
MEASURING DATA CACHE AND TLB PARAMETERS UNDER LINUX

Clark Thomborson
Yuanhua Yu

Computer Science Department
University of Auckland

Private Bag 92019
New Zealand

cthombor@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~cthombor

Keywords: computer performance, performance
analysis, computer software, cache memory, translation
lookaside buffer.

ABSTRACT

We develop an analytic model, and a set of
microbenchmark programs for the measurement of the
structural parameters of data cache memories and data
TLBs. Running under Linux, our microbenchmarks
accurately measure data cache capacity, data cache line
size, data cache associativity, effective cache latency,
effective data path parallelism, data TLB size, data TLB
associativity, and TLB latency. We present experimental
results from running our microbenchmarks on Pentium II
and Pentium III workstations.

1 INTRODUCTION

As processor speed continues to increase faster than
memory speed, optimizations to use the cache memory
hierarchy efficiently become more important, especially
in high performance computer systems. Cache memories
help bridge the cycle-time gap between microprocessors
and relatively slower main memories, by taking
advantage of data locality in programs. Compilers and
application programmers are increasingly designed with
knowledge of caches [1, 2, 5, 7, 8]. In recent studies,
cache-conscious algorithmic design improved the
performance of an operating system by more than 30%
[11], some standard search algorithms by a factor of 2 to
5 [3], and full application programs by 27% to 42% [3]

Any person (or compiler) who optimises
memory operations for high-performance software will
need accurate information about the structural and
performance parameters of the memory system. The
structure of a cache is primarily characterized by its
cache capacity C, line size B and associativity A. Of
secondary importance are its replacement and prefetching
strategies. In the past, these parameters were not
available to compiler designers, application programmers

and system administrators. Even now, it is difficult to
discover anything more than the most basic parameters
such as cache capacity. We believe the most important
performance parameters of a memory hierarchy are the
data cache miss latency, the TLB (Translation Lookaside
Buffer) miss latency, and the effective data path
parallelism. Such parameters are difficult or impossible
to evaluate from published data, and we know of no
automated system for their evaluation on Pentium based
workstations.

In this paper, we develop an analytical model to
estimate the structural and performance parameters of
cache memory and TLB by considering the runtime of
simple memory-bound inner loops. We develop a set of
micro benchmarks, called MBCP under the Linux
operating system to automate the data collection process
and to partially automate the parameter estimation
process. Finally we present experimental results on
Pentium II/266 and Pentium III/500 workstations.

2 LITERATURE REVIEW

In the last three decades, great progress has been made on
cache and TLB research in three areas: evaluation
techniques, such as trace/trap-driven simulation and some
analytical methods; code optimization techniques, such as
loop transformation; and cache protocol development.
But careful study of the measurement and estimation of
the structural parameters of cache and TLB seems to have
begun only in the last decade.

Pyo and Lee made an estimation of cache
parameters based on reference distance. They defined
reference distance as the number of memory blocks
referenced in a “reuse interval,” which in turn is defined
as the sequence of memory references between two
consecutive references to the same memory block. They
measured the distribution of reference distances on
programs from the Perfect benchmark suite. Pyo and Lee
obtained the cache capacity, line size and set size for set-
associative cache, by finding to the cost-effective points

mailto:cthombor@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~cthombor

2

on their “reuse cover curves.” Pyo and Lee’s method of
estimation of cache parameters was a byproduct of their
study and was not intended to measure the parameters of
an unknown cache [10].

Saavedra and Smith developed a set of narrow
spectrum benchmarks or micro benchmarks to measure
the physical and performance characteristics of the
memory hierarchy in uniprocessors, in particular, the
primary and secondary caches and TLB. Saavedra’s
program makes two hundred observations of a single test
covering all the combinations of: 1) the size of the
sequential address space touched by the experiment and
2) the distance (stride) between two consecutive
addresses sent to the cache or TLB. Saavedra’s micro
benchmarks work under following conditions: instruction
caches and data caches are separate, and the lowest
available address bits are used to select the cache set [9].

