
The Economics of Large-Memory Computations

Clark D. Thomborson
Computer Science Department

University of Auckland
Private Bag 92019, Auckland

New Zealand
tel: (+64 9) 3737 599 x5357

fax: (+64 9) 3737 453

cthombor@cs.auckland.ac.nz

March 17, 1997

Abstract

We propose, and justify, an economic theory to guide memory system
design, operation, and analysis. Our theory treats memory random-access
latency, and its cost per installed megabyte, as fundamentals. We intro-
duce incentives in our economic theory, and side-constraints in our analytic
model of hierarchical memory, to ensure su�cient memory bandwidth and
processor speed in any \well-formed" system of a given latency and size.

Our theory suggests that computer users should be charged a \rental"
cost, proportional to their use of the total capacity in a hierarchical memory
system. This rental cost is a natural unit for algorithmic analysis and, we
submit, is a rational basis for pricing.

We use our theory to compare the cost/performance of various large-
memory organizations such as PoPCs (\piles of PCs"), NOWs (\networks
of workstations"), SMPs (\shared memory multiprocessors"), MPPs (\mas-
sively parallel processors"), and even Cray-class vector supercomputers.

Suggested conference track: Performance of Parallel and Distributed
Computing Systems.

1 Introduction

The cost of a high-performance computer system is, in many cases, deter-
mined more by its memory subsystem (caches, RAM, disk, and the con-
necting buses) than by its instruction-processing subsystem (CPUs, FPUs,
ALUs) [7]. When designing e�cient software, memory usage and sharing
patterns can be more important considerations than minimizing instruction
counts, as noted by many authors, recently including [5, 13, 9]. Traditional
algorithmic analysis, however, is based on counting instructions under an
increasingly-misleading assumption of \unit-cost" memory accesses. Users
have become accustomed to paying for their computations by the CPU-
second, even though CPU resources are available at incredibly-low price on
desktop systems, albeit with much less memory support than on supercom-
puters or mainframes.

1

Our analyses are based on, and serve to justify, the novel idea that
computational \work" W can best be measured as the product of the total
number of references R multiplied by the size S of the memory space in
which these memory references are made:

W = RS (1)

Our R is a count of references to appropriately-sized blocks, with no
temporal locality between these block-references. By \no temporal locality,"
we mean that the block addresses are uniformly distributed in the space of
size S. By \appropriately-sized blocks," we mean that we would increment
our reference count R by dn=Be every time a user's code read or wrote n
consecutive bytes in the address space. The block size B must, of course,
be carefully chosen so that it is appropriate for any contemporary memory
technology that could be used to build a system of capacity S. In Section
3 of this paper, we address this di�culty, developing an analytic model
of memory latency, bandwidth, and parallelism that matches typical large-
memory systems in existence today.

Well-designed user codes exhibit temporal locality. We capture this e�ect
in our analysis by requiring that memory systems be \hierarchical" in their
performance characteristics, in the following sense. A memory of capacity S
must be supported by a smaller, faster memory which in turn is supported
by smaller, faster memories. The recursion ends at the CPU registers. The
supporting memories should service enough of the temporally-local refer-
ences into S that the computer system is latency-bottlenecked on the large,
slow (size-S) memory rather than the smaller, faster layers.

Our analyses are based on the belief that most computational problems of
economic importance can best be solved on latency-bottlenecked computa-
tional systems. We do not analyze CPU bottlenecks and memory-bandwidth
bottlenecks, because processor and memory parallelism is relatively easy to
increase in contemporary, scalable, computer systems. Latency reduction
is, in comparison, an expensive proposition; as persuasively argued in [17],
latency forms a fundamental \wall" on system performance.

A narrower reading of our work is independent of a belief in the funda-
mental nature of latency. In this reading, our economic analyses apply only
to codes that are latency-bottlenecked on computer systems that are well-
modeled by the method we describe in Section 3. For CPU-bottlenecked
codes, traditional measures of algorithmic work (in computational steps or
CPU-seconds) are more appropriate. For bandwidth-bottlenecked codes, it
would be appropriate to charge users on the basis of their contribution to
bus contention or memory saturation.

Yet another valid, but still narrower, reading of our work would largely
ignore our analytic model of Section 3. Such a reading would consider
only the immediate practical implications of our characterizations of Work
and Quality on computer hardware system design, operating system design,
and benchmark design. Our metrics would be viewed, in this reading, as
an incidental addition to the standard measures of system performance,
where each measure is to be considered on its own merits depending on
the situation. We have written Sections 1 and 2 to be independent of our
analytic model, to aid in such a narrow reading.

2

For latency-bottlenecked codes, our measure of computational workW =
RS is the natural choice. A convenient unit forW on contemporary systems
is megareferences � megabyte, or equivalently terareferences � byte. We will
abbreviate this unit as a \treb". For example, a million random accesses
into a one-gigabyte database is 1000 trebs of work. This is the same amount
of work as a thousand references into a one-terabyte database, or a billion
references into a one-megabyte database.

To convert trebs to dollars, we must consider the cost and latency of the
memory fabric. For example, a large high-performance disk memory (and
its associated DRAM and CPU subsystems) might have a total purchase
cost of $0.10 per megabyte. We might plan to amortize this purchase cost
over a million seconds of continuous use, or a few weeks, bearing in mind
its rapid obsolescence, the impossibility of attaining 100% utilization, and
the costs of capital, maintenance and operation. We should thus \rent" disk
memory at $0.10 per megabyte per 106 seconds, that is, at 1E-13 dollars
per byte�second. If a random access into this memory (to an appropriately-
sized block) takes ten milliseconds, our charge should be 1E-15 dollars per
byte�reference, or more succinctly, $0.001/treb.

We formalize the analysis of the previous paragraph by de�ning the
\quality" Q of a memory system as

Q =
1

LC0
(2)

where L is its random-access latency (in seconds), and C0 is its per-byte
purchase cost C amortized over a million seconds. Please note that wee
apostrophize C0 to indicate that it is a time-derivative of the purchase-cost
C. The constant of proportionality in our conversion from C to C0 could be
adjusted to acheive any desired amortization rate other than our assumed
million-second writeo�.

