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Abstract

We o�er a set of public-domain tools to aid the development and test of pseudorandom C-

language computer programs running under 4.3bsd Unix. Our tools make it easier to reproduce

experimental results, to report them in a standardized format, and to check their validity by

using a di�erent random number generator (RNG). Furthermore, the tools should help users

avoid some of the common pitfalls in randomized experimentation. These pitfalls include the

initial seeding of the RNG, the generation of random integers in a restricted range, and the use

of RNGs with known weaknesses.

Our tool suite also includes several of the standard tests on the \randomness" of an RNG.

All the tests we implement are based on examining a Pearson's chi-square statistic for a process

that, under the null hypothesis, independently places N items into k equiprobable bins. We

provide a routine to calculate an approximate p-value for such test statistics, applying novel

corrections for \small N ."

�Research supported by the National Science Foundation, through its Design, Tools and Test Program under

grant number MIP 9023238.
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1 Introduction

Many experimental and analytic techniques are based on the assumption that pseudorandomness

is \as good as randomness." That is, we assume that a computer program can generate a sequence

of pseudorandom numbers whose properties are, at least in our application, indistinguishable

from those of a truly random sequence. This assumption is a potential source of experimental

bias [8]. According to Knuth, \The most prudent policy for a person to follow is to run each

Monte Carlo program at least twice using quite di�erent sources of random numbers, before

taking the answers of the program seriously" [16, p. 173].

It is surprisingly di�cult to follow Knuth's advice. Every random number generator (RNG)

seems to have a distinctive set of calling conventions: di�erent seeding parameters, di�erent

arguments, di�erent argument orders, etc. Some oating-point RNGs return values in the range

0.0 to 1.0 inclusive, and some omit one or both of the endpoints of this range. Fixed-point

RNGs have di�erent ranges. For all these reasons, it is di�cult to write source code that calls

an RNG without embedding RNG-speci�c assumptions in one's application code. Once these

assumptions are embedded, it can be di�cult to switch to a di�erent RNG algorithm without

introducing a \bug."

My research program relies heavily on RNGs, and I got tired of modifying and revalidating

my application codes whenever I wanted to switch generators. I had also become disgusted

with the generally-poor RNGs in 4.3bsd Unix. Suspecting that others had faced, or would soon

face, similar issues, I made a public-domain release in December 1991 of the �rst version of my

mrandom package of C-language routines. In September 1992, I released version 2.3 of mrandom

into the public domain.

The major advance in version 3.0 of mrandom is a thorough modularization of the RNG

interface routines, making it much easier to install new RNG codes than in the preceding versions.

The modularization was designed and realized by Robert Plotkin, a talented MIT undergraduate,

as part of his Bachelor's thesis project.

This report outlines the features of the Version 3.0 release of mrandom, now (June 1993) in

alpha-test. Both Version 3.0 and the fully-tested Version 2.3 are available by anonymous ftp

from theory.lcs.mit.edu, in directory /pub/cthombor/Mrandom.

Herein, I use the �rst person singular \I" for statements of my belief about RNG usage, and

for analytical results I have not discussed with Robert Plotkin. I use the authorial \we" when

describing the package as a whole, to reect our joint authorship of its code.

I intend to release mrandom into the public domain, but I am not sure that I have successfully

done so, for the following reasons.

1. I am, by no means, an expert in software law.

2. The development of mrandom was partially funded by the National Science Foundation of

the United States, under my research grant MIP-9023238. I have not yet asked the NSF

to waive any �nancial interest they may have in this code.

3. The University of Minnesota and/or Massachusetts Institute of Technologymight, someday,

claim a �nancial interest in this code. Both institutions paid a portion of my salary, and

provided equipment, during mrandom's development. Perhaps I should seek a waiver from

these institutions?

4. The mrandom code is built on top of 4.3bsd Unix. This suggests that a commercial Unix

license would be needed for some uses of mrandom.
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5. Marsaglia's C-language Ultra code is included as part of mrandom version 3.0. Marsaglia's

code bears the warning(?) \To obtain permission to incorporate this program into any com-

mercial product, please contact the authors at the e-mail address given above [afir.stat.

fsu.edu or geo@stat.fsu.edu] or at Department of Statistics and Supercomputer Com-

putations Research Institute, Florida State University, Tallahassee, FL 32306."

2 Overview of the mrandom package

The principal features of the mrandom package are

� A standardized interface to many simultaneously-active RNGs,

� An unbiased, and apparently novel, method for generating random integers in the range

0::m� 1,

� The standard (fast but biased) method for generating random integers in the range 0::m�1,

� A standardized method for generating oating point numbers uniformly distributed in

[0:0; 1:0),

� Two standardized methods for generating streams of \random bits,"

� Rapid, vectorized calls returning an arbitrary number of uniform variates of any desired

type,

� Bu�ered and unbu�ered calls, for e�cient generation of pseudorandom generates in both

large and small quantities,

� The ability to \split" an RNG output stream into several nonoverlapping output streams,

� A shorthand notation for completely specifying the algorithm and current state of an RNG,

in an 80-character human-readable ASCII string,

� A method for reconstructing a complete RNG state from its shorthand notation,

� A standardized method for adding new RNGs to the package, and

� A �le-I/O interface to allow fast saves and restarts of complete RNG state vectors.

The mrandom package also includes a set of routines to test the accuracy of a compilation on

a new system. If you type the Unix command make test in a directory containing the mrandom

source code, the results of running several statistical tests on several di�erent RNG algorithms

on your workstation will be compared to the results on a SparcStation 1+. All di�erences will

be printed; any di�erence, except in the runtimes, should be reported to the author as a bug.

The test routines are packaged in an executable called mrtest, documented in a man page and

in Section 3 of this report. You may use these routines to study the properties of the various RNG

algorithms. The tests include equidistribution, pairwise (both short- and long-range) correlation,

and 3-tuple correlation [21]. I chose to implement these tests because they were simple to code,

because they would exhibit the known defects of the 4.3bsd generators rand() and nrand48(),

and because their test statistics could all be analyzed with the same code.

A �nal feature of the mrandom package is the statistical analysis code xsq.c. Originally, I

thought it would be easy to write this code, using the easily-computable, and asymptotically
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correct, �2 approximation to the actual distribution,X2, of the Pearson's chi square test statistic

arising in our application under the hypothesis that each of N independent observations of our

RNG's output is equally likely to fall into any of k categories. I soon learned that the �2

approximation is valid only for rather large N ; and even for large N , the �2 approximation is

valid only near the center of the X2 distribution [16, p. 43]. This prodded me to develop, and

code, a novel approximation to the tail probability of theX2 statistic on a symmetric multinomial

variate. My approximation is described and justi�ed in Section 3.

2.1 Naming Conventions

Our access routines are named mnemonically. The �rst letter of the access routine is d, f, l,

m, or b, depending on whether it is returning a double precision oat, a single-precision float,

a long integer in 0..range_rng()�1, a restricted-range integer in 0..m�1, or a single-bit integer
whose value is either 0 or 1.

If the second letter of the access routine is an x, the routine is unbu�ered. Otherwise it is

bu�ered. See Section 2.4.

The su�x characters on an access routine indicate whether the rng or the vectorization

parameters must be supplied explicitly by the user. Thus drandom() takes no parameters,

drandomr(rng) requires a pointer to an active RNG, and drandomv(n,v) must be given a

vector length and a vector pointer.

Note: I use an italic font for mathematical quantities, and a typewriter font for analogously-

named variables in the C programming language. For example, the value of (double) m*z will

in general be only an approximation, and not necessarily a good approximation, to the algebraic

value mz. Typical sources of computational imprecision are oating-point roundo�, underow,

and overow.

2.2 Generating Integers Uniformly Distributed in a Restricted Range

It is common practice to use one of two naive methods to generate a \random" integer in 0..m�1
from a pseudorandom generate z in the range 0..range rng() - 1: either

1. z % m, a C-language expression computing the value z modm; or

2. (int) m * ((double)z) / range rng()), a double-precision oating point approxima-

tion to the quantity mz=r where r = range rng().

The second method is vastly preferable to the �rst, for two reasons. The modulo-m arithmetic

of the �rst method can expose the \nonrandom" behavior of the least-signi�cant bits of many

commonly-used RNGs, most notably those based on a multiplicative congruential method [5,

Section 6.7.1], [16, Section 3.4.1]. In contrast, we gain con�dence in the \random" properties of

the second method's outputs whenever the RNG passes a test based on its oating-point outputs

((double)z) / range rng()).

Another reason to prefer the second naive method over the �rst is that present-day worksta-

tions are more e�cient at performing oating-point divisions \/" than modulo-m calculations \%

m". A oating point division is, nowadays, accomplished with a single CPU instruction. The

modulo-m operation might be a single instruction of comparable speed to a oating-point divide

(about 20 clock cycles on an RS-6000), but more often it is a slower subtract-then-test loop (on

a SparcStation or an HP-PA) or a series of oating-point instructions (on a DECstation).
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double dm, r, ifreq;

long zmax, z;

dm = (double) m; /* the desired range */

r = rng_range(); /* the ``raw'' range of the RNG */

ifreq = floor( r/dm ); /* desired probability density */

zmax = r - (int) ( r - ifreq*dm ); /* max acceptable RNG output */

do ( z = lrandom(); z > zmax; ) { /* Is z acceptable? */

z = lrandom(); /* No, cycle the RNG again */

};

return( (long) ( (double) z / ifreq ) ); /* an unbiased integer */

Figure 1: An algorithm for generating unbiased integers in 0..m-1.

For these reasons, we do not support the �rst naive method in mrandom. We do o�er support

for the second naive method because it is faster than our unbiased method, and because it is

essentially unbiased when m is small. When m is almost as large as r = range rng(), however,

the naive methods put twice as much probability density on some integers in 0..m-1 than on

others [16, Problem 3.4.1(2)]. Easily detectable bias will in fact occur for any m > r=1000, unless

m divides r exactly.

An unbiased method for generating integers. We recommend using the acceptance-

rejection method of Figure 1 when generating restricted-range integers. Each of the m values

in the desired range will occur with probability exactly 1=m, if each of the r values in the

range of the underlying RNG occur with probability 1=r. Note that ifreq is computed exactly

by an IEEE-standard double-precision oating point division operation, because it is exactly

representable in the 54-bit precision of a double mantissa.