Li and Thomborson extended Saavedra and
Smith’s research on designing micro benchmarks to
measure data cache parameters. Unlike Saavedra and
Smith, Li and Thomborson characterized read accesses
separately from write, and their benchmarks were valid
for wider range of address mapping functions. Their
micro benchmarks used randomised access sequences,
and were developed under Windows NT. They measured
cache physical parameters such as capacity, block size,
and associativity. They also determined the cache write
policies (allocate on write, write-back, and write-
through). Li and Thomborson’s work was limited to
uniprocessor systems and did not cover the measurement
of the parameters of TLB; and it did not give accurate
estimates of associativity A when A ≥ 8 [6].

3 CHARACTERIZING THE PERFORMANCE
OF CACHE MEMORY SYSTEMS

Before explaining our experimental methodology, we
note our underlying assumptions:

• Instruction fetches in compact inner loops will not
affect the data cache;

• Memory is byte-addressable, so that the memory
access strides can be measured in bytes;

• The number of sets Si in level i (i = 1, 2) cache is
Ci/AiBi, where Ci is the cache capacity in bytes, Ai is
the degree of cache associativity, and Bi is the line
(or block) size in bytes;

• The replacement strategy is LRU;

• When indexing the cache to find the set

corresponding to a memory address x, we use the
least-significant bits of x/Bi where Bi is the block size
of the cache.

Our methodology is based on inner loops that
read data, or write data, or compute a simple function on
each of a subset of elements taken from a very large one-
dimensional array of N 4-byte elements: {e0, e1, e2, e3, …,
eN-1}. Our loops make “strided” array accesses to every
s-th element. The reference sequence thus consists of the
N/s elements {e0, es/4, e2s/4, e3s/4, …, eN-s/4} where s is the
stride (in bytes) of our array accesses. In our benchmark
experiments we modify s to change the rate at which
misses are generated. The magnitude of s varies from 4
to 2N in powers of two. Our array size N is also a power
of 2.

3.1 A SYSTEM WITH ONE CACHE

Depending on the values of the array size N, the access
stride s, the primary cache capacity C1, the cache line size
B1, the cache associativity A1, and the number of sets S1,
we identify six cases of operations. These are
summarised in Table 1. Most but not all of these cases
were previously identified by Saavedra and Smith [9].

Case 1.1: 1 ≤ 4N ≤ C1 and 1 ≤ s

The whole array fits in the cache. Regardless of the
stride s, there are no cache misses after the array is loaded
into the cache for the first time. The execution time per
iteration of our inner loop is thus some constant T1 = T0.

Case 1.2: C1 < 4N < C1 + S1B1 and 1 ≤ s < B1

The array is slightly bigger than the cache. Some cache
sets attract only A1 references, so references to these sets
never miss. Other sets attract A1+1 references, causing
frequent misses under our LRU assumption. Let x be the
number of sets in which misses occur, with 1 ≤ x ≤ S1.
The array size 4N = x(A1 + 1)B1 + (S1 − x)A1B1 = x B1 +
S1A1B1 = x B1 + C1. Thus x = (4N − C1)/B1. Because
there are 4N/s references to the array, and each set in x
causes a total of A1+1 misses each time our inner loop
cycles through the whole array, the miss ratio is x(A1 +
1)/(4N/s) = (s/B1)(1 − C1/4N)(A1+1). The execution time
per iteration of our loop is T1 = T0 + (s/B1)(1 − C1/4N)(A1
+ 1)Tmiss1, where Tmiss1 is the additional time needed to
read the data into primary cache.

Case 1.3: C1 < 4N < C1 + S1B1 and B1 ≤ s < 4N/A1

This is similar to Case 1.2, except the number of sets x
where misses occur is x = (4N − C1)/s. The iteration time
is T1 = T0 + (1 − C1/4N)(A1+1)Tmiss1.

3

Case 1.4: C1 + S1B1 ≤ 4N and 1 ≤ s < B1

The array is bigger than the cache. The first of the B1/s
consecutive accesses to each cache line always misses,
because every line is displaced from the cache before it is
re-used. The execution time per iteration is thus T1 = T0
+ (s/B1)Tmiss1.