The dollar value V of performing latency-bottlenecked work W on a
system of quality Q is

V = W=Q (3)

under a rational economic analysis.
A convenient unit for expressing Q is thousands of trebs per dollar. We

call this unit a \qual." Our formula Q = 1=(LC0) thus has the units of milli-
quals if L is measured in seconds and C0 is expressed in dollars per megabyte
per megasecond, so that C0 is numerically equal to the purchase price C in
dollars per megabyte. Alternatively, if L is measured in milliseconds and (as
above) C is in dollars per megabyte, 1=(LC) evaluates directly into quals.

As indicated above, a contemporary disk memory delivers approximately
1 qual. By way of comparison, a DRAM memory system with 200 nanosec-
ond (= 2 � 10�4 millisecond) latency might cost $10/megabyte, thereby
delivering 1=(2 � 10�4 � 10) = 500 quals. That is, a latency-bottlenecked,
large-memory, computation will cost about �ve hundred times less if you
can manage to run it as a DRAM-bound job rather than from disk. It will
also proceed to completion much, much faster, although we hasten to add
that completion rate is a secondary consideration in most of our economic
analyses.

3

Our analysis thus far has neglected one important aspect of modern
computing, namely parallelism. A well-designed code will mitigate a latency
bottleneck by running many memory accesses simultaneously. We capture
this e�ect in our model with the notion of \e�ective quality," described
below.

We say that a multithreaded (or otherwise parallelised) code has an
e�ective quality of

Qe� = PQ (4)

where P is the e�ective degree of memory parallelism, and Q is the quality
of the memory system. Our notation is meant to suggest that the multi-
threaded code could be charged as though it is running in single-threaded
mode on an imaginary memory system of quality Qe�. Another, equally
valid, interpretation is that users who multithread their code appropriately
will receive a \discount" of Qe�=Q = P .

For example, a user who rents a hundred gigabytes of space, distributed
over ten disk devices, should be allowed to run P = 10 disk operations
\for the price of one" if these operations are issued concurrently to separate
devices. If the operations were not issued concurrently, or not issued to
separate devices, then the user's e�ective parallelism P would of course be
less than 10.

We are now able to make some rough calculations of the e�ective qual-
ity of typical large-memory architectures available today. For example, a
1024-processor SGI Origin 2000 (S2MP) has a latency L of approximately
2 microseconds into its shared DRAM of at most 2 TB. The e�ective par-
allelism into shared DRAM may be as large as Pmax = 4096, because up
to four cache misses can be outstanding per processor at any time [5]. The
cost C of this DRAM (and its supporting buses, CPUs, etc.) is, we would
imagine, about $50/MB in large quantities; that is, a 2 TB machine might
cost $100 million. These �gures give Q = 1=LC = 10 quals for single-
threaded (that is, untuned) 2 TB computations. The maximum e�ective
quality Qmax for this architecture is some 4096 times larger, or 40960 quals.
The largest actually-acheivable quality Qe� will, of course, depend critically
on code design and on architectural constraints that may limit e�ective
parallelism into DRAM. Still, if a computation obtains an e�ective paral-
lelism of more than 200 on this 10-qual shared-memory architecture (yielding
Qe� = 2000), it is economical in comparison to a workstation with 4-way
interleaved (Qmax = 2000 qual) DRAM.

In Table 1, we have listed our best current estimates for the maximum
capacity S in gigabytes, latency L in seconds, system cost C (divided by
the maximum capacity) in $/MB, and the guaranteed not-to-be-exceeded
\speed-of-light" e�ective parallelism Pmax for a range of contemporary ar-
chitectures. We have calculated the quality Q = 1=(LC0) for these ar-
chitectures: this can be interpreted as a lower bound on the e�ective price-
performance for latency-bound, single-threaded computations of size at most
S. We have also calculated an upper-bounding Qmax that would be ob-
served if some code actually achieved an e�ective memory parallelism of
Pmax on that architecture.

Unless our estimates are wildly inaccurate, one implication is clear: cost-
sensitive users with problems requiring 50 GB or more memory should con-

4

Smax L C Pmax Q Qe�
Workstation DRAM 0.5 2E-7 10 4 500 2000
Workstation disks (4) 8 0.01 0.1 4 1 4
NOW (100 workstations; DRAM) 50 2E-5 20 100 2.5 250
Pile of PCs (100 disks) 200 0.01 0.1 100 1 100
SGI S2MP (1024 PEs; DRAM) 2000 2E-6 50 4096 10 40960
Cray T3E/900 (2048 PEs; DRAM) 4000 2E-6? 50? 2048? 10? 20480?
Cray T932 (32 PEs; SRAM) 8000 1E-7? 500? 8192? 100? 81920?

Table 1: Minimal quality Q and maximum Qmax for contemporary archi-
tectures with storage capacity Smax gigabytes, latency L seconds, cost C
$/MB, and (maximum) e�ective parallelism Pmax.

sider developing parallelizable code for one of the supercomputers, rather
than for a NOW (\network of workstations") or a PoPC (\pile of PCs").
Also, any form of parallelism can yield cost-e�ective computations in com-
parison with non-parallel systems, as noted succinctly by Wood and Hill [16].
The wide gap between Q and Qmax for supercomputers should of course
be a matter of concern: depending on the memory parallelism P actually
acheived, a supercomputer may be an excellent or a very poor choice from
a cost-performance standpoint.

It should also be clear from our table that the biggest di�erence between
a NOW and a PoPC is not in the cost of performing work W on these
platforms: their memory quality is remarkably similar, in our estimation.
The rate at which work progresses on a NOW is about 0:01=2E-5 = 500
times faster than on a PoPC, which would be an important concern to most
users.