The code of Figure 1 avoids the complicated and slow integer calculations that were neces-

sary to generate unbiased integers before oating-point operations were standardized [5, Figure

6.7.1]. Since our integer-mapping procedure is also relatively insensitive to any \least-signi�cant

bit nonrandomness" in the underlying RNG, we believe it superior to the otherwise-similar

acceptance-rejection scheme of the public-domain package ranlib. (Note: ranlib may be ob-

tained by anonymous ftp from odin.mda.uth.tmc.edu in directory /pub/unix, or by sending

the message \send ranlib.c.shar from general" to statlib@lib.stat.cmu.edu.)

The actual integer-making code in mrandom is a little more complicated than shown in Fig-

ure 1. Our code is \vectorized" (i.e. coded as a series of pipelinable loops with large iteration

counts), allowing e�cient execution on the highly-pipelined CPU of a workstation. Also, we do

not write inde�nite do loops: our code will not get \stuck" in a loop such as the one in Figure 1,

even if the underlying RNG stream converges on a constant. Instead, our code will abort your

program run and print a message asking you to make a bug report, if any loop runs for an

improbable (p < 10�30) length of time. Note that a zero seed, or a state table that becomes all

zeroes, could cause an RNG to return the same value forever.

Using mrandom to generate integers. You must select either the unbiased method or the

second naive method for computing restricted-range integers, whenever you restart or initialize

an RNG (see Section 2.9). After an RNG is activated, you can obtain a single restricted-range

integer by evaluating mrandom(m).
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The most general call is mrandomrv(rng, m, n, v), which �lls the vector v with n pseudo-

random integers, uniformly distributed in 0..m-1, using rng as the underlying generator. Here,

rng is a variable of type RNGdata*; this type was introduced in mrandom so that an expert user

can conveniently access more than one RNG at a time. See Section 2.6.

In future research, I hope to develop a code that uses just n comparisons, O(1) oating point

divides and n +O(1) oating-point multiplications to transform an n-vector of pseudorandom

oats in into an n-vector of 32-bit signed integers uniformly distributed in the range 0..m-1, for

any m � 231. The followingmethod comes tantalizingly close to my objective. Calculate a = 1.0

/ ifreq in IEEE-standard double-precision format, where ifreq is de�ned as in Figure 1. The

desired integers are \close" to a*v[i], for 1 � i � n, where v is an element of the n-vector of

pseudorandom oats produced by a call to the drandom(n,v) procedure described below. Some

additional cleverness is necessary, either in coding or in correctness proof: I believe that neither

truncation nor rounding of a*v will give an unbiased result for all m.

2.3 Uniform Variates in [0::1:0)

The drandom() function of mrandom uses a naive method to generate 64-bit oats:

((double)lrandom() / range_rng())

where lrandom() is a \raw" output from the underlying integer-valued RNG. Rarely, one encoun-

ters an RNG code whose raw output is a oating-point number. Such generators can be installed

in the current version of mrandom, if their outputs x are restricted to the range 0 � x < 1.

Some authors [9] believe that a oating-point RNG should have range (0.0, 1.0), and some

[16] believe that its range should include both 0.0 and 1.0. I �nd the range [0:0; 1:0) to be most

convenient for my work. Perhaps a future release of mrandom will provide e�cient interfaces

for all the competing de�nitions. For now, I suggest that any users dissatis�ed with [0:0; 1:0)

should write their own macro, for example using ( 1.0 + (double)lrandom() ) / ( 1.0 +

range rng() ) to transform the outputs of the current integer-valued RNG into the open interval

(0.0, 1.0). Please note that the sums must be calculated with more than 32 bits of precision,

because range_rng() = 232 for some generators in the mrandom package. Also note that, unless

one uses an acceptance-rejection method or unless the underlying RNG has an integral multiple

of 224 values in its range, the 24-bit mantissas of a single-precision pseudorandom variate must

be biased.

A possible future enhancement to mrandom would minimize discretization error by providing

clever oating-point transformations [24]. Note in particular that rounding is not appropriate

when converting a double-precision variate in [0; 1) to a single-precision variate: the range of the

single-precision variate obtained by this method will include 1.

I am currently investigating RNGs with greater integer range, to see if a future release

can recommend the use of \all bits" in a double-precision oating-point RNG output. At the

moment, I'd say that no oating-point RNG output, in any software package, should be assumed

to have more than four decimal digits of accuracy. Since a double-precision oat can represent

a real number with more than �fteen decimal digits of precision, the problem is not one of

representability. Instead, it is a lack of credibility, due to a dearth of RNG algorithms whose

outputs have been extensively tested at high accuracies. Most of the RNG tests in common use

are sensitive only to defects in the �rst few digits after the decimal point in a oating-point RNG

output. All RNG algorithms in common use are known to be \cryptographically insecure" if all

their output bits are used. Finally, many popular RNG algorithms have noticeable defects in
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their least-signi�cant bits.

2.4 Bu�ering

The preceding sections have introduced the idea of vectorized calls to a random number gener-

ator, as a method of decreasing the CPU time required per RNG output. The ideal application

code will use only long (100+) vector lengths, although this is sometimes di�cult to arrange

in practice. Accordingly, we provide internal bu�ers in mrandom, so that some of the bene�t of

vectorization can be obtained in codes using just one RNG output at a time. Our optimization

is similar to that provided in the C-language macro getchar(), which is expanded in-line into

a conditional branch instruction testing whether the �le bu�er is empty or not. The bu�er is

replenished with a single procedure call to the operating system, in the case of getchar(). In

the mrandom package, the bu�er is replenished with a single vectorized call to the underlying

RNG. Thus, even unvectorized codes can use a highly-optimized version of the underlying RNG.

2.5 Random Bits

Some applications are most naturally expressed as a transformation on a pseudorandom bit-

stream. In such cases, it is tempting to extract 32 \random" bits from every 32-bit RNG output.

We do not recommend this practice, for two reasons. This coding trick can only be employed

on RNGs whose range is equal to 232, so your application will be restricted to a small subset

of the available RNGs. Secondly, your experimental results will be heavily dependent on the

cross-correlation properties among the various bit�elds in your RNG's outputs. These properties

have been tested lightly, if at all, for most RNG codes in existence. Note that the process of

seeding an RNG may introduce bitwise cross-correlation defects even in RNG algorithms whose

bit�elds are \obviously" independent, such as the shift-register method Xn = Xn�103 .XOR.

Xn�250.

The imperatives of runtime e�ciency, however, are such that we grudgingly provide fast

interface routines (e.g. brandom_f()) for convenient, e�cient, and sequential access to each of

the 32 bits in a 32-bit RNG output. In contrast, the recommended brandom() call extracts just

one \random bit" from each RNG output word.

2.6 Splitting an RNG's Output Stream

In a multithreaded application code, i.e. one that runs simultaneously on several workstations,

we usually want a di�erent RNG stream in each thread [19]. A popular method of accomplishing

this objective is to use a distinct seed for a separately-initialized RNG in each thread. The

resulting streams might be statistically independent. However, if the seeding process is poorly

designed and/or \unlucky," the tail of one fairly-short RNG stream will be identical to the head

of another RNG stream.

A safer method of writing a multithreaded application, also supported by mrandom, is to

\split" a single RNG's stream. For example, if one has three threads, the i-th thread should use

the (i + 3k)-th elements, for all k � 0, from a single RNG stream. To the extent that an RNG

has good serial correlation properties, the three streams will be statistically independent.

If you call the mrandom procedure split rng(rng,x), the immediate efect is to store the

integral \split value" x in the internal data structure pointed to by rng. Note that rng must

be an active RNG; see Section 2.9. The desired side-e�ect of split rng() is that subsequent
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RNGdata rng1,rng2;

long z;

restart_rng( rng1, RNGstatefile ); /* activate rng1 from a file copy */

restart_rng( rng2, RNGstatefile ); /* rng2 is identical to rng1 */

z = lrandomr( rng2 ); /* discard the first ``raw'' output of rng2 */

split_rng( rng1, 1 ); /* split 1: skip over alternate elements */

split_rng( rng2, 1 ); /* rng2 also gets a split value of 1 */

Figure 2: Splitting an RNG in two.

accesses to this RNG will \skip over" or \leapfrog" elements in its pseudorandom sequence. For

example, if the �rst 16 outputs of an (apparently defective) RNG were

0; 1; 2; 3; 4;5; 6; 7;8;9;10;11;12;13;14;15; :::

and if this RNG were given a split value of 1 immediately after initialization, it would return

the sequence

0; 2; 4; 6; 8;10;12;14; :::

The other branches of a split-sequence RNG should be obtained by activating \duplicate"

RNG data areas, using exactly the same initialization sequence (e.g. seed values and RNG

algorithm speci�er) as on the �rst branch. Each RNG area should be \split" after it has been

cycled a di�erent number of times. See Figure 2 for an example of a 2-way split; if the underlying

RNG (speci�ed by the RNGstatefile, see Section 2.9) and rng1 are as described in the previous

paragraph, then the next eight outputs of rng2 would be

1; 3; 5; 7; 9;11;13;15; :::

As indicated above, the splitting operation is useful in multiprocessed codes. Please be

warned, however, that our present implementation is ine�cient for large skip values x, because

x raw RNG outputs are discarded for every one that is returned to the user. Such ine�ciency

is not necessary in some RNG algorithms. For example, the constants in any multiplicative

congruential RNG can be adjusted, as a function of x, so that it generates every (x+1)-th

element of its original output stream [19]. Perhaps a future release of mrandom will allow an

e�cient generation method to be installed for those RNGS for which fast splitting is possible.

2.7 Installing New RNGs

To install a new RNG in version 3.0, you must supply a seeding routine and a generation routine.

Your seeding routine will be called when a user wants to initialize an RNGdata area referencing

the new RNG: see Section 2.9. Your generation routine will be called whenever the data bu�er

of this RNGdata area is empty. The generation routine may be declared as returning either a

32-bit long pseudorandom integer or a 64-bit double-precision pseudorandom oat: mrandom

will perform the appropriate type conversion, as necessary, in response to the user's request for

any supported type of pseudorandom data.

We recommend that each installed RNG also have a nontrivial implementation for a third

functional interface to mrandom. A \state vector check" function will be called whenever an RNG

9



state�le is read from disk, for example during the restart rng operation described in Section 2.9.

Note that a descriptor of the RNG algorithm is stored with each state�le, so that the appropriate

state-check function can be called. A trivial implementation of your state-check function would

always return the value 1, implying that the �le appears to be intact. A more carefully-coded

check function will examine the state vector in some RNG-speci�c fashion, testing if its values are

consistent with your RNG algorithm, and perhaps taking into account the initializing seeds and

the number of times your RNG has been cycled since seeding. Note: seeding and cycle-counting

information is also contained in the RNG state�le, to allow error-checking as well as complete

experimental documentation.