Case 1.5: C1 + S1B1 ≤ 4N and B1 ≤ s < 4N/ A1

The array is much bigger than the cache. There is a cache
miss for every iteration, because each element of the

array maps to a different cache line. Every cache line is
displaced from the cache before it can be re-used. The
execution time per iteration is T1 = T0 + Tmiss1.

Case 1.6: C1 + S1B1 ≤ 4N and 4N/A1 ≤ s

Because the stride s is so large, the associativity A1 of the
cache is wide enough to capture all 4N/s accesses to the
array. The execution time per iteration is T1 = T0.

Cases Size of Array Stride Frequency of L1 misses Time per Iteration T1

1.1 1≤ 4N ≤ C1 1 ≤ s None T0

1.2 C1 < 4N < C1 + S1B1 1≤ s< B1 Some T0 + (s/B1)(1 − C1/4N)(A1 + 1)Tmiss1

1.3 C1 < 4N< C1 + S1B1 B1 ≤ s < 4N/A1 Some T0 + (1 − C1/4N)(A1 + 1)Tmiss1

1.4 C1 + S1B1 ≤ 4N 1≤ s< B1 One per B1/s elements T0 + (s/B1)Tmiss1

1.5 C1 + S1B1 ≤ 4N B1 ≤ s < 4N/A1 One per element T0 + Tmiss1

1.6 C1 + S1B1 ≤ 4N 4N/A1 ≤ s None T0

Table 1. Cache miss patterns as a function of N and stride s in the primary cache.

3.2 A SYSTEM WITH TWO CACHES

In this section, we extend Saavedra and Smith’s analysis
to cover two-cache systems. We start by considering the
following desirable properties for hierarchical caches:

P1: Set-refinement. The set-mapping function f2
refines the set-mapping function f1 if f2(x) = f2(y)
implies f1(x) = f1(y), for all blocks x and y. Note: the
set mapping function fi for cache Li is used to select a
set index (in the range 0, ... Si - 1), given memory
address x.

P2: Inclusion. Cache L2 includes a cache L1 if, for
any block x after any series of references, the
statement “x is resident in cache L1” implies the
statement “x is resident in cache L2.” That is, if
cache L2 includes cache L1, we know that cache L2
always contains a superset of the blocks in cache L1.

In addition to the assumptions we made for the
one-cache system, we further assume that

• f2 refines f1 (property P1),

• the associativity is non-decreasing (A2 ≥ A1), and

• both caches have the same blocksize B = B2 = B1.

These assumptions imply property P2 by the following
theorem of Hill [4].

Theorem. Cache L2 includes Cache L1 (property P2) if
property P1 (set – refinement) holds, if both caches have
the same blocksize, if A2 ≥ A1, if there is no prefetching,
and if the replacement policy in both caches is LRU.

Depending on the array size 4N, stride s,
capacity C2, block size B, the associativity A2, and the
number of sets S2, we identify six cases of operation. See
Table 2.

Case 2.1: 1 ≤ 4N < C2

The entire array fits in secondary cache, so there are no
misses at this level. The reference time is the same as
predicted in Table 1: T2 = T1.

Case 2.2: C2 < 4N < C2 + S2B and 1 ≤ s < B

The array is bigger than the secondary cache, so misses
may occur. The analysis is similar to Case 1.2 above,
with x = (4N − C2)/B and T2 = T1 + (s/B)(1 − C2/4N)(A2 +
1)Tmiss2, where Tmiss2 is the L2 miss penalty: the additional
time needed to read the data into secondary cache.

2

Case 2.3: C2 < 4N < C2 + S2B and B ≤ s < 4N/A2

There is only one reference per cache line. The miss ratio
is accordingly a factor of B/s larger than in Case 2.2, so
T2 = T1 + (1 − C2/4N)(A2 + 1)Tmiss2.

Case 2.4: C2 + S2B ≤ 4N and 1 ≤ s < B

There is one miss per B/s consecutive accesses to each
cache line because each cache line is displaced before it
is re-used. The execution time per iteration is T2 = T1 +
(s/B)Tmiss2.