Our economic bias should be clear by now: we would choose a com-
puter system on the basis of price-performance Qe�, subject to feasibility
constraints on S � Smax and perhaps on rate L. Less cost-sensitive users
would choose on the basis of L, with feasibility constraints on S and Qe�.
Our economic theory would cover either case, however for simplicity in ex-
position we will assume that the reader of this paper shares our economic
bias.

PoPC zealots, and others worried by the implications of our Table 1, are
welcome to contact us to suggest more appropriate values for their favorite
architectures. Our intent here is not to disparage any particular system
architecture. Rather we want only to develop a model and theory under
which disparate architectures may be compared.

In Section 2, we make more careful de�nitions, and explore some of
the implications of our charging model on system design and operation.
Section 3 examines a wide range of contemporary architectures, analyzing
their latency, bandwidth, and parallelism characteristics under our model
of \well-formed" memory hierarchies. Section 4 contains a summary of our
contributions, and an outline of the research frontier in this area.

5

2 De�nition and Implications of Work and Quality

We de�ne latency L using the \back-to-back load" notion of the lmbench
benchmark [12, 11]. That is, our L is the multiplicative inverse of the rate
at which a chain of pointers can be followed through memory. We do not
subtract a CPU clock period from the back-to-back load time, however, as
in lmbench's output routines. Also, we do not follow lmbench's �xed-stride
assumption. Instead, we assume that the addresses of the cells in the chain
are random variables, unpredictable by the CPU or the memory system,
uniformly distributed over the entire address range of the memory layer.
This suggests that our L is somewhat larger than the unit-stride latency
measured by lmbench. Our L is also smaller than some worst-case latencies
measurable by lmbench, if that worst-case is encountered only at a small
fraction of the possible strides.

The de�nitional confusion over L, described brie
y above, arises because
we must make some appropriate assumption about temporal and spatial
locality of addressing sequences, in order to make a meaningful de�nition
of latency. Our de�nition is based on the theoretical model of Section 3,
although it may also be justi�ed informally as follows. If there is spatial
locality in a reference stream, then it should be accomodated e�ciently
by choosing an appropriate blocksize. If there is temporal locality in a
reference stream, then it should be accomodated e�ciently by caching in
smaller, faster layers. Thus, to a good �rst approximation, there should be
very little spatial or temporal locality in the reference streams seen in each
layer of large-scale, hierarchical memory systems, beyond that captured by
the blocksize and caching mechanisms.

We are not overly concerned with modelling stride-k performance, for
k > 1, as a phenomenon that is somehow distinct from other forms of mem-
ory parallelism. For example, we would count a stride-8 load of vector length
100 as 100 independent one-word loads. Most high-performance memory
systems will exhibit large e�ective parallelism P under such conditions. We
fully appreciate that predicting e�ective parallelism, given a particular code,
system, and system load, is a very di�cult question and seems to require
very detailed, system-speci�c models at present. Our goal in this paper is
not to predict e�ective parallelism P , but merely to point out some of the
economic rami�cations of the variability in P .

A �nal, and fundamental, di�erence between our latency L and that
measured by lmbench is that we would measure a block-load latency, where
the blocksize B is suitable to the memory layer in question. We will return
to this point later in this section, for now noting only that in Section 3 we
will de�ne the appropriate blocksize as B = L=G, where G is the average
\gap" (measured in seconds/byte) [4] in the data stream resulting from
the memory operation. An appropriate blocksize, thus, is one in which
the memory operation runs at about 50% e�ciency, incurring a latency of L
seconds and a transfer-time of BG seconds. Our nominal blocksize B is thus
equal to the n1=2 parameter in common usage when characterizing memory
systems performance.

For convenience, we would measure L only on read operations. We would
insist, however, that write operations have similar latency, otherwise we

6

would increase L to the extent necessary to obtain a \well-formed" memory
system.

Our analytic variable C0 is the cost per megabyte per second of whatever
memory device is used to implement the memory layer being analyzed. We
suggest the use of a fully-depreciated cost including an allowance for the
buses, backplanes, etc. that are required for memory upgrades. For example,
a commodity DRAM chip might cost $10/megabyte at the present. In a
computer center installation, it might be appropriate to use a C0 for this
chip of, roughly, a microdollar per megabyte per second, that is C 0 = 10�6

in our usual units of dollars per megabyte per second. If the chip is rented
continuously at this charge, its purchase price would be recovered in about
three months (107 seconds). In another few months, it should be possible
to recover the cost of the motherboard, etc.; thus, within a year, assuming
a minimum 50% occupancy, the chip will be \turning a pro�t."

Memory in o�ce workstations has low usage rates, so the C 0 in such
systems might be scaled upwards in inverse proportion to the \expected
occupancy" of memory rentals. In this paper, however, we will assume
for simplicity that all memory architectures would have similar \occupancy
rates." As noted in Section 1, we somewhat arbitrarily choose 106 seconds
as our amortization base, thereby giving o�ce workstations, and other low-
utilization installations, a possibly-unjusti�ed advantage over high-utilization
systems in our rough calculations. More accurate C0 could be obtained, for
any given installation, by more careful economic analysis.

An innovative implication of de�ning quality Q = 1=(LC 0) is that it
provides a metric to compare and contrast organizations for large, scalable
computing systems. It is not at all di�cult to calculate a rough value of Q
for any memory system design: we need to know only its purchase cost per
megabyte and the latency. All other factors being equal, the organization
with the larger Q for a particular memory size of economic importance will
be preferred. The devil is in the details of course: what are appropriate
side-constraints on memory bandwidth, processor power, and hierarchical
memory performance, so that the di�erent computing systems are indeed
comparable? Other researchers, of course, have considered this question of
\balance" between various performance measures, notably McCalpin [10].

In this section we will assume, perhaps naively, that contemporary ar-
chitectures are reasonably well-designed, and thus that side-constraints are
unnecessary. However, if our Qe� = P=(LC0) metric of e�ective quality,
for jobs with memory parallelism P , is used to design or market systems
in the future, then side-constraints and/or other performance metrics are
an absolute necessity. Otherwise we may �nd ourselves purchasing a system
with huge amounts of low-latency, highly-parallel memory, without su�cient
memory bandwidth and CPU resources to accomplish any useful task.