The RNG check function need be neither excessively complicated nor time-consuming to

have some utility. For example, in many RNG codes, some elements of a valid state vector

are restricted-range integers. If an out-of-range value is detected, the RNG-speci�c check code

should return the value 0; this will cause mrandom to print an error message and to abort the

user's job.

The installer of a new RNG must provide a unique ASCII string identifying the RNG algo-

rithm, for printing in RNG state�les. Finally, new entries must be made in several arrays of

compile-time constants. See Section 6.3 of the mrandom 3.0 User's Manual, provided with the

source-code distribution, for a complete description of the RNG installation process.

A future version of mrandom may allow the RNG installer to provide a vectorized interface

to the generation routine. This should greatly reduce the \overhead" associated with entering

and exiting the RNG generation code. The heavily pipelined CPUs of modern workstations and

supercomputers are most e�cient when executing inner loops with a small number of operations

per iteration, and with a large number of iterations per loop. Other sources of ine�ciency are

frequent procedure calls and certain forms of data-conditional branches. On most workstations,

the generation routines of mrandom version 3.0 are compiled into short sequences of in-line code

to retrieve data from a bu�er, with rare (and well-predicted) conditional branches to a bu�er-

�lling routine. The bu�er-�lling routine, however, typically contains one procedure call per RNG

value inserted into the bu�er. A vectorized interface to the RNG generation routine would allow

the bu�er to be �lled in a tightly-coded inner loop containing no procedure calls. The average

number of procedure calls, per RNG output, can thus be as low as 1=n in a completely vectorized

code with vector length n.

2.8 RNG Algorithms Supported

When using init rng() to initialize an RNGdata area, or when using mrtest to initialize an

RNG data �le, you must specify an RNG algorithm with an integer in the range 1 through 9.

The association of integers with algorithms is de�ned in the list below. Note that you may use

RNG algorithm 0 to see how your application would work with the highly \nonrandom" RNG

at the tail of this list.

1. 4.3bsd random(), a non-linear additive feedback RNG, with a range of 231. This code is not

re-entrant: some of the RNG state is saved in a single \owned" variable, even if multiple

RNG state tables have been de�ned. We have partially repaired this bug in the mrandom

interface, so that a single instance of this RNG can be run, saved, and restarted from

a �le without error. We do not recommend running multiple instances of this generator

in a single job, however, because the various RNG states can not be saved and restarted

accurately and reliably.
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2. The Knuth/Bentley prand, a C-language code for an additive generator, developed by

Bentley[3] from an assembly-language code in Knuth [16, p. 27]. Knuth attributes this

RNG to unpublished work by Mitchell and Moore. The recurrence is Xn = (Xn�24 +

Xn�55) mod r, where r = 106 in the Bentley code imported into mrandom. Knuth requires

merely that r must be even, and that X0; :::; X54 are \arbitrary integers not all even." This

RNG seems to be acceptable for most uses on a workstation. However, recent unpublished

work by Profs. Bill Knight and Greg Shannon of Indiana U. indicates that the least-

signi�cant bits of this RNG are awed, as revealed by the following experiment. Take 104

blocks of 100 generates. In each block of 100 generates, extract the least-signi�cant (parity)

bits. If the generates were uniformly distributed in 0::r� 1, the number of zero bits would

be binomially distributed with parameters n = 100 and p = 0:5. The observed distribution

(i.e. our 104 observations of the number of zero LSBs in a block of 100 generates) has

the correct mean (50), but an incorrect \shape": it fails a traditional chi-square test of

�t. The closely-related random() algorithm of 4.3bsd Unix also fails \Bill's test" on its

LSBs. In both cases, the failure could, conceivably, be attributed to the seeding algorithm

rather than to the generation algorithm; these codes use very poor multiplicative RNGs to

convert a 32-bit seed into a multiple-word state table.

3. L'Ecuyer's \portable combined" 32-bit multiplicative congruential generator [18] with a

range of 2147483561 = 231�87. This generator seems to be acceptable for most workstation

uses.

4. 4.3bsd nrand48(), an 48-bit multiplicative congruential RNG with a range of 231. I do

not recommend the use of this generator. I know of no \champion" willing to argue in

its favor. Furthermore, its defective long-range correlation properties are exhibited by the

test script supplied with mrandom.

5. 4.3bsd rand(), a 32-bit multiplicative congruential RNG with a range of 231. I do not

recommend the use of this generator: it has a number of poor properties, including the

one documented in its 4.3bsd Unix man page.

6. Press and Teukolsky's ran0 [26], identical to the \minimal standard generator" of Park

and Miller [25]. It is a multiplicative congruential generator with a range of r = 231�1 and
a recurrence of Xj+1 = (16807Xj) mod r. This generator has been used successfully in a

wide variety of applications since its proposal by Lewis et al in 1969. Despite an \obvious"

defect [26], it was the only RNG, of �ve tested, to give good results in a recent Monte

Carlo simulation [8].

7. Press and Teukolsky's ran1 [26], a generator with a range of 231 � 1. This code uses the

minimal standard generator ran0 to �ll a table of size 32. Elements are selected for output

and replacement in the table with the \Bays-Durham shu�e." Since Press and Teukolsky's

column is widely read, this new RNG might be used in a wide variety of applications. As

soon as I hear favorable reports from some knowledgable users, I will consider this RNG to

be a reliable source of pseudorandom variates. For the time being, however, I recommend

that it (and any other novel RNG) be used only to verify experimental results obtained

with other RNGs.

8. Press and Teukolsky's ran2 [26], a Bays-Durham shu�e applied to the output of L'Ecuyer's

portable combined generator (mrandom algorithm 3, above). Its range is 231 � 1. Press

and Teukolsky o�er a reward of $1000 to the �rst reader who �nds \a statistical test that

this generator fails in a nontrivial way, excluding the ordinary limitations of a machine's

oating-point representation." [26]. This reward should accelerate the testing/validation
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process: perhaps I will recommend it for general workstation use by 1995. However, I doubt

this code will ever obtain widespread acceptance, because it requires so many machine

operations per RNG output. Furthermore, the Bays-Durham shu�e is, I believe, inherently

ine�cient on the heavily-pipelined CPUs used in workstations and supercomputers.

9. Marsaglia's Ultra, which we obtained by anonymous ftp from nic.funit.fi, directory

/pub/msdos/science/math/fsultra, �le fsultra.zip. This is a \subtract-with-borrow"

generator with a range of 232 [22]. Marsaglia o�ers a C-language code as well as various

assembly-language codes, for those users interested in runtime e�ciency at the expense of

code portability. We use only his C-language code, for portability and to maintain a little

pressure on compiler developers and language designers: Marsaglia's basic subtract-with-

borrow operation might someday be recognized as an idiom, and then translated into an

e�cient sequence of machine instructions, by a future C-language compiler. In the near

future, I expect to recommend the Ultra generator for general use. It certainly has a good

pedigree: it was developed by a highly respected researcher in the �eld of random number

generation. However, I lack feedback from \satis�ed users." A notable advantage of Ultra

is that, unlike Press and Teukolsky's ran2, it can be rewritten into a form that is e�ciently

executed on a pipelined workstation or a vector supercomputer. James Russell, an MIT

undergraduate, recently wrote such a vectorizable code. We have not included Russell's

code in the present distribution due to a lack of time to make a thorough test of its

correctness, and due to our uncertainty over the patent status of the algorithm underlying

Ultra.

0. a linear additive generator (long state=seed1; state += seed2) capable of generating

any 32-bit constant or any arithmetic sequence. This generator is included only for testing

purposes: short sequences of its output will fail almost any test of pseudorandomness.

2.9 Describing an RNG

To support reporting and reproducing randomized experiments, we provide a string-valued func-

tion describe rng( rng, rngid ). This function writes a one-line description of the RNG

algorithm and its current state into the character string rngid. The value of rngid is returned,

so that printf(describe rng(rng, rngid)) is a convenient way to print the rng state to the

standard output.

Here is a sample output from describe rng():

RNG state identifier is (1, 0: 2, 0; 1047, 1; 1024, 0)

This string indicates that we are using RNG algorithm number 1 of Section 2.8, the 4.3bsd Unix

random(). The second digit indicates that the recommended (unbiased but slower) algorithm is

employed by mrandom to calculate restricted-range integers. See Section 2.2. The initial seeds

supplied to our RNG were 2 and 0; in this case, the second 32-bit seed was ignored, because

random() uses only a single seed. The RNG code has been called 1047 + 1 �109 times since

initialization. The bu�er size is 1024, and the �nal 0 indicates that this RNG's output is not

being split.

Note that the state identi�er is both concise and complete (for RNGs with at most two 32-

bit seeds), freeing most users of mrandom from the need to keep copies of state tables in their

experimental records.
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Initializing, Saving, and Restarting RNGs In general, I believe that users should extend

the sequence of an existing RNG, whenever possible, instead of seeding a new one. I suggest

this methodology because it is so di�cult to properly seed an RNG when performing multiple

program runs during a single experiment. Where, after all, can you get truly random seeds?

To use the time of day, or a process ID, is to invite disaster in the form of subtle experimental

correlations or, catastrophically, cyclic experimental repetitions due to the inadvertent reuse of

a seed.

The mrandom package makes it easy to save and restart RNGs. The call save rng(rng,

filename) writes a complete state table to a �le. The call restart rng(rng, filename) reads

a RNG state �le into the RNGdata area rng. Before calling restart rng, the user must supply

su�cient space for an RNG state table, either with a storage declaration of the form RNGdata

rng, or with a memory allocation statement such as rng = malloc(sizeof (RNGdata)).

For portability and ease of use, the RNG state�les are written in ASCII. The state�le contains

enough information to completely specify the RNG algorithm, its current state, its bu�er size

and split. It also speci�es the initial seeds, the number of times it has been cycled, and the next

output that should be produced by this RNG algorithm on this state table. The \next output"

value provides a modicum of protection against a corrupted state�le. It also gives a convenient

mechanism for spot-checking the portability of the mrandom package across operating systems,

compilers, and computers.

Sometimes it is necessary either to reconstruct an RNG state from a state identi�er, or to seed

a new RNG. The function init rng(rng, alg, mralg, seed, count1, count2, bufsize)

provides a convenient way to do this. The alg parameter should have a value between 0 and 9,

to indicate which RNG algorithm is desired; see the list in Section 2.8. The seed parameter is

a pointer to an array of seeds, of an appropriate size for the RNG algorithm selected: see the

User's Manual for details. The count parameters are used for initialization and \cycling" of the

generator before control is returned to the calling program. Note that if count2 is non-zero, the

underlying RNG will be called billions of times!