Case 2.5: C2 + S2B ≤ 4N and B ≤ s < 4N/A2

Similar to Case 2.4, except that there is only one
reference to each cache line: T2 = T1 + Tmiss2.

Case 2.6: C2 + S2B ≤ 4N and 4N/A2 ≤ s

Similar to Case 1.6, the stride is so large that the 4N/s
references can be handled without misses by the
associativity A2 of the secondary cache. The access time
is T2 = T1.

Case Size of Array Stride Frequency of L2 Misses Time per Iteration T2

2.1 1 ≤ 4N < C2 1 ≤ s < 4N/2 None T1

2.2 C2 < 4N < C2 + S2B 1 ≤ s < B Some T1 + (s/B)(1 − C2/4N)(A2 + 1)Tmiss2

2.3 C2 < 4N < C2 + S2B B ≤ s < 4N/A2 Some T1 + (1 − C2/4N)(A2 + 1)Tmiss2

2.4 C2 + S2B ≤ 4N 1 ≤ s< B One per B/s references T1 + (s/B)Tmiss2

2.5 C2 + S2B ≤ 4N B ≤ s < 4N/A2 One per reference T1 + Tmiss2

2.6 C2 + S2B ≤ 4N 4N/A2 ≤ s None T1

Table 2. Cache miss patterns as a function of N and stride s in the secondary cache

3.3 A TWO-CACHE SYSTEM WITH A TLB

Theoretically speaking, the performance characteristics of
a TLB are very similar to those of a cache, because a
TLB is nothing more than a data cache specialised to hold
page table entries. However, in practice the measurement
of the parameters of a TLB is usually more difficult than
for a cache, because it is difficult to cause TLB misses
without also causing cache misses. In this section we
describe two novel access patterns that allow us to isolate
the effects of TLB misses.

Before characterizing the performance of the
TLB, we must make some additional assumptions as
follows.

• The instruction TLB (ITLB) is distinct from the data
TLB (DTLB). We focus on the DTLB.

• Each entry in the TLB holds just one page table entry
(PTE) of at most 8 bytes. We measure the capacity
CT of the TLB by counting the PTEs it holds, so BT =
1.

• The TLB can be completely from the primary cache,
using at most half its capacity (8CT ≤ C1/2).

• The TLB uses a strict LRU replacement strategy.

• If the TLB is not fully associative, then the least
significant address bits in the page-frame number are
used to index the TLB.

• The page size P of the virtual memory system is a
power of 2.

In our measurements, we use a similar access
pattern to the one we used in the previous section to
measure cache parameters. We define a set of M stride-
modifying constants ri such that 0 ≤ ri < s for all i in the
range 1 ≤ i ≤ M = 4N/s. Our microbenchmark
sequentially accesses elements {er1, es + r2, e2s + r3, e3s + r4,
…, e(M − 1)s + rM } from an array {e0, e1, e2, e3, …, eN−1} of
N four-byte words. Thus our access sequences for TLB
estimation have M word references at approximately (but
not exactly) stride s. Note that M = 4N/s is an integer,
because both N and s are powers of 2.

We use two access patterns to discover the
performance parameters of a TLB. In our “incremented
offset” access sequence, we take ri = (iBC1) mod s. In
our “random offset” access, we choose our ri
independently from the uniform distribution on the range
[0,1, .., s – 1].

Depending on the values of the reference count
M, stride s, stride offset ri, TLB size CT, and associativity

2

AT, we find seven cases. See Table 3. Note that M ≤
C1/16 throughout our analysis, because we have assumed
the TLB can be repopulated from primary cache.

Case 3.1: 1 ≤ M < CTP/s

In this case, there are P/s consecutively accessed
elements using the same PTE in the TLB. All of the
PTEs of the accessed elements can fit into the TLB, so
there are no TLB misses. The execution time is T3 = T0,
where T0 is the primary cache hit time.

