ob-
fuscation f from Z/nZ to Z/m1Z × Z/m2Z × . . . ×
Z/mkZ as follows:

f([y]n) = ([dy]m1 , [dy]m2, . . . , [dy]mk), for any
[y]n ∈ Z/nZ

then, for any 0 ≤ x < n such that d|x, we have

f([
x

d
]) = ([x]m1 , [x]m2, . . . , [x]mk).

This solution is simple and easy to implement, and it is bet-
ter than that in Patent [2]. As for the following restrictions
to our solution, here are some comments.

1. Our first constraint is that d|x. This is unsurprising,
for if this constraint is not met, then

x

d

is not a linear function of x.

2. Our second constraint is that d and n are relatively
prime. This is not a big problem in some application,
for when obfuscating a program containing a single
constant d, we have the freedom to choose n so that
this condition is satisfied.

In the case that d is one of m1, m2, . . . , mk, as in
Chow et al’s patent [2], we see some fundamental difficul-
ties, for we can prove the following result.

Theorem 4

[
y

mi
]mi

is not a linear function of [y]m1 , [y]m2 , . . . , [y]mk , that is,
there are no constants with respect to y, c1, c2, . . . , ck, such
that

[
y

mi
]mi = c1[y]m1 + c2[y]m2 + . . . + ck[y]mk (1)

where mi|y.

Let’s first consider the case k = 2 and i = 1 and
m1 < m2. If the above linear function exists, that is

[
y

m1
]m1 = c1[y]m1 + c2[y]m2 (2)

holds for all m1|y. Let y = m2
1, we have

[
m2

1

m1
]m1 = c1[m2

1]m1 + c2[m2
1]m2 (3)

So, c2[m2
1]m2 = 0. For m1 and m2 are relatively prime,

c2 = 0.
Now Equation (2) is reduced to

[
y

m1
]m1 = c1[y]m1 (4)

Let y = m1m2, we have [m2]m1 = 0. This is a
contradiction.

For other cases, the proof is similar.
Compared with the method in Chow et al’s patent [2],

where d can only be one of m1, m2, . . . , mk, our solu-
tion has a more freedom for choosing d. When d is one
of m1 , m2, . . . , mk, our solution does not work, but we
can choose another set of parameters m1, m2, . . . , mk so
that our solution works. In fact, the solution in Chow et
al’s patent [2] itself is incorrect in the case that d is one of
m1, m2, . . . , mk .

4.2 Division of integers by several constants

Assume that Z/nZ and Z/m1Z×Z/m2Z× . . .×Z/mkZ
satisfy n = m1 × m2 × . . . × mk and m1, m2, . . . , mk

are pairwise relatively prime integers, d1, d2, . . . , dp are
p integers, and di and n are relatively prime for any i =
1, 2, . . . , p. Let d = d1d2 . . . dp, we define an isomorphic
obfuscation f from Z/nZ to Z/m1Z × Z/m2Z × . . . ×
Z/mkZ as follows:



f([y]n) = ([dy]m1 , [dy]m2, . . . , [dy]mk), for any
[y]n ∈ Z/nZ

then, for any 1 ≤ i ≤ p and 0 ≤ x < n such that di|x,
denote d/di = d1 · · ·di−1di+1 · · ·dk as d′i, we have

f([
x

di
]) = ([d′

ix]m1 , [d
′
ix]m2 , . . . , [d

′
ix]mk)

5 Conclusions

While the residue number coding can be used in RSA cryp-
tography, it also has applications to software obfuscation
to encode variables to hide the real meaning of these vari-
ables [2]. Unfortunately, the method for the division in
residue number coding proposed in patent [2] is incorrect.
The method for division of residue numbers proposed in
this paper is based on a sound grounding in number theory
and can be used in software obfuscation to hide integers. It
is also novel in the software obfuscation literature.

There are some points in our methods requiring fur-
ther exploration, such as the security of our methods, the
combination of our methods with other software obfusca-
tion techniques, extensions of the homomorphic obfusca-
tion concepts to fields that are not integral numbers, etc.
We will investigate these issues in our future research.

Acknowledgements: Thanks for Dr. F.-Y. Wang’s
stimulating comments on this paper.

References

[1] D. Knuth, The art of computer programming, vol. 2,
seminumerical algorithms (1997) 14–524.

[2] Chow, et al, Tamper resistant software encoding, US
patent 6594761 (2003) 1–32.

[3] D. Gollmann, Computer security, New York: Willey,
1999.

[4] W. Zhu, C. Thomborson, F.-Y. Wang, A survey of
software watermarking, in: LNCS 3495, 2005, pp.
454–458.

[5] C. Collberg, C. Thomborson, Watermarking, tamper-
proofing, and obfuscation - tools for software protec-
tion, in: IEEE Transactions on Software Engineering,
Vol. 28, 2002, pp. 735–746.

[6] C. Collberg, C. Thomborson, D. Low, A taxonomy
of obfuscating transformations, in: Tech. Report,
No.148, Dept. of Computer Sciences, Univ. of Auck-
land, 1997.

[7] L. Ertaul, S. Venkatesh, Jhide - a tool kit for code
obfuscation, in: 8th IASTED International Confer-
ence on Software Engineering and Applications (SEA
2004), 2004, pp. 133–138.

[8] L. Ertaul, S. Venkatesh, Novel obfuscation algorithms
for software security, in: 2005 International Confer-
ence on Software Engineering Research and Practice,
SERP’05, 2005, pp. 209–215.

[9] Y. Sakabe, M. Soshi, A. Miyaji, Java obfuscation ap-
proaches to construct tamper-resistant object-oriented
programs, IPSJ Digital Courier 1 (2005) 349–361.

[10] J. Nicherson, S. Chow, H. Johnson, Tamper resistant
software: extending trust into a hostile environment,
in: Proceedings of ACM Multimedia ’01, ACM Press,
2001.

[11] Chow, et al., An approach to the obfuscation of
control-flow of sequential computer programs, in:
LNCS 2200, 2001, pp. 144–155.

[12] H. Delfs, H. Knebl, Introduction to cryptography,
principles and applications, Springer-Verlag, 2002.