Perhaps the easiest way to initialize a new RNG is to invoke the mrtest program described

in Section 3.2. Using mrtest's command-line arguments, you can \�re up" any RNG you like,

with any seed. You may also e�ciently \cycle" this generator any number of times, if you like,

with another command-line argument. Before exit, mrtest writes its �nal RNG state to a state

�le named RNGstatefile.

By the way, I believe that great care should be taken when initializing any large-table RNGs.

At a bare minimum, such generators should be cycled a large number of times before use in an

application. For example, Knuth's RNG initialization code (mrandom algorithm #2) cycles his

generator 165 times after using a fairly simple method of \stretching" the single-word seed into

initial values for a 55-word state table. Cycling a generator in this way is a (possibly fruitless)

attempt to get to a more-or-less \random" point in the RNG output sequence, rather than one

of the relatively few (� 232) points reachable by the initialization routine. Since the period of

an RNG with a 55-word large state table is, typically, much larger than 255, we would have

to \cycle" our RNG more than 255�32 � 8 million times on average, to reach a random point

even if our 232 initialization points were uniformly distributed in an RNG period of 255. Since

large-table RNG periods are typically much longer than 255, and since there is no reason to

assume that our initialization routine has the necessary \uniformity" properties, the cycling

process should be viewed as one that \can't hurt, and it just might help."

Another possible method of initializing a large-table RNG, not supported by mrandom, would

use a previously-initialized RNG as a source of values to be used for initializing the new table.
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Perhaps a later version of mrandom will support such a generalized \bootstrap initialization"

algorithm for any RNG code designed to accept such user-randomized state tables. Note that

few RNG codes will operate correctly on arbitrary state tables. Most impose constraints. For

example, Knuth's code (mrandom algorithm #2) requires a state table whose entries are not all

even.

2.10 Killing an RNG

Because mrandom 3.0 allocates internal bu�ers for each RNG being used, we provide a method

for de-allocating such bu�ers. This procedure, kill rng, takes a single parameter: a pointer to

an initialized RNG. By the way, if you wish to re-initialize an active RNG, you should �rst kill

that RNG, then call init rng. See Section 5.4.1 of the User's manual for more details.

3 Testing Randomness with mrtest

The �nal component of the mrandom package is a set of routines for testing the \randomness"

of a pseudorandom sequence. These routines are not in particularly elegant form. Originally, I

had merely planned on writing a short code to illustrate how to call mrandom, and to test the

correctness of the compilation. I called this routine mrtest.c.

As so often happens in software development, the mrtest code \took on a life of its own."

I found myself getting more and more interested in the topic of testing RNGs. I discovered a

dearth of public-domain code for such tests. Even after restricting my attention to the class of

tests based on Pearson's chi-square statistic, I found it di�cult to develop a code to compute

an accurate con�dence interval for this test statistic, in all cases of interest. Finally, I found

that mathematical statisticians, for the most part, had little respect for a test based solely on

a con�dence interval for one's test statistic under the null hypothesis. In response to this last

�nding, I have begun developing a robust, feasibly-computable, decision-theoretic approach to

RNG testing. This project is far from fruition, however, and is nowhere reected in the current

release of mrandom, so I will not discuss it further in this report.

3.1 Notation

The analyses in this report are focussed on the equiprobable-category form of the Pearson chi-

square test statistic, used in several of the tests suggested by Marsaglia [21]. My notation is

Knuthian, i.e. as concise and mnemonic as possible. Accordingly, I use x2() to denote the

Pearson function; only where necessary will I specify the value of k and N in the subscript forms

x2
k
() or x2

k;N
():

x2(s)
def
=
X
i

(ni � N=k)2

N=k
(1)

where

s
def
= (n1; n2; :::; nk); ni > 0 (2)

is a k-vector of non-negative integers, and

N
def
=
X
i

ni (3)
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I use an s, rather than something like ~n, as the argument of the Pearson function x2(),

because I will refer to di�erent possible values (s1; s2; t; :::) of the experimental \state." Also,

since the Knuthian summation operator
P

i
might be unfamiliar to some, please note that it

is rarely necessary to write explicit bounds such as
P

1�i�k. Sometimes, however, it is very

convenient to exploit the commutative property of addition, writing set-theoretic speci�ers for a

summand range, for example using
P

s:n1=0 for a sum over all states s with n1 = 0.

In general, I use upper case to denote a random variate, or, with some abuse of notation, to

denote a distribution. The sole exception to this convention isN , introduced both in conformance

with a standard reference [13] and to avoid confusion with the components ni of a state s. I give

my variates mnemonic names wherever possible. Hence S is a random variate distributed as a

symmetric multinomial, with density function dS():

dS(s)
def
= Pr[S = s]

def
=

N !

kN
Q
i
ni!

(4)

Occasionally I �nd it necessary to specify k, or both k and N , as in Sk or Sk;N .

A general multinomial variate is denoted with M , or more rarely, with an explicit list of

de�ning parameters Mk;N;p1 ;p2;:::;pk:

dM(s)
def
= Pr[Mk;N;p1;p2;:::;pk = s]

def
= N !

Y
i

�
pni
i

ni!

�
(5)

A unit normal variate is, as is customary, U :

dU(u)
def
= Pr[U = u]

def
=

1p
2�

e�u
2
=2; �1 < u < +1 (6)

The general form of the Pearson statistic can be written x2
M
(), as a shorthand for the more

speci�c form x2
k;N;p1;p2;:::;pk

(). Note that the parameters (p1; p2; :::; pk) of M must be speci�ed,

or understood from context, if one is to evaluate the Pearson statistic:

x2M (s)
def
=
X
i

(ni � Npi)
2

Npi
(7)

Analogously, I write X2
M

for the distribution of the Pearson statistic under the (multinomial)

hypothesis M . However, I will not use the constant m as a possible value for a random variate

M , for fear of confusion with the parameter m appearing a call to mrandom(m). Instead, I use s

in such contexts, for example when de�ning the density function for an X2 variate:

dX2
M
(a)

def
= Pr[X2

M = a]
def
=

X
s:x2

M
(s)=a

dM(s); a � 0 (8)

The continuous chi-square distribution �2 is sometimes confused with the discrete X2 dis-

tribution, perhaps because a �2
k�1 variate can be obtained by applying a version of the Pearson

statistic x2
M
() to the results of k independent samplings from a unit normal distribution. A glance

at the density function for �2
�
should be su�cient to dispel anyone's belief that X2

k;N
� �2

k�1 for

any �nite N :

f�2
�
(a)

def
=

a(��2)=2

2�=2�
�
�

2

�e�a=2; a > 0; � > 0 (9)
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The statistical tests in mrtest.c are based on the \frequentist" concept of computing tail

probabilities such as Pr[X2 � z]. This notation suggests that we are testing whether a ran-

dom variate X2 is no larger than a �xed value z; by the conventions outlined above, we may

assume that the test statistic is the equiprobable Pearson's x2(), but we must be more speci�c.

Accordingly, let

Pr[X2 � z]
def
= Pr[x2(S) � z]

def
=

X
s:x2(s)�z

dS(s) (10)

denote the probability that an x2
k;N

() test statistic is no larger than some real-valued constant z,

for an experiment whose result vector s is distributed as the symmetric multinomial Sk;N , in a

context where the values of k and N are �xed. If a non-symmetric hypothesis H is under active

consideration, I write the tail probability as Pr[x2(H) � z]. (Note that the density function dH()

for any speci�c alternative H to the symmetric null hypothesis S is not necessarily a multinomial

dM(), especially in a test sensitive to sequential correlations in an RNG's output. Also note that

I have somewhat arbitrarily chosen to de�ne a cumulative on a discrete distribution D in terms

of Pr[D � y] rather than Pr[D < y].)

Considerable care must be taken on a computer, when calculating and manipulating tail

probabilities, to avoid underow and roundo� errors. In particular, when z is very large, a tail

probability Pr[X2 � z] � 1. In such cases, we will not have much accuracy in a code that

computes an approximation to Pr[X2 > z] by calculating 1� Pr[X2 � z]. The problem is that

a oating-point number on a computer is stored as a (mantissa, exponent) pair, implying that

1� x will not be represented accurately when x is very small in absolute magnitude.

Fortunately, it is easy to �nd a much better number representation for tail probabilities.

The idea is to compute with variables whose values have the units of a \normalized standard

deviation" for the distribution being analyzed; this idea is computationally and analytically very

attractive when the distribution is more-or-less normal. A large positive value is interpreted as a

tail probability very near to 1. A large negative value is a tail probability very near to 0. To state

this formally, I transform a cumulative probability p into a normalized standard deviation a by

evaluating the quantile-normal function a = qnorm(p) in the statistical computation language S.

Johnson and Kotz [13] use the algebraic notation Up, but I prefer to avoid subscripted arguments,

thus

qU
def
= ��1 (11)

Here, I have de�ned the quantile-normal qU(p) in terms of its functional inverse, the cumulative

standard normal distribution �:

�(a)
def
= Pr[U � a]

def
=

Z a

�1

1p
2�

e�u
2
=2 du (12)

Much of the analysis in this report is devoted to �nding a good approximation to the u-

cumulative of the X2 statistic, i.e. its tail probability expressed in units of normalized standard

deviations:

uX2(y)
def
= qU (Pr[X

2 � y])
def
= qU

0
@ X
s:x2(s)�y

dS(s)

1
A (13)

The u-cumulative of �2 is useful in my analysis:

u�2(y)
def
= qU

�Z y

0

f�2
�
(a) da

�
; y � 0 (14)
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The �-point of a distribution D is the value y such that Pr[D � y] = �. In our transformed

representation, we can obtain an �-point, for any �xed �, by solving for y in

� = �(uD(y)) (15)

In coding mrtest, I found little need to compute �-points. Instead, I avoid functional inversion

(and minimize computational error) by interpreting a chi-squared test result y = x2(s) in the

following way. If uX2(y) � qU (1 � �=2), the test fails on the upper tail of a two-tailed test of

size �. If, instead, uX2(y) < qU(�=2), the test fails on the lower tail. I will justify this test

methodology in Section 3.4.