Case 3.2: CTP/s ≤ M < (1+1/AT)CTP/s; ∀ i ri ≤ P; s ≤ P

The number of PTEs required to reference all the
elements is slightly bigger than the TLB, so there are
some TLB misses. Let x be the number of TLB sets on
which (AT + 1) PTEs are mapped; with the constraint that
0 ≤ x < CT/AT. The other TLB sets have just AT
references. We have M = (AT + 1)(P/s)x + AT (P/s)(CT/A
– x) = xP/s + CTP/s, so x = sM/P – CT. Substituting this
value for x into the constraint 0 ≤ x < CT/AT we find the
boundary of this case: CTP/s ≤ M < (1+1/AT)CTP/s. Each
set in x causes AT + 1 misses during our access sequence
of length M. The TLB miss ratio is x(AT + 1)/M = (s/P –
CT/M)(AT + 1). Our offset sequences scatter the array
data quite uniformly through the primary cache, so there
are very few conflicts between PTEs and data array
elements: all will be resident in the primary cache after
the cold-start period. The average access time is T3 = T0
+ (s/P – CT/M)(AT + 1)TMissT, where TMissT is the time
needed to read one PTE into the TLB.

Case 3.3 CTP/s ≤ M < (1+1/AT)CTP/s; ∃ i (s + ri) ≥ (P +
ri-1); s ≤ P

This is similar to the previous case, except that at least
one of the offsets ri is large enough, in comparison to the
previous offset ri-1, that a page will be “skipped” in our
reference sequence. This case arises only in our random
offset sequence. The miss rate is difficult for us to
analyse, as it depends on how many of the large offsets
occur on the x TLB sets in which misses occur.
Fortunately, we have no need of an exact formula for this
case when analysing the results of our microbenchmark.

Case 3.4: CTP/s ≤ M < (1+1/AT)CTP/s; s > P

This is similar to Case 3.2, except that there is only one
array reference per PTE in our TLB. We have x = M –
CT and T3 = T2 + (1 – CT/M)(AT + 1)TMissT.

Case 3.5: M ≥ CT(P/s)(1+1/AT); ∀ i ri ≤ Psize; s > P

Each element maps to a different TLB, and every line in
the TLB is displaced before it can be re-used. Therefore
the average access time is T3 = T2 + TMissT .

Case 3.6: M ≥ CT(P/s)(1+1/AT); ∃ i (s + ri) ≥ (P + ri-1);
s > P

The variability in the offsets will decrease the miss rate
observed in Case 3.5, but as in Case 3.3 we are unable to
be precise in our analysis.

Case 3.7: M ≥ CT(P/s)(1+1/AT); s ≤ P

There are P/s consecutive accesses to each PTE. Each
PTE misses on its first reference in the TLB: T2 +
(s/P)TMissT.

Cases Reference Count M Stride s Offset ri TLB Miss
F

Time per Iteration T3

3.1 1≤ M < CTP/s any any None T0

3.2 CTP/s ≤ M <
(1+1/AT)CTP/s s ≤ P ∀ i ri ≤ P Some T0 + (s/P – CT/M)(AT + 1)TMissT

3.3 Same as case 3.2 s ≤ P ∃ i (s + ri) ≥ (P + ri-1) Some T0 + z(s/P – CT/M)(AT + 1)TMissT

3.4 Same as case 3.2 s > P any Some T0 + (1 – CT/M)(AT + 1)TMissT

3.5 M ≥ (1+1/AT)CTP/s s > P ∀ i ri ≤ P Always T0 + TMissT

3.6 Same as case 3.5 s > P ∃ i (s + ri) ≥ (P + ri-1) Some T0 + z(s/P – CT/M)(AT + 1)TMissT

3.7 Same as case 3.5 s ≤ P any One per
P/

T0 + (s/P)TMissT

Table 3. TLB miss patterns as function of M ≤ C1/16, stride s and offset ri in the TLB, for incremented and random
offset access patterns.

4 EXPERIMENTAL RESULTS

We have measured the structural and performance
parameters of data cache memory and data TLB on our
Pentium II/266 and Pentium III/500 workstations by
running our micro benchmarks MBCP.