Probably the best approach to de�ning and enforcing side-constraints,
other than the analytic technique suggested in the next section, or the bal-
ance formulas developed by other authors, would be to develop a bench-
mark suite of problems with known work W . As a simplistic example, we
could model a large, batched, database-query problem as a million 1000-
way gather operations (R = 109) on a 100 gigabyte dataset (S = 1011)
composed of a hundred billion 1000-byte records. The addresses in these op-

7

erations should obey some reasonable (perhaps Zip�an) locality-of-reference
rule, to permit some (small) speedup from caching the results of prior gath-
ers. Also, the addresses for each gather operation should be computed as
a function (perhaps XOR) on the result of the previous gather, to prevent
more than 1000-fold memory parallelism. This benchmark would require at
least W = RS = 109 � 1011 = 108 trebs (trillions of reference-bytes) of work
on any computer, as long as we all agree that a \reasonable" blocksize for a
100 GB memory must be at least 1000 bytes. Somewhat more workW may
be required on ine�cient systems, as discussed below.

A system costing C dollars that completes 108 trebs of work in T seconds
must be delivering 108=(C0T=106) trebs/dollar, that is, its e�ective quality
Qe� is 1011=(C0T) quals. Note: as mentioned in Section~1, a qual is 1000
trebs/dollar; and as discussed in this section, we amortize system purchase
costs over 106 seconds.

If bottlenecks such as ine�cient operating-system paging policies, mem-
ory bandwidth, synchronization, or address-translation impede the work-

ow, then this will be re
ected in the Qe� calculated for the known-W
benchmark suite. These bottlenecks could be discovered and perhaps re-
paired more easily, we believe, if the W measure were reported by work-
sensitive system accounting routines.

Our work-sensitive vision of system accounting is easily described. Each
user should be noti�ed of the work W = RS done on their behalf by the
operating system during each reporting interval, which might conveniently
be a second, an hour or a day. In order to allow such a report to be made,
the computer system must count each user's memory references on each
layer of the memory hierarchy, and estimate their memory occupancy Si at
the time of each reference at memory layer i. The work-update rule is thus
Wi = Wi + Si, triggered whenever a reference occurs on layer i. Ideally,
this statistic would also be gathered for each of the user's process groups,
processes and threads to aid in performance tuning.

The nonlinearity of our work-measurement rule may be somewhat sur-
prising: it suggests, for example, that users with large memory allocations
should be charged more for each cache miss than are users with small mem-
ory allocations. The cost-sensitive user would certainly notice, and com-
plain, about the charges under this scheme if their job were run with an
ine�ciently-large memory allocation! Similarly, if their job were run with
an ine�ciently-small memory allocation, they would incur extra charges un-
der this regime due to excessive page-fault activity. To put it another way,
charging by work-done would put pressure on designers to deliver systems
capable of work-e�cient operation. It would also put pressure on users to
run codes that are capable of being run e�ciently, and to choose systems
that can run their codes e�ciently.

Our favourite proposal for system charges is somewhat simpler to explain
and to implement. Each user should \rent" their memory capacity at a �xed
charge per megabyte-second. This rental charge should be set high enough
to cover an appropriate amount of \active usage" of this memory. Roughly
speaking, someone who is renting half of a memory layer (say, occupying
half of the capacity of a paging device) should get half of the total service
(e.g. page faults/second) available from that layer. In our economic model,

8

it is easy to establish an appropriate rental charge. Someone renting space
S should be charged C0 dollars per megabyte-second. This user should be
assured of the possibility of obtaining up to P=L memory references per
second, at a latency of L, if their code is properly tuned to take advantage
of the available parallelism. Exact values of P and L may be di�cult to
obtain, but roughly-appropriate values could be obtained by analytic means
(see our Section 3), an appropriate benchmark, or by observation of the
e�ective quality being delivered on this system in some prior period.

Our \rental" scheme for charging has the virtue of simplicity, but it does
pose some risks. The user must trust the computer center to provide systems
capable of work-e�cient operation, and to operate these systems in a work-
e�cient manner. The computer center must trust the user, or better, their
resource scheduler, not to allow CPU-bound and bandwidth-bound jobs to
impede the progress of latency-bound ones. Only the latter \pay the rent."
The others will get a \free ride" under this accounting scheme, implying
that our rental scheme will only be attractive to computer centers if and
when most jobs of economic importance are latency-bottlenecked. We will
return to this question of market analysis again, brie
y, at the end of this
section after discussing one other charging scheme that is admissible under
our economic model.

A work-sensitive operating system should, we believe, collect statistics
on the e�ective memory quality Qe� = P=(LC0) being delivered on each
layer of memory to each of a user's threads, processes, and process groups.
This will help knowledgeable users understand the charges they incur, and
perhaps give them enough information to tune their codes. The value C 0

is a constant, depending only on the layer in question. The value P is
an estimate of the e�ective parallelism (queue length, or number of out-
standing requests) for that thread, process or group on that memory layer.
Ideally, this would be evaluated at the time of each reference-completion,
along with the latency L incurred by that reference and the time t since
the previous reference-completion. A suitable update rule would then be
Q = (1 � t=T)Q + tP=(TLC), where T is an appropriately-large constant
for sporadic time-averaged reporting. Each time this report is printed, the
knowledgeable user will also want to see the current total W and the di�er-
ence in W since the last report. These last two statistics are the analogues,
in the work-accounting scheme, of total CPU-seconds and %CPU in tradi-
tional system accounting.

To aid in code-tuning, quality Q = P=(LC) values might be averaged
over distinct, �xed-length, time intervals and reported as a time-series to a
user interested in pro�ling a task's memory performance. If work W = RS

values were also averaged and reported over the same intervals, then a knowl-
edgeable user would be able to spot time periods in which their code was
not running e�ciently. Additional statistics, especially the corresponding
time series for P , L and S would help to diagnose the problem.