3.2 Tests Implemented in mrtest

The current version of mrtest allows the user to specify, with the -S command-line option,

any RNG algorithm supported by mrandom, its initial seed, and the number of times the RNG

algorithm should be cycled before its output is tested. When the testing is complete, the RNG

state is written into a �le named RNGstatefile. If the -S option is not speci�ed, mrtest will

restart the RNG speci�ed in RNGstatefile. Complete details of the -S option are described in

the man page for mrtest, provided with the mrandom software distribution.

The user may specify the number of RNG outputs to be tested in the command line, for

example, mrtest 1000 will test the next 1000 outputs of the current RNG in various ways, as

outlined below.

It is possible to \skip over" elements in the RNG output sequence, using the -d command

line option. For example, mrtest -d2 will test every third element in the output sequence. The

letter d was chosen for this option, to suggest the mnemonic \discard 2."

The RNG outputs are, by default, tested in their \raw" state. To test their properties after

conversion to a restricted-range integer, we provide the command-line options -m, -M, -f, and

-p. The -m and -M options specify the range of the RNG, in decimal or binary-exponential form.

Only one of these should be used in a single command line. For example, mrandom -m100 1000

will test a thousand pseudorandom integers in the range 0 to 99, and mrandom -M16 will test

integers in the range 0 to 216 � 1.

The -f and -p options can be used to select alternative methods of producing restricted-

range integers. The default, if neither -f nor -p is speci�ed, is the unbiased method. The \fast"

method (int (dxrandom() * m) is selected with -f, and the \poor" method random() % m is

selected with -p. Neither of these options is available if you have compiled mrtest with the

-DVECTORIZED compile-time ag. The makefile provided with the mrandom package names its

vectorized executable mrtestv. This executable runs signi�cantly faster than the unvectorized

one, because it takes advantage of the vectorized RNG calls in mrandom.

The remaining command line options are -q, -t, and -e. The -q option, for \quiet," doesn't

print out the RNG outputs as they are produced. I imagine that most RNG testing will be done

with the -q ag enabled. The -t ag suppresses most RNG testing; this option is provided to

allow more accurate timing of the RNG generation process. Finally, the -e ag causes mrtest

to echo its command line arguments.

Summarizing the discussion above, the command line arguments of mrtest specify a pseu-

dorandom sequence of N integers in the range 0 to m � 1. These integers are subjected to the

following �lters and tests.

1. The maximum value is printed.
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2. The number ni+1 of integers equal to i is counted. The statistic X1 = x2
m;N

(n1; n2; :::nm)

is then printed and analyzed for signi�cance. This is an equidistribution test.

3. A count is made of the number ni;j of times an integer equal to i is immediately followed

by an integer equal to j. The RNG sequence is assumed to be \circular," so that its last

element is \followed" by its �rst, giving us N (non-independent) observations to classify.

The test statistic is X2 = x2
m2;N

() � X1, where X1 is the equidistribution test statistic

de�ned above. Under the null hypothesis, i.e. if the RNG outputs are independent and

uniformly-distributed in 0..m-1, X2 is distributed asymptotically as �2 with m2 � m

degrees of freedom [21]. My routine analyzes the statistic as though it were distributed as

X2
m2
�m+1;N . This is a test of pairwise correlation.

4. If m mod 8 is equal to 0, an \overlapping 3-tuple correlation test" is made on the 8 �
8� 8 possible patterns that can occur in the least-signi�cant three bits of three successive

integers. The test statistic is X3 = x2512;N(s3) � x264;N(s2), where s3 are the counts in

our 8 � 8 � 8 contingency table and s2 are the counts in an 8 � 8 contingency table for

overlapping 2-tuples. The statistic X3 is asymptotically �2 with 83 � 82 = 448 degrees

of freedom under the null hypothesis [21]. My routine analyzes X3 as though it were

distributed as X2
449;N .

5. A count is made of the number of integers less than m=2; the resulting x22;N;p1;p2() statistic

(binomially distributed) is printed and analyzed for signi�cance as an X2
2;N variate, where

p1 = dm
2
e=m and p2 = 1 � p1 = bm

2
c=m. I call this the \most-signi�cant bit" test with

some misgivings, because this name is somewhat misleading when m is not an integral

power of 2.

6. Unless m = 2, 4, or 5, a count is made of the number of integers whose mod-3 residue

is equal to 0, 1, and 2; the resulting x23;N;p1;p2;p3 () statistic is printed an analyzed for

signi�cance as an X2
3;N variate, where p1 = dm

3
e=m, p3 = bm

3
c=m, and p2 = 1� p1 � p3. I

call this the \mod-3" test.

These tests are more general than may appear at �rst. Using a command line option to

change the range m of the pseudorandom integers, it is possible to perform 2-tuple and 3-tuple

correlations on almost any subrange of bits in the \raw" pseudorandom output. Also, by using

the skip option -d, one can test for long-range correlations.

In tests 3 through 6, the distribution of the test statistic under the null hypothesis is not pre-

cisely equal to the distribution of an equiprobable Pearson's chi-square statistic on a symmetric

multinomial. In the 3-tuple correlation test, for example, if m mod 3 is not equal to zero, the

frequency counts (n1; n2; n3) do not have expectations of exactly (N=3; N=3; N=3). The asymme-

try becomes larger as m decreases. For all m � 6, however, the magnitude of Hoel's corrections

[13, p. 286] are small enough to suggest that reasonably accurate results will be obtained with

an analysis based on a symmetric multinomial. This suggestion is borne out by a few small-m

experiments with my mod-3 test on RNGs: \good" RNGs pass the test, but \bad" ones fail

it, implying that my code's analysis of x2() variates is su�ciently accurate in these instances.

(Despite these assurances, I must admit to nervousness in making a public release of my mod-3

test code.) I have made similar \small-N" experiments with the other tests, satisfying myself

that my X2 approximations lead to informative tests.

Tests 4 and 6 will only be conducted for m in a restricted range, because we do not know how

to compute a good approximation to the test statistic for all m. Another type of infeasibility is

due to memory limitations. For example, our coding of the 2-tuple correlation test implements
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the frequency counters with an m�m array of integers. The maximum size of this array is �xed

by a compile-time constant. For this reason, a warning message will be printed, and the 2-tuple

correlation test will not run, if m is greater than a thousand (in the default compilation). A

possible future enhancement to mrtest would implement Marsaglia's overlapping pairs sparse

occupancy (OPSO) test [21] in O(N logN ) time and O(N ) space, using an o�ine sorting algo-

rithm rather than our current, on-line, algorithm requiring O(m2) space. Such an o�ine sort is,

in fact, used in our equidistribution test whenever m is larger than a million or so.

A third type of infeasibility can occur in any test: N may be \too small" for my statisti-

cal analysis routine to give valid results. The criteria for printing a \too small" message are

developed in the following sections.

3.3 The Minimal-Power Criterion for N

My x2-interpretation code xsq.c enforces the following, minimalistic, requirement on the power

of an RNG test. It exits with an error message if N is so small that no hypothesis can be rejected

on the lower tail of a two-tailed chi-square test of size � = 0:10, i.e. if no value in the range of

x2(S) lies below the 5% point of the X2 distribution under the null hypothesis (that the RNG is

\random"). The complementary constraint, requiring at least one point in x2(S) on the upper

(1� �=2) tail, is always satis�ed if the lower-tail constraint is met.

Furthermore, my code issues a warning message if N is so small that no hypothesis can be

rejected on the lower tail of a test of size 10�6. As will be shown in Section 3.6, if this warning

is not printed, this implies that N is large enough that my uxsq() approximation to the \exact"

uX2() interpretation of the test statistic will be reasonably accurate. Roughly speaking, the

normalized standard deviations z = uxsq() printed by my routines have an absolute error of at

most 0.3 when jzj � 1 is small, and a relative error of at most 25% if jzj > 1. See Section 3.7 for

a more thorough discussion.

If either a warning message or an error message is printed, my routine will suggest a value

of N that is large enough to avoid the warning or error on this test. This value is never more

than 10% larger than necessary to avoid the message: I compute it by repeatedly increasing

a variable N 0, originally equal to N , by 10% until the violated \too small" condition becomes

satis�ed. This multiplication process does not take much CPU time, and it was extremely simple

to code and debug. Clearly, a more carefully-written code could e�ciently �nd the minimumN

that isn't \too small." Perhaps someone, someday, will write this improvement into my xsq.c

routine.

My minimal requirements on test power are contrary to most, if not all, statistical practice.

I con�ne my discussion here to the classical Neyman-Pearson framework, deferring Bayesian and

decision-theoretic considerations to some later date.

A Neyman-Pearson analysis of a statistical test of a hypothesis H0 is concerned with two

types of error [15, p. 164]:

I. We may wrongly reject H0, when it is true; and

II. We may wrongly accept H0, when it is false.

The probability of a type-I error is equal to the size of the critical region used, �. The

probability � of a type-II error can only be evaluated as a function of the \alternative hypothesis"

H1 that is assumed to be true whenever H0 is false. If we can construct such an alternative,

then we de�ne 1 � � to be the power of the test of the hypothesis H0 against the alternative
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hypothesis H1. Note that a good test of H0 against H1 would have a power approaching 1 (few

type-II errors) and a size approaching 0 (few type-I errors).

Cochran, in an admirable and frequently-cited survey article on chi-squared testing, says [6,

p. 323]:

The literature does not contain much discussion of the power function of the X2 test.

There has been little demand for this from applications, because the test is most

commonly used when we do not have a clear-cut alternative in mind, and are not in

a position to make computations of the power.

An oft-cited analysis of the asymptotic power of an X2 test was made by Mann and Wald

[20]; this analysis is summarized both by Cochran [6] and by Kendall and Stuart [15]. Mann

and Wald show that the limiting power of the �2 test (against a class of H1 approaching H0

as N increases) is maximized when k = O(n2=5), with the optimal N=k equal to about 6 and 8

respectively when N = 200, � = 0:05 and 0:01.

The Mann-Wald analysis is beautiful, and useful in any situation in which k can be varied at

will. In my application, however, k is �xed whenever one selects an RNG test. For example, if

one is studying the cross-correlation of consecutive pairs of pseudorandom positive integers less

than one thousand, then k = 106.

Also, even if I were willing and able to write a code that evaluates the power of an RNG

test against a speci�c H1, I don't know how to induce my users to formalize, and reveal, their

current H1.

Lacking the ability to modify k, and lacking a precise de�nition of H1, of what use is a power

calculation? One answer is supplied by Haberman [11]:

When applied to frequency tables with small expected cell counts, Pearson chi-

squared test statistics may be asymptotically inconsistent even in cases in which

a satisfactory chi-squared approximation exists for the distribution under the null

hypothesis. ...unless all cell probabilities are equal, it is possible to select a signi�-

cance level and cell probabilities under the alternative hypothesis such that the power

is less than the size of the test.