4.1 MEASUREMENT OF CACHE
PARAMETERS

The upper curve in Figure 1 (at the end of this paper)
shows our memory read access time per iteration on a
PII/266 as a function of 4N (the size of the accessed
array, in bytes), for stride s = 32 bytes. We observed
significantly faster accesses for s = 16. When s = 64, we
see essentially the same data as for s = 32. This tells us
that the blocksize B1 = 32 bytes, and that the three linear
portions of the upper curve in Figure 1 correspond to
Cases 1.1, 1.3, and 1.5 in our analysis. Thus C1 = 16KB,
A1 = 4-ways, the read latency of L1 cache is 11 ns (3
machine clocks), and the read latency of L2 cache is 60 −
11 = 49 ns (13 machine clocks). With other
measurements (data not shown), we estimate the L2 miss
penalty (DRAM read time) as 230 − 60 = 170 ns (45
clocks), C2 = 512 KB, B2 = 32 bytes, and A2 = 4 ways.

The lower curve in Figure 1 (along with our data
for s = 16 and s = 64, not shown) tells us that our
PIII/500 workstation has C1 = 16KB, A1 = 4-ways, B1 =
32. The read latency of L1 cache is 6 ns (3 machine
clocks) and the read latency of L2 cache is 44 − 6 = 38 ns
(19 machine clocks). With other measurements (data not
shown), we estimate the L2 miss penalty is 140 − 44 = 96
ns (48 clocks), C2 = 512 KB, B2 = 32 bytes, and A2 = 4
ways.

We also measure what we call the “effective
data path parallelism” Pd, by constructing access
sequences that allow a fixed degree of parallelism in an
inner loop. For example, a 2-way parallelisable loop
follows two pointer chains. We measure the average
iteration time kTk in a loop that makes k parallel accesses,
for 1 ≤ k ≤ 6, and we define Pd = T1/min(Tk). We find
that min(Tk) = 4.6 ns on the PII, and 2.5 ns on the PIII, so
(taking T1 from Figure 1), we see both CPUs have
effective data path parallelism Pd = 2.5. In other words,
they can run somewhat more than two accesses in
parallel.

4.2 MEASUREMENT OF DATA TLB

Figure 2 shows our measurements of some parameters of
the TLB on our PII/266 workstation. We show the
curves for s = 4096 and s = 8192, for the incremented
offset sequence, and for s = 8192 for the random offset

sequence. When s = 4096, the random offset sequence
gives almost identical results to the incremented offset
sequence, which (according to Case 3.3) indicates that the
page size P = 4096 bytes in our Linux environment. We
characterize the remaining parameters of this TLB as
follows: 64 PTEs, 4-ways, 11ns (3 machine clocks) hit
time, and 30ns (8 machine clocks) miss time to L1.

Similarly, from the data plotted in Figure 3, we
characterize the DTLB of the PIII/500 as follows: 64
PTEs, 4-ways, 6ns (3 machine clocks) hit time, 16ns (8
machine clocks) miss time to L1, 4KB page size under
Linux.

5 CONCLUSION

Our measurement of cache memories and TLB not only
reveal the most important structural parameters of cache
memories and TLB, such as cache capacity, cache
associativity, cache line size, TLB capacity and its
associativity, but also provide some performance
parameters. These performance parameters include the
cache miss latency, minimum latency of TLB on a miss,
and effective data path parallelism. In our experience,
hardware manufacturers rarely provide these performance
parameters.

We have presented experimental evidence of our
ability to measure TLB and cache parameters for the
PII/266 and the PIII/500, using our micro benchmark
MBCP and the analytical approach described in this
paper.

Further research could be directed to the
refinement of our evaluation method and the extension of
its scope to 1) “superpage” PTEs in TLB, 2) two-level
TLBs of cache memory. A short-term improvement
could be the transformation of our MBCP from a set of
independent benchmarks to a standard C/C++ class
library, so that algorithm designers, performance
programmers and system administrators can use them. In
addition, we might develop a commercial benchmark
suite based on our MBCP.