These measurements of Q andW seem to us to be feasible for all existing
systems, with the possible exception of the fastest (processor cache) layers of
the memory hierarchy. If measurements on the fast layers are infeasible, we
would recommend estimating them by inference from the usual CPU-second
measurement, under the assumption that the CPU is fully saturating its

9

caches at all times.
We can now state our third, and most complex, proposal for a rational

charging structure. Each user could be assessed S=Q dollars each time a
memory reference is made on their behalf, on each layer of memory for
which S and Q statistics are being collected.

The alert reader may have noticed that, in two of our charging schemes,
we are proposing to charge users for their memory usage on all layers. This is
an apparent shift from our fundamental economic analysis, which in essence
suggested that the cost of a system could be amortized over the usage of
only its largest (more precisely, its most costly) memory layer.

One justi�cation for charging on all layers rather than on one is that
it allows us to charge a little bit for (the cache references of) CPU-bound
jobs with tiny memory footprints. Such jobs should, under our analysis,
be run so far \in the background" that they do not materially a�ect the
progress of some huge-memory job whose presence justi�es the large capital
expense of a large-memory system. This may not be possible, or actually
economic, on contemporary systems, due to (uninformed??) market demand
for CPU cycles. Furthermore, the tiny CPU-hogs don't \really" belong
on an ideally-con�gured large-memory system, as should be clear from our
economic analysis, but systems can never be ideally con�gured for all the
memory load patterns they will encounter. There will, on occasion, be more
CPU cycles, cache capacity, DRAM capacity, etc. on any large-memory
system than can e�ciently be used by the large-memory jobs.

From a theoretician's perspective, there is only a \constant factor di�er-
ence" in our charging regimes. As long as there are only a constant number
of chargeable memory layers, and as long as the most-expensive layer has a
non-zero load average, then it doesn't matter \to within a constant factor"
whether we charge only for usage on the most-expensive layer, or for usage
on all layers. If the most-expensive layer has a tiny load average, and if it is
the major determinant of system cost, then the system is hopelessly uneco-
nomical and cannot be salvaged by renting its less-expensive layers under
any rational charging regime.

The choice of the most appropriate charging scheme should thus, in our
opinion, be left to market analysts and systems designers. We are satis-
�ed to point out several rational alternatives, each of which has varying
virtues. Our favourite space-rental scheme is quite simple. Our work-
charging scheme (under an assumed constant Q) is arguably inappropriate
when running custom codes, because the e�ective Q for these codes will
be di�cult to estimate accurately. It might, however, be appropriate for
users running standardized, well-tuned codes with predictable Q: perhaps
linear-program solvers might �t in this category. Our �nal proposal, that of
charging by S=Q with both S and Q being runtime estimates, has many non-
linearities hence will not be easily comprehended. It has the signal virtue,
from the users' perspective, of putting responsibility squarely on the shoul-
ders of the computer center to �nd some economic way to run any code, no
matter how wildly variable its memory demands may be.

10

3 An Analytic Model of Memory

The key variables in our performance model are space S, latency L, and
e�ective parallelism P . We obtain an economic model by introducing a
constant of proportionality C0, and de�ning quality Q = 1=(LC0).

There are many other performance variables of interest, notably gap G

and blocksize B. Single-stream memory bandwidth is 1=G and blocksize
B = L=G, to a good �rst approximation, so either G or B is a dependent
variable.

A complete model of performance would also consider the various \over-
heads" for address translation, synchronization, interprocess communica-
tion, etc. At the risk of severe oversimpli�cation, we will ignore the overhead
variables in this section, concentrating only on analytic models for space,
latency, available parallelism, and gap. Because we have ignored overheads,
the actually-obtained parallelism in any realistic setting will always be some-
what less than the available parallelism P predicted by our model.

We suggest that our model be judged on its simplicity, accuracy, and
number of independent variables. Ideally, there would be just one indepen-
dent variable S. It does not take many observations of actual systems to
discover, however, that any model that predicts L from S will be woefully
inaccurate. Some perfectly-reasonable multi-gigabyte systems are based on
disk technology, and therefore slow. Others are based on DRAM, and are
therefore more expensive but much faster.

The next hope is to predict P and G given L and S. We tentatively
conclude that this is possible to accuracy within a factor of ten or so, at the
present time, at least for systems based on high-performance microprocessor
chips. The outlook is unclear for our model on vector processors such as
the Cray T932; and we certainly must make at least minor adjustments
to handle low-end PCs (based on low-performance microprocessors). This
section should best be read, then, as a report on work-in-progress.

We note at this juncture that our analytic model has heaps of compe-
tition. The in
uential LogP model [4] has many merits, but tells nothing
about how to predict G given L and P . We could nonetheless use the LogP
model to justify a charging structure for a single layer of memory (one with
blocksize L=G), if we charged the o overhead to some \CPU" budget.

A second \gap" parameter has been proposed recently, to widen the
applicability of the LogP model [1]. We could use the resulting LogGP
model to handle two-layer hierarchies with two di�erent blocksizes, one for
each \gap" value. Another non-hierarchical model was recently proposed by
Hambrusch and Khokhar [6] for coarse-grained parallel machines. Maggs,
Matheson, and Tarjan give an excellent survey of the state of the art, along
with a tentative argument that two parameters would su�ce to model cur-
rent systems. Their parameters are the number of processors P and the in-
terval I , which we read as I = L � G, implying B = O(1). Thus, although
this model is not quite accurate enough for our taste, it would support a
rough version of our economic analysis.

We make special note of the PMH (parallel memory hierarchy) model
[3] and the earlier UMH (uniform memory hierarchy) [2], as our extensive
discussions with some of its authors have heavily in
uenced our thinking

11

on this subject. We part company, slightly, with Alpern and Carter by
suggesting that there are log logS layers in a memory hierarchy of size S,
rather than logS.