Zelterman [31] raises a similar warning of possible bias in a chi-squared test, suggesting a mod-

i�cation to the x2 statistic that removes \the basic cause of large bias" [11]. Both Zelterman's

correction and Haberman's analysis focus on asymmetry in the expected frequencies Npi. Quot-

ing Haberman [11]:

A reasonable index to potential di�culties is provided by h = g=
p
32(k � 1), where

g =
P

i
(1=(Npi) � k=N ). Larger values of h are associated with increasing bias

problems. As will become evident, values of h greater than .1 are disturbing, and

values of h exceeding 1 indicate serious problems of bias.

Since pi = 1=k in most cases of interest in RNG testing, h = 0. Even in the slightly-asymmetric

nulls that arise in both my mod-3 and MSB tests, h < 0:01, suggesting that the bias analyzed

by Haberman will not be a serious issue.

Koehler and Larntz, comparing the Pearson statistic x2
k
to the log-likelihood ratio statistic

G2 (see equation 30), characterize the power functions as follows [17, p. 340]:

Monte Carlo power comparisons showed that, for the null hypothesis of symmetry,

x2
k
() is slightly more powerful for near alternatives. The Pearson test is decidedly
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dominant as the alternative moves toward a boundary of Tk [the simplex of all multi-

nomial alternatives Mk] that contains a high proportion of zeros and a few relatively

large probabilities. The likelihood ratio test is dominant at alternatives that lie near

boundaries of Tk that contain a small proportion of near-zero probabilities and have

nearly-equal probabilities in the remaining cells.

In other words, even if the chi-squared statistic is not biased, it may be either more or

less powerful than other easily-computable statistics, depending upon the set of alternatives of

interest. Cressie and Read, whose I� family includes both the chi-squared statistic x2 and the

log-likelihood ratio statistic G2, write \Multinomial goodness-of-�t testing using statistic I� is

best performed:

1. for any � 2 [0; 11
2
], when no knowledge of the type of alternative is available;

2. for � = 0 (i.e.G2) if the alternative is thought to be dipped; but the approximate percentage

point should be determined by matching moments;

3. for � = 1 (i.e. x2), if the alternative is thought to be peaked, where the approximate

percentage point can be found from the chi-squared tables [7, p. 462]."

Thus, a future version of mrandommay o�er one or more alternatives to the Pearson test statistic.

Finally, power calculations can be used in Neyman-Pearson testing to adjust the relative

sizes of the two rejection areas in a two-tailed test. Since mrtest is oblivious to its user's

H1, I believe it most appropriate to use equal-area testing, accepting only x2 scores such that

�=2 < �(uX2 (x2)) � 1� �=2 in a test of size �.

3.4 Evidence Against Randomness

I believe we must resign ourselves to non-classical testing of RNGs, because we can gain only

\one-sided evidence" about randomness. By one-sided evidence, I mean that we can hope to

stumble upon a statistical test that convincingly demonstrates a source's nonrandomness, but we

cannot hope to certify that a source is indistinguishable from a random source. This one-sided

notion of evidence appears to be standard practice in RNG testing [16, 21]. Perhaps it has been

given a �rm theoretical foundation: if you know of one, please let me know.

It is possible, at least in principle, to pose the RNG testing problem in more classical terms.

For example, it is computationally feasible to decide whether a source is well-described by any

member of various classes of randomized algorithmic methods [4, 23]. The class need not include

only a �xed number of alternative hypotheses. Indeed the number of alternatives can grow,

albeit slowly, with the amount of data being analyzed. However, since I can only a�ord to run

any RNG-testing process for a �nite amount of time, a universal RNG-testing method is not

necessarily useful in practice. In a bounded amount of time, a universal method will test only a

�xed number of alternatives from a restricted class; furthermore, it is not at all clear that these

alternatives are very interesting ones.

For these reasons, I believe that any universal test should be evaluated on the merits of a

couple of its �nite pre�x tests, say the tests that are conducted in its �rst CPU-minute and its

�rst CPU-year of runtime. I would ask for a demonstration that a \practically universal RNG

test" would give one-sided evidence, in a reasonable amount of time, against all the forms of

non-randomness detected by the other RNG tests commonly administered [16, 21]. Finally, I

would not consider a �nite run of any universal test as giving useful evidence \for randomness,"
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without seeing a proof that my randomized application will give correct results if is provided a

pseudorandom source not in the class of \nonrandom sources" detectable by that run of that

universal test.

For the reasons outlined above, the RNG tests in the mrandom package are designed with a

one-sided testing methodology. If an RNG fails a single test dramatically enough, it is unsuitable

for use in any application depending on the \random" property under test. If, however, an RNG

passes all the tests we have run on it, we can say only that we haven't discovered a way in which

it is non-random.

Summarizing this train of thought, the problem of analyzing the signi�cance of a given x2

value can be reduced to the problem of analyzing the distribution of x2() under the hypothesis

of a \random" source. Since all categories are (almost) equally likely in the RNG tests imple-

mented by mrandom, I sought analytical results for tail probabilities of x2(S), for S a symmetric

multinomial. Finally, I sought results for the extreme tails, in order to support inferences of

the following form: if an RNG fails a test with � = 10�6, this can be considered evidence of

non-randomness even if this RNG has already passed a similar test thousands of times.

This inference method will, no doubt, seem strange to any statistician who believes that my

program \should" have access to all previous test results. Indeed, a later version of mrandom

might maintain a database of test results, or at least provide some support for a sequential test

procedure \with memory." For the present, however, I am not willing to write such a complicated

code.

I thus o�er rudimentary support only for the following, memory-free, sequential test for

evidence of non-randomness. Unix-literate users can write a shell script that repeatedly calls

mrtest, with command-line options specifying what RNG should be tested, how many RNG

outputs should be tested, etc. (See the next section for details.) The shell loop should be exited

whenever mrtest prints either

THIS RNG IS FAULTY! Confidence level p > 1-1.0e-9

or

This rng is faulty! Confidence level p > 1-1.0e-6

The validity of this \memoryless" inference depends on an assumption that no one will allow

such a shell script to run for more than a day (= 86400 seconds), and that each repetition of the

script will require at least a few seconds of elapsed time.

A more sophisticated user would introduce a little memory into the decision procedure. The

idea is to write a loop that terminates \successfully" (i.e. with inconclusive results regarding

the randomness of the RNG under test) after a dozen iterations, if mrtest does not produce any

output containing the word faulty in either upper or lower case. To support such use, mrtest

prints

This rng may be faulty. Confidence level p > 1-1.0e-3

if any computed x() statistic has a value that is below the cumulative 0.0005 point, or above the

cumulative 0.9995 point, of the x2(S) distribution.

Any statistically-sophisticated user is encouraged to contact the author with alternative pro-

posals for RNG testing methodologies of low memory complexity.
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3.5 Limitations of the �2 Approximation to X
2

In my �rst coding attempt, I naively assumed that the distribution of my x2
k;N

() values would

be well-approximated by the �2
�
distribution with � = k � 1 degrees of freedom, in all cases of

interest. Knuth's warning about this approximation seemed distant:

A common rule of thumb is to take N large enough so that eadch of the expected

values Npi is �ve or more; preferably, however, take N much larger than this, to get

a more powerful test [16, p. 42].

Since I was only interested in the symmetric case, this \rule of thumb" implies that, if N � 5k,

the chi-squared approximation would be valid for my analysis.

Reading a little farther in Knuth, I found that the case k = 2 is a counterexample to the \rule

of thumb." Indeed, it is not hard to show that k = 3 is also a counterexample: an X2 statistic

with N = 5k, for k < 4, is poorly approximated by �2
k�1. For example, Pr[X2

3;15 = 0] > 0:04,

but f�2
2
(0) = 0.

After preliminary experimentation with my RNG tests, I discovered that the N � 5k rule

of thumb suggests collecting \too much data" for very large k. I rarely found it necessary

to examine 5k RNG outputs before it became obvious whether or not this RNG would fail

a k-category test with equally-likely categories, for k > 104. I was particularly interested in

equidistribution tests over the whole of an RNG's range, for which k � 109. It takes many

minutes, even on a high-speed workstation, to gather and analyze N = 5k samples of an RNG's

output for such large k. Why couldn't I test the value of my x2 statistic after collecting just a

few hundred thousand samples? This reduces to a problem in mathematical statistics: what is

the distribution of x2
k;N

(S) for N � k, when k is large?

Further search through my bookshelves and my computer programs uncovered many rep-

etitions and minor variants of the N � 5k rule of thumb, with few caveats or explanations.

For example, the documentation of the relevant Splus [28] routine, prop.test, states \At the

very minimum, all (estimated) expected counts of successes or failures should be at least �ve."

Sedgewick [27] suggests a slightly stronger rule, stating that N � 10k will assure validity. How-

ever, Sedgewick's rule is contradicted by Knuth's example with k = 2, N = 21, p1 = 1=4,

p2 = 3=4; and in any event is not helpful for my question about N � k for very large k. Kendall

and Stuart pronounce [15, p. 440]

A rough rule which is commonly used is that no expected frequency (Np0i) should

be less than 5. There seems to be no general theoretical basis for this rule...

A thorough literature search revealed some tables of exact values for X2 for various cases of

small k and N [10, 30], and several proposed improvements on the X2 statistic [29, 31]. Wise

states that \the expected frequencies pi can be quite small provided they are nearly equal" [29].

Haberman says \In the special case of all pi equal, it is well known that very small values of

N=k lead to satisfactory approximation" of X2 by �2, \especially for large k" [11].

At long last, I found a paper by Koehler and Larntz stating [17, p. 343]

Clearly, for the null hypothesis of symmetry, the chi-squared approximation for the

Pearson statistic is quite adequate at the .05 and .01 nominal levels for expected

frequencies as low as .25 when k � 3, N � 10, N2=k � 10... Hence the Pearson

goodness-of-�t test based on the traditional chi-squared approximation is preferred

for the test of symmetry.
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The analysis of the following section can be read as an extension of the Koehler and Larntz

investigation, covering a few more cases: N=k < 0:25, k = 2, and/or � < :01. Also, my analysis

is for two-tailed tests of �t, as is appropriate for RNG testing.