6 REFERENCES

[1] Cragon, H.G., Memory Systems and Pipelined
Processors, Jones and Bartlett Publishers, 1996.

[2] C. Steve, S.M. Kathryn and C.W. Tseng, “Compiler
Optimizations for Improving Data Locality, in Proc 6th

Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 252-262,
1994.

2

[3] Chilimbi, T.M., M.D. Hill and J.R. Larus, “Cache-
conscious structure layout,” in Proc. 1999 ACM
SIGPLAN Conf. on Programming Languages and
Implementation (PLDI), 1-12, 1999.

[4] Hill, M.D. and A.J. Smith, “Evaluating associativity
in CPU caches,” IEEE Transactions on Computers
38(12): 1612-1630, 1989. Correction in 41(3): 371,
1991.

[5] LaMarca, A.G., Caches and Algorithms, Ph.D.
dissertation, University of Washington, 1996.

[6] Li, E. and C. Thomborson, “Data cache parameter
measurements,” Proc.IEEE Int’l Conf. on Computer
Design (ICCD), 376-383, Oct. 1998.

[7] Lam, M.S., E.E. Rothberg and M.E. Wolf, “The cache
performance and optimizations of blocked algorithms,” in
Proc 4th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems

(ASPLOS), 63-74, 1991.

[8] Przybylski, S.A., Cache and Memory Hierarchy
Design: A Performance-directed Approach, Morgan
Kaufmann Publishers, Inc., 1990.

[9] Saavedra R.H. and A. J. Smith, “Measuring cache and
TLB performance and their effect on benchmark running
times,” IEEE Trans. Computers 44(10): 1223-1225,
1995.

[10] Pyo, C. and G. Lee, “Estimation of cache parameters
based on reference distance (Summary),” Korea
Electronics and Telecommunication Research Institute
Project 96251, 1996.

[11] Xia, C., Exploiting Multiprocessor Memory
Hierarchies for Operating Systems, Ph. D dissertation,
University of Illinois at Urbana-Champaign, 1996.

Capacity, Associativity and Latency of the L1 Data Cache in a
Pentium II/266 and a Pentium III/500

0

6

12

18

24

30

36

42

48

54

60

66

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Size of accessed array (KB)

R
ea

d
ac

ce
ss

 ti
m

e
(n

s)

Pentium III/500

Pentium II/266

Read latency of L1 cache

Miss time of L1 cacheAssociativity of L1 cache

Figure 1 Measurement of primary caches on PII/266 and PIII/500

2

Capacity, Associativity, Latency and Penalty
of the Data TLB in a PII/266

0

6

12

18

24

30

36

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136
Number of array references M

R
ea

d
ac

ce
ss

 ti
m

e
(n

s)

Stride-block=4096bytes Incremented Offset
Stride-block=8192bytes Random Offset
Stride-block=8192bytes Incremented Offset

Latency of TLB (ns)

Miss time of TLB (ns)

Associativity of TLB

Figure 2. Measurement of the data TLB on our PII/266 Workstation

Capacity, Associativity, Latency and Miss Penalty
of the Data TLB in a PIII/500

0

4

8

12

16

20

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136

Number of array accesses M

R
ea

d
ac

ce
ss

 ti
m

e
(n

s)

Stride-block=4096bytes
Incremented offset
Stride-block=8192bytes
Random Offset
Stride-block=8192bytes
Incremented Offset

Latency of TLB (ns)

Miss time of TLB (ns)

Associativity of TLB

Figure 3 Measurement of data TLB on PIII/500 Workstation

	MEASURING DATA CACHE AND TLB PARAMETERS UNDER LINUX
	INTRODUCTION
	LITERATURE REVIEW
	CHARACTERIZING THE PERFORMANCE OF CACHE MEMORY SYSTEMS
	A SYSTEM WITH ONE CACHE
	A SYSTEM WITH TWO CACHES
	A
	A TWO-CACHE SYSTEM WITH A TLB

	EXPERIMENTAL RESULTS
	MEASUREMENT OF CACHE PARAMETERS
	MEASUREMENT OF DATA TLB

	CONCLUSION
	REFERENCES