Our model is, in some respects, an extension to the one recently pub-
lished by Jacob, Chen, Silverman andMudge [8]. They characterize available
memory technology with two parameters, essentially our L and C, then show
how optimally to construct a cost-e�ective hierarchy by considering only la-
tency e�ects. Our model additionally predicts blocksizes and parallelism,
which could be used to introduce feasibility constraints into their analysis.

In our model, as noted above, there are log logS layers in a memory of
size S. We must establish appropriate bases for the logarithms. The size
of the �rst layer is �xed by the size of the register set of whatever CPU is
used as a building-block. For this reason, we assume that S0 = 256 bytes is
an appropriate value for the �rst layer, giving us a model with log� log256 S
layers for some as-yet-unknown �.

It is at least convenient for the user, and we believe essential for e�cient
programming practice, that there be an integral number of levels in the
hierarchy. In this writing, we will not attempt to justify our assertions
about e�cient programming, referring the interested reader to our other
publications, notably [14]. Our present thinking is that � is approximatelyp
2 in most contemporary architectures, so we de�ne

h = dlogp2 logS0 Se (5)

with
� = (log256S)

1=h (6)

and
S0 = 256 (7)

for microprocessor-based systems. For the Cray T932, the value S0 = 8192
is probably more appropriate.

With � de�ned as above, we can de�ne the sizes of the intermediate
layers in our hierarchy:

Si = S
(�i)
0 = (Si�1)

� (8)

This yields, as desired, Sh = S.
In hierarchical models of memory, it is customary (and seems accurate) to

work on a principle of \self-similarity": that layer i behaves much like layer
i� 1, except that the blocks are somewhat bigger, the latency is somewhat
larger, and the bandwidth is typically somewhat smaller. Accordingly, if
latency Li is de�ned as the latency for a transfer from layer i to layer i+ 1
(be careful here! di�erent authors have di�erent conventions!), we write

Li = L0(Si=S0)
� (9)

where an appropriate value of � can be determined by noting that Lh�1 = L

and
L0 = 10�8 seconds (10)

for contemporary high-performance microprocessors, yielding

� =
ln(L=L0)

(ln 256)�h�1
(11)

12

Similarly, we can de�ne blocksizes Bi as power functions on a current
technological parameter B0 (the size, in bytes, of a minimally-e�cient trans-
fer to register from L1 cache) and some as-yet-unknown �:

Bi = B0(Si=S0)
� (12)

with
B0 = 8 (13)

for microprocessor chips and, apparently, Cray-class supercomputers (due
to their gather-scatter facility).

We have found, from observation of existing systems, that

� = �=2 (14)

is a reasonably-close approximation to current design: systems with fourfold
less latency seem to have about half as much gap (that is, twice as much
bandwidth). Note that Gi = Li=Bi, by de�nition, so the gap behaves as

Gi = (L0=B0)(Si=S0)
��� (15)

We have also observed, tentatively, that the maximum available paral-
lelism seems to have a power-function exponent (1� �)=2 with constant of
proportionality near unity:

Pi = (Si)
(1��)=2 (16)

On theoretical grounds, this is not an unreasonable design constraint. It
implies that parallelism grows as the square root of the total number of
blocks in a layer.

Almost certainly, actually-existing memory technology will not allow
cost-e�cient system constructions that exactly match the prescriptions of
our model. In particular, we are quite aware of the long-standing and prob-
lematic \access gap" between the DRAM and disk layers of memory. Fur-
thermore, our analytic model will be invoked for several di�erent users with
di�ering S (and possibly Q) simultaneously on the same system. Such users
should each be given an appropriate computing surface, that is, each user
address space on a multiprogrammed system should have layer capacities,
latencies and available parallelism congruent with our analytic model. We
would thus need to prove a set of \simulation" lemmas and theorems, and to
develop operating systems and hardware to realize these simulations, before
claiming that our analytic model is fully successful.

In this paper, we will restrict ourselves to making the appropriate de�-
nitions, leaving the proofs and implementations for later work. We de�ne a
\well-formed" memory hierarchy of size S as one that is capable of meeting
or exceeding the computing surface (Li, Pi, Gi, Si, 0 � i � h) de�ned above
for any set sj ; qj of user demands such that

P
j sj � S and maxj(qj) = Q.

Trivially, a hierarchy \meets or exceeds" a computing surface if it has equal
or lower latency, equal parallelism, equal or less gap, and equal or greater
available size on some layer i0 � i. Not quite so trivially, a hierarchy with
performance (li0, pi0 , gi0) on any layer i0 can be \time-sliced" to meet pa-
rameters (Li, Pi, Gi) if li0 � Li and pi0 li0=gi0 � PiLi=Gi.

13

There isn't much point in proving simulation results on an unveri�ed
model. We turn now to the question of accuracy.

We developed our model, admittedly with some danger of \over�t," by
considering the systems similar to the ones appearing in Table 1. The in-
terested reader may wish to access our Excel spreadsheets, through our
homepage http:\\cs.auckland.ac. nz\~cthombor\, to try out our model
for various parameter settings.

In Table 2, we present the relevant data from our NOWDRAM.XL
spreadsheet, parameterized on S = 237 � 140 gigabytes of distributed
DRAM and L = 20 microseconds of latency into this size-S space. We might
hope to implement this system with a couple of hundred high-performance
workstations, each con�gured with about 500 MB of DRAM and a very-high
performance network interface.