3.6 The u-cumulative of x2(S)

My analysis starts with Johnson and Kotz's equation 11.2.4(12), de�ning an approximation to

the density of a multinomial, neglecting terms in N1=2:

P (n1; n2; :::; nk) �
1p

2�N
Q
i
pi
e�X

2
=2 (16)

where X2 is given by equation (7).

To paraphrase Johnson and Kotz[13, p. 287]: Although the \accuracy of the X2 approxima-

tion to the multinomial distribution increases as minfNp1; Np2; :::; Npkg increases and decreases
with increasing k, \it is not easy to give a simple summary" of the theoretical investigations in

this area. Furthermore, \it is important to keep in mind that there are two approximations to

be considered:

1. the accuracy of equation (16), and

2. the accuracy of the �2 distribution as an approximation to the distribution of X2."

I have made only anecdotal investigation of the inaccuracies stemming from the �rst approx-

imation. The issue here is that the x2() statistic is biased, even for a symmetric null, against

some point alternatives. This can be stated formally as follows. When comparing two test results

z1 = x2(s1) and z2 = x2(s2), the smaller value is not necessarily the less probable one: z1 < z2
does not imply dS(s1) < dS(s2). My preliminary investigations tell me that this pointwise bias

can be very large even for moderate N . Indeed, I see no reason to believe that dX2(x2(s))=dS(s)

is bounded, either from above or below by any positive constant, for any �xed k as N !1.

Still, I believe the bias of the chi-squared approximation does not greatly a�ect the utility

of the RNG tests in mrandom, since these are based on a cumulative probability function. I

formalize this belief as follows:

Conjecture 1 For any k, N , and null hypothesis M satisfying the test-feasibility conditions of

mrtest (see Section 3.2 and Table 1), and for any test result s, let z = uX2 (x2(s)). If jzj < 10,

then jz � uM (s)j < 1, where uM (s) is the u-cumulative multinomial de�ned by

uM (s)
def
= qU

0
@ X
t:dM (t)�dM (s)

dM (t)

1
A (17)

Turning to the second problem identi�ed by Johnson and Kotz, see Figures 3 and 4. These

illustrate the errors encountered for various k when N = 10 and N = 30, when using u�2
k�1

to

approximate uX2
k
.

The points on the upper curve in these plots are u�2(x
2(s)+k=N ) values: the necessity for this

continuity correction of k=N is discussed below. The crosses on the lower curve are approximate

uX2(x2(s)) values obtained by computer evaluation of the uxsq() function developed later in

this section. The abscissa is an exact calculation of the cumulative multinomial, however this is
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de�ned with an ordering on states s di�ering from that of equation (17) above. The left-to-right

ordering is by increasing values of x2(s), with ties broken in order of increasing dS(s). More

precisely, the x-coordinate x(s) of a point s is given by

x(s) = uX2;S(x
2(s))

def
= uX2 (x2(s)) �

X
t:x2(t)=x2(s)

dS(t)<dS (s)

dS(t) (18)

Summarizing the explanation above, these plots contain points at (x(s); u�2(x
2(s) + k=N )) and

crosses at (x(s); uxsq(x2(s))). The straight lines in the plot are de�ned by y = x; all the plotted

points and crosses would lie on these lines if there were no approximation errors.

Due to the symmetrical null, all \degenerate" multinomial states s (i.e. those s whose

(n1; n2; :::; nk) are permutations of each other) have the same u-value. Thus there are exactly as

many points in a plot as there are partitions (k0; k1; :::; kN) of N elements, that is, solutions of

the two equations
P

i
iki = N and

P
i
ki = k. I wrote my calculation and plotting routines in S

[2], using a few of the enhancements in Splus [28].

If I had not applied a continuity correction to the u�2 values, the left-most point in most of

my plots would be o�-scale. The necessity for the continuity correction is clear: whenever N

divides k, the value z = 0 has a �nite probability, and therefore a �nite (if sometimes small) value

for its associated normalized normal standard deviate. The continuity correction of k=N used

in my plots has approximately the right value, at least for these particular k and N . Cochran

suggests using a piecewise linear function as a continuity correction, in situations where the

\next possible" value of x2 is known; he attributes this idea to F. Yates [6]. Good, Gover, and

Mitchell suggest using a slightly di�erent piecewise linear approximation; they also discuss the

simple additive correction of k=N used in mrtest [10].

It is not hard to establish that k=N is a good \�rst term" in an asymptotically-accurate

continuity correction, even for the N � k cases of interest in this report. A good starting point

is Wallace's de�nite bound [14] on u�2(z),

w(z) � u�2(z) � w2(z) +w2(z)
�1max

�
0;

1

c�e1=(9�)
� 1

�
(19)

where

� = k � 1

w(z) =

r
z � � � � log

� z
�

�

w2(z) = w(z) +
1

3

r
2

�

and

c� =
2
p
�(�)�

�(�
2
)
p
�(2e)�

Asymptotic analysis of w(z) and w2(z) reveals that u�2
k�1

(z + k=N ) =
p
k=N + o(

p
k=N),

for all z � k=N . For larger z, a similar analysis shows that our continuity correction has little

e�ect on the value of u�2(). The next paragraph establishes that uX2(z) =
p
k=N + o(

p
k=N )

for any z � k=N . Thus either of w(z + k=N ) or w2(z+ k=N ) is a good approximation to uX2(z)

for z � k=N . Furthermore, we can (and will) use this continuity-corrected form of Wallace's

bound as a basis for an approximation to uX2(z) for larger z.
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Figure 3: Approximated X2 (dots on lower curve) and �2 (crosses on upper curve) distributions

versus the multinomial distribution for n = 10, k = 3; 5; 10; 20; 40;100.
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Figure 4: Approximated X2 (dots on lower curve) and �2 (crosses on upper curve) distributions

versus the multinomial distribution for n = 30, k = 3; 5; 10; 20; 40;100.
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To establish uX2 (z) =
p
k=N + o(

p
k=N) for any z � k=N , it su�ces to consider only the

minimum-possible value v in the range of x2(s). The minimizing s must have ni = bN=kc or
ni = dN=ke for all i, implying that

v =
(N mod k)(k � (N mod k))

N
(20)

A bit of combinatorics, along with Stirling's approximation, eastablishes the desired result: if

v � k=N , the total density dS(s) of all x
2-minimizing states s is

p
k=N + o(

p
k=N).

As noted by Good, Gover and Mitchell, the range of x2
k;N

() consists of values z such that z =

v+2ck=N , for integral c � 0 [10]. Furthermore, I observe relatively few \gaps": almost all values

of c are possible on the left tail, except when k < 5. I conclude that the continuity correction is

important only on the extreme left tail, and even then, only when N is approximately equal to

a multiple of k. In all other cases, the additive correction of k=N amounts to a trapezoidal-rule

approximation of the discrete X2 distribution by the continuous �2 distribution.

Correcting the Right Tail Approximation. Judging from the upper curves of Figures 3

and 4, the u-cumulative of the X2 distribution is not well-approximated by the u-cumulative of

the �2 distribution. I develop a right-tail correction by �nding an upper bound on uX2(), using

combinatorial analysis. My uxsq() routine computes the minimum of this bound and Wallace's

upper bound.

Throughout this analysis, I assume that all multinomial probability parameters pi are equal:

pi = 1=k. This allows me to concentrate on the case of greatest interest in RNG testing. More

importantly, it simpli�es the mathematics considerably, since all con�gurations of N distinct

items in k bins are equally likely. To transform a con�guration count into a probability, I need

merely divide by kN .

First I consider con�gurations in which some of the bins are empty. Let k0 be the number of

non-empty bins. By a straightforward convexity argument, the chi-square statistic x2(s) for such

states s is minimized for multinomial states such that all ni are equal to one of three values: 0,

bN=k0c, or dN=k0e. More precisely, x2(s) � kN=k0 � N , with equality possible when N divides

k0. Solving for k0 in the case of equality, I obtain k0 = k=(1+x2(s)=N ). Note that the minimum

possible value of x2(s), for s with k0 non-empty bins, is a decreasing function of k0.

This line of reasoning leads to the following lower bound

Pr[X2 � x] �
X

1�j�k=(1+x=N)

�
k

j

�
T (N; j)=kN (21)

where T (N; j) is the number of ways of distributing j distinct items in N bins, with at least one

item in each bin. By solving the recurrence T (N; j) = jN +
P

1<i<j

�
j

i

�
T (N; j � i) with basis

T (N; 1) = 1, either directly or with an inclusion-exclusion argument, I �nd

T (N; j) =
X

0�i�j

�
j

i

�
(�1)i(j � i)N (22)

Note that T (N; j) = jN � (j2=2)(j � 1)N + O((j � 2)N ), with T (N; j) � jN for j > N .

The lower bound (21) is tight at both extrema of the X2 distribution. At the extreme right

tail, i.e. when k0 = k=(1 + x=N ) = 1, there is just one relevant multinomial \state" (with

degeneracy k). At the extreme left tail, we have counted all multinomial states exactly once.
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My best approximation to date for the upper tail of Pr[X2 � x] is obtained by �nding the

largest term in the sum (21) by the following stochastic argument. I set

ke� =
k

1 + x=N

�
1� e�(x+N)=k

�
(23)

so that ke� is the expected number of non-empty bins when distributingN items into k=(1+x=N )

bins. When j > ke�, by the stochastic estimation above, the value of
�
k

j

�
T (N; j) is monotone

decreasing in j. When j < ke�, it is monotone increasing in j. Thus the sum in (25) can be

roughly approximated by its largest term:

X
1�j�ke�

�
k

j

�
T (N; j)=kN �

�
k

ke�

�
T (N; ke�)=k

N (24)

It is easy to show that ke� < N for x � k, implying that T (N; ke�) � (ke�)
N , establishing

Pr[X2 � x]
>�
�

k

ke�

��
ke�
k

�n
(25)

I transform my lower-bounding probability approximation (25) into an upper bound on the

associated normal standard variate by applying the upper-tail normal quantile approximation

qU(�2 log p) �
p
(�2 log p)� log ((�2 log p)� log(2�)) � log(2�) (26)

to a Stirling approximation of (25):

l(x)
def
= (2N � 2ke� � 1) log(k=ke�)� 2ke� + log(2�) (27)

Here I introduce the notation l(x) as an approximation to (�2 logPr[X2 � x]). The right-

hand side of (26) is monotone increasing in (�2 log p) for (�2 log p) > 2:83, leading to my

approximation

uxsq(x)
def
=

�
minfw2(x+ k=N ); qU(l(x))g ; if l(x) > 2:83

w2(x+ k=N ); otherwise
(28)

Note that I use Wallace's w2() function (19) as an approximation to u�2 , because it is more

accurate than his w() function on the right tail [14]. I omit his term in w�12 because it is

negligible on the right tail, and (in my experiments) this simpler form gives better results in

the center of the distribution than either his upper or lower bound. If more accuracy near the

distribution's center were required for some application, I would recommend using the Wilson-

Hilferty approximation [14] in this region.

I am not optimistic about �nding good bounds on the accuracy of (28) for N < k, even in

the limiting case of large k. However, in the next section I report the results of a pseudorandom

experiment demonstrating that (28) has reasonable accuracy near the center of the distribution

when N � 3
p
k for k = 27, 219 and 231.

3.7 On the Sample Size Required for X2 Testing

The analysis and experimental data of the previous section suggests the following classi�cation

of \computational" errors in X2 statistical analysis:
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1. Discretization error,

2. \Missing" left tail,

3. Error in the uxsq() approximation to the actual distribution on the right tail, and

4. Inaccurate \continuity correction" on the extreme left tail.

The magnitude of the discretization error can be easily bounded, at least near the center of

the distribution, except in the case of very small k. As noted previously, the possible values for

x2
k;N

() are separated by 2k=N , with larger \gaps" infrequent for k > 5 except on the extreme

right tail. The standard deviation of X2 is
p
2k � 1, suggesting that almost all \gaps" in the

range of uX2(s) should be of size 2k=(N
p
2k � 1).

The plots of Figures 3 and 4 con�rm this prediction of gap size, for small k. Also, the

experimental Q-Q plots of Figure 5 con�rm it near the center of the distribution, for several

large k when N = 3
p
k and N = 7

p
k. Note that the observed x2 values in the top plots of

Figure 4 are spaced at approximately 0.5 normalized standard deviations, in close conformance

to 2k=(3
p
k
p
2k� 1) � 0:47. The bottom plots of Figure 4 shows N = 7

p
k for the same values

of k; here we observe a spacing of 2k=(7
p
k
p
2k � 1) � 0:20.

Thus, if one is satis�ed (as I am) with rough estimates of the deviation from expectation,

N � 3
p
k is a su�cient sample size to overcome the inherent discretization error of the chi-

squared statistic. However, to obtain uxsq() scores that are precise to within 0.1 standard

deviation, a sample size of N � 14
p
k is necessary to overcome the discretization error near the

center of the distribution.

For small k, as will be shown below, N must be much larger than 14
p
k in order to avoid

other \computational" errors when interpreting x2 statistics.

Missing left tail. In many applications of x2 testing, right-tail-only tests are appropriate. In

tests of random number generators, however, one should be very interested to know if one's RNG

outputs are \too equidistributed" to be congruent with a hypothesis of a uniform distribution.

It is not hard to see that the left tail \�lls out" much more slowly than the right tail, on

an X2 distribution. Straightforward analysis reveals that the left tail contains the relatively

high-probability states near the center of the multinomial distribution. Experimental plots, such

as those in Figures 3 and 4, show the same thing: the left tail on such plots rarely goes below

�3 normalized standard deviations, but there exist states s with very large u-cumulative values

even when N is small.

As noted in equation (20), the smallest value v for an x2 statistic is v = (N mod k)(k �
(N mod k))=N . Note that v is not monotone decreasing in N . For analytic convenience, I use

the following approximation to v0, the monotone-decreasing envelope of v:

v0 = max

�
k �N;

k2

4max(N; k)

�
(29)

My code evaluates zmin = uxsq(v0; k;N ) to see if zmin > �1:645, the 5% point of a normal

deviate. I also test zmin > �4:892, the 0:5 � 10�6 point of a normal deviate. If zmin is not

rejected by these left-tail tests, my code issues an error message in the �rst case, and a warning

message in the second case. My code also calculates and prints an Nmin that would satisfy the

violated constraint, �nding an (approximate) minimum value for Nmin by multiplying the given

n by successive powers of 1.1 until the constraint is satis�ed.
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Figure 5: Quantile-quantile plots of uxsq() versus the normal standard deviate, obtained from

1000 experimental runs with k = 27, 219, 231 and N = 3
p
k, 7

p
k.
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k Nmin for � = 0:05 Nmin for � = 0:5� 10�6

2 725 2:6� 1013

3 51 6:2� 106

4 24 5:5� 104

5 17 5:6� 103

6 13 1600

10 11 182

20 3
p
k 60

30 3
p
k 48

39 3
p
k 49

40 � k � 215 3
p
k 7

p
k

k > 215 3
p
k 7:2

p
k

Table 1: Minimum n for a two-tailed X2 test of the hypothesis of a symmetric multinomial

distribution of n elements into k bins, for two con�dence intervals.

It seems di�cult to solve for Nmin in uxsq(v0; k;Nmin) = c, for c = �1:645 or �4:892, or
indeed for any other value. Expanding the logarithm and square root in the de�nition of uxsq()

with a Taylor series, however, it is easy to show that Nmin = (�c
p
2+O(1))

p
k. For c = �1:645

this gives, approximately, N � 3
p
k; judging from my code's calculations, this form is satis�ed

for all k > 10. For c = �4:892, we have c
p
2 = 6:92, implying that N � 7

p
k may be adequate

for large k. This is indeed the case for 50 � k � 215, but, according to my code's calculations,

some \low order terms" are still appreciably large for some k > 215. I �nd that N � 7:2
p
k for

k > 40 is su�cient to guarantee the existence of an X-squared outcome below the p < 0:5�10�6

point of my uxsq() approximation.

For small k, the values of Nmin rise rapidly, and my N � 3
p
k or 7:2

p
k rules-of-thumb no

longer apply. My recommendations are summarized in Table 1.

Error in uxsq(), on the extreme right tail. This analytic error is, in principle, avoidable:

we should seek a better approximation to the X2 distribution than that a�orded by the uxsq()

approximation. As shown in Figures 3 and 4, uxsq() is a signi�cant improvement over the �2

approximation on the extreme upper tail when n� k. Nonetheless, the lower-rightmost plot of

Figure 5 indicates that the uxsq() approximation has perhaps a 25% relative error for k = 231,

N = 7
p
k, when analyzing points more than two normalized standard deviations above the

mean. (An alternative explanation is that Figure 5 demonstrates some non-uniform behavior in

random()'s full-scale 31-bit output. Still, I know from my small-N plots of Figures 3 and 4 that

uxsq() has signi�cant error in the mid-right tail.)

The middle and left plots on the bottom line of Figure 5, like the plots of Figures 3 and 4,

indicate that the uxsq() approximation is accurate to within 0.2 standard deviations (i.e., to

within the discretization error) for k � 219, N = 7
p
k, for all experimental outcomes such that

�2 < uxsq() < 2.

Inaccurate continuity correction on the extreme left tail. This type of analytic error

may be di�cult to measure experimentally, for large N , since extremal outcomes are (by de�ni-

tion) infrequent. For small N , however, note that all the lower-tail points in Figures 3 and 4 lie

within a small fraction of a standard deviation from the \perfect-�t" line, except for the cases

(top-left, bottom-middle and bottom-right plots of Figure 3) in which the lower extremum v of
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Figure 6: The log-likelihood ratio statistic versus the multinomial distribution for N = 30,

k = 5; 20; 100.

the X2 curve is less than �1:5 standard deviations from the mean. In such cases, my code would

print an error message, asking for larger N , because the v0 value (see equation (29)) is too close

to the mean.

I tentatively conclude that N � 3
p
k is su�cient for two-tailed testing of X2 variates with a

90% con�dence interval, with results accurate to within 0.5 standard deviations, if k > 10. For

smaller k, my program will print an appropriate lower bound on N , which may be much larger

than this. If results accurate to within 0.2 standard deviations are desired for any � > 10�3, the

large-k rule is N � 7:2
p
k. This rule also allows two-tailed testing for any � > 10�6, however

upper-tail violations may be over-reported due to the uxsq() errors in this regime.

3.8 Other Test Statistics

The log-likelihood ratio statistic,

G2()
def
= 2

X
1�i�k

ni log

�
ni

Npi

�
(30)

is sometimes suggested as an improvement to the x2 statistic. Like x2
k;N

, under the null hypoth-

esis G2() is distributed as �2
k�1 in the limit of large N . I have briey investigated this statistic,

concluding that it deviates markedly from �2 almost everywhere when N < k. For example, see

the plots of Figure 6: the log-likelihood ratio shows excellent conformity with �2 when k = 5

and N = 30, but huge errors when k = 100 and N = 30. I thus concur with Cressie and Read's

statement that the percentage points of the G2 statistic should not be computed from the �2

tables [7, p. 462]. In contrast, Figure 4 shows that the continuity-corrected u�2
99
(x2(s)+k=N ) is a

good approximation to uX2
100;30

(x2(s)), everywhere except for those s lying outside 3 normalized

standard deviations of the mean.

Despite the di�culty of interpreting a G2() test statistic, especially in the sparse case, a future

version of mrtest might calculate the G2() statistic for every RNG test it runs. Perhaps it could

interpret the statistic accurately, possibly using a transform method [1] to closely approximate
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uG2, uX2 , and even uM for all the k and N of interest in RNG testing. Alternatively, we might

develop a general Monte Carlo method for evaluating these u-cumulatives.

Many test statistics other than x2() and G2 have been proposed. I am most intrigued by

the E-test and the B-test [12]. The test statistics are, respectively, maxi ni and mini ni. Their

distributions under the null hypothesis appear to be tractable, and I know of some randomized

algorithms whose correctness proofs depend on an equidistribution hypothesis expressed in terms

of maxi ni.

4 Summary

We o�er a standardized C-language programming interface for all random number generators.

This should greatly ease the programming nuisance, and possibility for the introduction of bugs,

when switching RNGs to validate results, when generating integers in a large range, when running

multifaceted experiments requiring multiple starts (or better, restarts) of an RNG, and when

documenting the RNGs and RNG states used in an experimental run.

Our X2 analysis routine is interesting in its own right. It di�ers markedly from the commonly

employed chi-squared approximation in the sparse and symmetric null hypothesis (n items uni-

formly distributed among k bins) typical of RNG test procedures. The tests implemented in

mrtest.c are able to distinguish the awed RNGs still in common use from the better ones in

our package, for n as small as 3
p
k for k > 10. Our X2-based tests of randomness are thus both

useful and computationally feasible in situations (e.g. k = 109, N = 105) far removed from those

recommended by the traditional \rule of thumb," N � 5k, for X2 testing.
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