In Table 2, we can recognize the CPU registers in Layer 0. Their param-
eters are �xed by our assumptions about L0, B0 and the functional form of
Pi: there is no dependence on L or S. Note that our model speci�es 7.3-way
parallelism and 800 MB/sec bandwidth for individual 1-word register-cache
transfers; the reality, at least for the R10000 CPU, is 4-way parallelism.
Layers 1 and 2 are recognizable as (quite modestly-sized) cache footprints;
we note, in passing, that surprisingly small caches are also found in the
Jacob-Chen-Silverman-Mudge model [8]. Layer 3 might be the TLB-mapped
portion of DRAM. Layer 4 is the remainder of processor-local DRAM; the
1.2 microsecond latency of transfers between Layer 3 and Layer 4 seems
slightly high in our model, but not by more than a factor of three. The
modelled bandwidth for these transfers to DRAM, 87 MB/sec, is accurate
for some contemporary workstations but somewhat low for others. (We will
discuss the parallelism to DRAM in the next paragraph.) Layer 5 is our
shared, non-local DRAM space. Note that our model predicts a bisection
bandwidth of 15.3 GB/sec, an e�ective parallelism of 854 (about 4 trans-
fers pending per processor, assuming about 200 processors), and about 18
MB/second of bandwidth per transfer. This bandwidth is probably a fac-
tor of four too high, even for an aggressive NOW design: it would imply
that each processor's network interface can handle an aggregate of about 72
MB/second.

Our analytic treatment of parallelism may have confused some readers.
Perhaps it is best to explain it by example, referring to Table 2 under the as-
sumption that Layer 0 of that table is accurate. The natural implementation
of the NOW under this assumption would use about 854=7:3 = 117 proces-
sors, each capable of handling 7.3 threads. The system should be organized
into groups of about 144=7:3 = 20 processors to form about 854=144 = 6
independent layer-4 implementations, that is, to provide for each processor
group a coherent, shared address space of 1.6E8 bytes providing a load/store
latency of 1.2 microseconds from layer 3.

So far, so good: instead of imagining our NOW to be built from about
117 single-processor workstations, we can imagine it to be built from six
twenty-processor workstations. This, however, is not the usual interpreta-
tion of the NOW architectural paradigm; nor is a memory bandwidth of 10.6
GB/sec, shared among 20 processors, a good description of a contemporary
workstation.

14

i Si Li Bi 1E-6/Gi Pi 1E-9Pi=Gi

0 256 1E-8 8 800 7.3 5.8
1 1868 3.1E-8 14 454 14.8 6.7
2 2.8E4 1.5E-7 30 210 39 8.2
3 1.1E6 1.2E-6 87 74 144 10.6
4 1.6E8 2E-5 360 18 854 15.3
5 1.4E11

Table 2: Analytic model for a network of 200 workstations, with S = 237 =
140 gigabytes and latency L = 20 microseconds. Our model parameters are
� = 0:570, � = 0:285, � = 1:358. We tabulate the layer number i, the size
Si in bytes, the latency Li in seconds, the blocksize Bi in bytes, the serial
bandwidth 1=G in megabytes per second, the maximum available paralellism
Pi, and the maximum bandwidth available for parallel transfers 1E-9Pi=Gi

in gigabytes per second.

Alternatively, we could build a usable NOW that does not provide co-
herency below layer 5 at the latencies suggested by Table 2. Applications
developers for such a NOW should be warned away from relying on low-
latency coherence at layer 4, at peril of obtaining low e�ective parallelism
and hence low e�ciency. If low-latency coherence is not required at layer 4,
it could be implemented by 117 fully-independent banks of DRAM, each of
size 1.6E8 bytes. The memory bandwidth into each bank is 10.6 GB/sec,
which is a factor of six beyond the fastest contemporary workstations, but
the other values are well within reach.

Our Table 2 prescribes parallelism 39 for transfers between layer 2 and
layer 3. In a NOW built of single-processor workstations coherent only at
layer-5 latencies, bandwidths and blocksizes, we must either provide e�ective
parallelism 39 between layers 2 and 3 for each processor, or \time-slice"
into a layer-3 memory that is considerably faster than 150 nanoseconds.
Fortunately a solution is at hand here: we could implement layer 3 from
SRAM rather than DRAM, that is, we would provide each processor in our
NOW with approximately 1.1 MB of secondary cache. If this cache had,
say, 15 nanosecond latency, then we could provide a \39-way parallel, 150-
nanosecond" performance on layer 3 as follows: with parallelism 4(150=15) =
40 by ten-way \time-slicing" of references on a processor that allows four
outstanding L1 misses without a stall.

Transfers between layer 1 and layer 2, in Table 2, occur at parallelism
14.8 and latency 3.1E-8. These �gures are consistent with a 4-way paral-
lel processor core and a layer 2 implementation by a 4(3.1E-8)=14:8 = 8
nanosecond L1 cache of capacity 28 KB.

As noted above, our model has no predictive power for transfers between
layer 0 and layer 1. As microprocessor technology changes, the constants
B0 and L0 in our model should be adjusted, and possibly a new parameter
P0 should be introduced.

We conclude that all our parameters for the NOW are within a factor
of six of being accurate. The tightest performance constraint is on the

15

bandwidth into non-TLB-mapped DRAMmemory. We also note that NOW
programmers should not assume coherence at layers 4 or below will occur
at the modelled latencies of those layers.

Our �ndings are similar on other architectural paradigms: we believe
that our analytic model would be accurate to within a factor of ten or so on
all current architectures based on high-performance microprocessors. The
interested reader is invited to visit our homepage http:\\cs.auckland.ac.
nz\~cthombor\ to take copies of our spreadsheets NOWDISK.XL (for shared
memory built from disks on a NOW), POPC.XL (for shared memory built
from disks on a \pile of PCs"), WORKDRAM.XL (for single-processor work-
station DRAM),WORKDISK.XL (for single-processor workstation disk, not
an economical choice for latency-bottlenecked computations), ORIGIN1024.XL
(a maximally-con�gured SGI Origin 2000 S2MP), T3E.XL (a maximally-
con�gured Cray T3E/900), and T932.XL (a maximally-con�gured T932, a
32-processor vector architecture). The last is still giving us trouble; your
comments are especially invited here.

4 Summary and Open Questions

We have de�ned a novel concept of workW = RS as the product of random-
access block-references into a space of size S. Strictly speaking, this con-
cept is only applicable to latency-bottlenecked tasks. If appropriate side-
constraints on CPU and memory bandwidth are enforced, however, work
W would be a fully-general measure. Alternatively, work W should be seen
as the analogue (for latency-bottlenecked tasks) of CPU-seconds and to-
tal memory bandwidth (for CPU-bottlenecked and bandwidth-bottlenecked
tasks, respectively).

We have de�ned memory quality Q = 1=(LC0) where L is the latency
and C0 is the fully-amortized per-byte cost of memory. We further de�ned
Qe� = P=(LC0) as the e�ective quality of a computational task acheiving
(memory) parallelism P . This notion of cost-performance is generally appro-
priate for latency-bottlenecked systems, that is, for systems with su�ciently-
inexpensive memory bandwidth and CPU resources. In other settings, Q
and Qe� should be viewed as analogues of traditional measures of cost-
performance, for example MFLOPS/$, MOPS/$ and MBW/$ for FPU-,
CPU- and memory bandwidth-bottlenecked systems respectively.

We made rough estimates of the quality of several current architectures,
including piles of PCs (PoPCs), networks of workstations (NOWs), shared-
memory multiprocessors, etc. These estimates could be re�ned by someone
with more knowledge of the actual parameters of existing systems. More
interestingly, we plan to develop benchmarks to measure quality directly.
We require assistance here: please contact us if you are interested in this
project.

Our notion of memory quality supports many economic analyses. We
brie
y outlined its implications for charging regimes at computation centers.
In particular, we toyed with an extreme position, that computation centers
should \rent" memory space at a �xed charge per byte-second, making no
extra charge for standard \computational services" on this space (references,
bandwidth, CPU cycles, etc.). In the end, we washed our hands of this

16

matter, in the belief that the choice among rational (and even irrational)
charging regimes is best left to market analysts and systems designers. We
would, however, be very interested in collaborating on future research in
this area.

We sketched some performance monitoring techniques that would, we
believe, be useful to anyone interested in developing work-e�cient codes.
We intend to write user-level libraries to provide some primitive support for
these techniques on standard-issue workstations and, perhaps, on an SGI
Power Challenge. We heartily welcome others' advice and assistance on
such projects, and on more ambitious schemes that would require assistance
from hardware or OS kernel routines.

We de�ned an analytic model of performance that seems capable of pre-
dicting hierarchical bandwidths, parallelism, latencies and sizes, given top-
level memory size S and latency L, to within a factor of ten, for existing
systems based on high-performance microprocessors. Although our model is
still somewhat sketchy in its details, it gives concrete support to the notion
that there exists an \appropriate blocksize" for a random reference. Lacking
such a model, or some other (benchmark-based?) agreement on blocksizes,
our de�nitions of work W and quality Q would be incomplete. We invite
your comments and criticisms of this model, and suggestions for its applica-
tion. In particular, we would be very interested to explore the connections,
and possible cross-fertilization, between our model and the model and anal-
ysis of Jacob, Chen, Silverman and Mudge [8].

We intend, in future work, to explore some of the rami�cations of our
performance model on algorithmic design and analysis. Some of our planned
techniques are pre�gured in our recent technical report [14], in particular
our reliance on prior results in other models [3, 2, 15].

References

[1] Albert Alexandrov, Mihai Ionescu, Klaus Schauser, and Chris
Scheiman. LogGP: Incorporating long messages into the LogP model.
In Proceedings of the 7th Annual Symposium on Parallel Algorithms

and Architectures (SPAA), 1995.

[2] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory
hierarchy model of computation. Algorithmica, 12:72{109, 1994.

[3] Bowen Alpern and Larry Carter. Towards a model for portable par-
allel performance: Exposing the memory hierarchy. In Portability and

Performance for Parallel Processors. John Wiley & Sons. to appear.

[4] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von
Eicken. LogP: Towards a realistic model of parallel computation. In
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and

Practices of Parallel Programming, pages 1{12, 1993.

[5] Je� Fier. Origin2000 (tm) performance tuning and optimiza-
tion. Technical Report 007-3430-001, Silicon Graphics, Inc., http:
//www.sgi.com/techpubs/, 1996.

17

[6] Susanne Hambrusch and Ashfaq Khokhar. C3: An architecture-
independent model for coarse-grained parallel machines. Journal of

Parallel and Distributed Computing, 32(2):139{154, 1996.

[7] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., 1990.

[8] Bruce Jacob, Peter Chen, Seth Silverman, and Trevor Mudge. An
analytical model for designing memory hierarchies. IEEE Transactions

on Computers, 45(10):1180{1193, October 1996.

[9] Anthony LaMarca and Richard Ladner. The in
uence of caches on the
performance of sorting. In Proceedings of the Eight Annual ACM-SIAM

Symposium on Discrete Algorithms, January 1997.

[10] John D. McCalpin. A survey of memory bandwidth and machine bal-
ance in current high performance computers. IEEE TCCA Newsletter,
December 1995.

[11] Larry McVoy. lmbench homepage, 1997. http:// reality.sgi.com/ em-
ployees/ lm/lmbench/lmbench.html.

[12] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance
analysis. In Proceedings of the 1996 Usenix Conference, To appear.

[13] Shashi Shekhar, Sivakumar Ravada, Vipin Kumar, and Douglas Chubb.
Parallelizing a GIS on a shared address space architecture. IEEE Com-

puter, 29(12):42{48, December 1996.

[14] Clark Thomborson. When virtual memory isn't enough. Technical Re-
port CS-TR-136, Computer Science Department, Auckland University,
November 1996.

[15] J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory, ii:
Hierarchical multilevel memories. Algorithmica, 12:148{169, 1994.

[16] David Wood and Mark Hill. Cost-e�ective parallel computing. Techni-
cal Report CS-TR-94-1245, Computer Sciences Department, University
of Wisconsin-Madison, 1994.

[17] William Wulf and Sally McKee. Hitting the memory wall: Implications
of the obvious. Computer Architecture News, 23(1):20{24, March 1995.

18

