
Richard M. Karp

Professor Richard M. Karp was born in Boston, Massachusetts in 1935 and was edu-
cated at the Boston Latin School and Harvard University, where he received the Ph.D.
in Applied Mathematics in 1959. From 1959 to 1968 he was a member of the Mathe-
matical Sciences Department at the IBM Thomas J. Watson Research Center. From
1968 to 1994 he was a Professor at the University of California, Berkeley, where he
had appointments in Computer Science, Mathematics and Operations Research. From
1988 to 1995 he was also associated with the International Computer Science Insti-
tute in Berkeley. In 1994 he retired from Berkeley and was named University Professor
(Emeritus). In 1995 he moved to the University of Washington, where he is a Pro-
fessor of Computer Science and Engineering and an Adjunct Professor of Molecular
Biotechnology.
The unifying theme in Karp's work has been the study of combinatorial algorithms.
His most signi�cant work is the 1972 paper \Reducibility Among Combinatorial Prob-
lems," which shows that many of the most commonly studied combinatorial problems
are disguised versions of a single underlying problem, and thus are all of essentially the
same computational complexity. Much of his subsequent work has concerned the devel-
opment of parallel algorithms, the probabilistic analysis of combinatorial optimization
problems, and the construction of deterministic and randomized algorithms for com-
binatorial problems. His current research is concerned with strategies for sequencing
the human genome, the physical mapping of large DNA molecules, the analysis of
regulatory pathways in cells, and other combinatorial problems arising in molecular
biology.
Professor Karp has received the U.S. National Medal of Science, the Harvey Prize
(Technion), the Turing Award (ACM), the Centennial Medal (Harvard), the Fulkerson
Prize (AMS and Math. Programming Society), the von Neumann Theory Prize(ORSA-
TIMS), the Lanchester Prize (ORSA) the von Neumann Lectureship (SIAM) and the
Distinguished Teaching Award (Berkeley). He is a member of the National Academy
of Sciences, the National Academy of Engineering and the American Philosophical
Society, as well as a Fellow of the American Academy of Arts and Sciences. He holds
four honorary degrees.



The Mysteries of Algorithms 147

The Mysteries of Algorithms

This article is about the key events and decisions in my career as a computer
scientist. I belong to the �rst generation that came to maturity after the invention
of the digital computer. My school years coincided with enormous growth in the
support of science in the United States as a consequence of the great scienti�c
breakthroughs during World War II, followed by the Sputnik era of the late 50's.
I have been able to work in two great research universities and a great industrial
research laboratory. No previous generation had access to such opportunities.
If I had been born a few years earlier I would have had a very di�erent, and
undoubtedly less satisfying, career.

In the course of my career I have had to make a number of critical choices.
As a student, I had to decide where to go to school and which subjects to study.
Later, there were decisions about where to work and which professional respon-
sibilities to undertake. Most importantly, there were decisions about entering or
initiating new research areas. I have been guided through this maze of decisions
by three principles:

Understand what you are good at and what you like to do, and choose accord-
ingly. In the words of Socrates, \Know thyself."

Disregard the fashions of the day and search for new areas of research that are
about to become important. In the words of the great hockey player and
philosopher Wayne Gretzky,\Skate to where the puck is gonna be."

To �nd exciting problems, look at the interfaces between disciplines.

My work has touched on many �elds, including computer science, mathe-
matics, operations research, statistics, engineering and molecular biology, but
the unifying theme has been the study of combinatorial algorithms. After more
than four decades and exposure to countless algorithms, I continue to �nd the
subject full of surprises and mysteries.

Getting Educated

Mathematics was my favorite subject in school. Between the ages of ten and
fourteen I developed some skill at mental arithmetic, culminating in the ability
to entertain my friends by multiplying four-digit numbers in my head. At the age
of 13 I was exposed to plane geometry and was wonderstruck by the power and
elegance of formal proofs. I recall feigning sickness in order to stay home from
school and solve geometry problems. I was fortunate to receive a solid classical
education at Boston Latin School, the second-oldest school (after Harvard) in
the country. Next to mathematics my favorite subject was Latin, which I studied
for six years. I took special pleasure in diagramming Latin sentences, a pursuit
not very di�erent from the solution of mathematical puzzles.

Having sailed through Boston Latin with little di�culty I had developed an
inated sense of my own ability. This was quickly dispelled at Harvard, where I



148 Karp

found that I actually had to work in order to earn good grades, and that there
were many students who equalled or surpassed my ability. I discovered that my
writing ability was no better than workmanlike, and that laboratory science was
de�nitely not the �eld for me.

The early mathematics courses were easy enough, but in the second half of my
junior year I faced a tougher challenge in a course based on Halmos' monograph
\Finite-Dimensional Vector Spaces," which developed linear algebra from the
point of view of operator theory. The course coincided with the ending of an
ill-fated sophomore romance. My unhappy love life shattered my morale, and for
a time I retreated from the world, spending my afternoons at the Boylston Chess
Club in Boston. As a result I spent virtually no time on mathematics, failed to
master the Halmos text, and did poorly in the course.

In my senior year I greatly enjoyed a course in probability theory from Hartley
Rogers, who encouraged me very strongly to pursue a mathematical career.
On the other hand, I felt overmatched in Ahlfors' graduate course in Complex
Analysis, where the students included a future Nobel Prize winner, a future
Fields Medalist and a mathematical prodigy who was taking the course as a
freshman.

By the middle of my senior year I had concluded that a career in pure math-
ematics was not for me. Being reluctant to leave Cambridge, and even more
reluctant to work for a living, I decided to become a Ph.D. student at the Har-
vard Computation Lab, where Howard Aiken had built the Mark I and Mark
IV computers. A faculty member at the Lab advised me to drop Prof. Ahlfors'
Complex Analysis course immediately in favor of a solid introductory course in
Accounting. Being an obedient young man I accepted this advice and approached
Prof. Ahlfors for permission to drop the course. At �rst he was reluctant, but
when he heard that I was giving up his course for one in Accounting he must
have decided that there was no hope for me, as he gave his consent at once. At
that point the die was cast - I was not to become a pure mathematician.

The Computation Lab

When I entered the Comp Lab in 1955 there were no models for a curriculum
in the subject that today is called computer science. The young faculty o�ered
courses in numerical analysis, switching theory, data processing, computational
linguistics and operations research, and outside the Lab I took a variety of courses
in applied mathematics, electrical engineering, probability and statistics. My
performance was spotty, but I seemed to have a special feel for those topics
that involved probability and discrete mathematics, and my successes in those
areas produced a feeling of con�dence. Sputnik in 1957 led to boom times in
technical �elds, and summer jobs became plentiful. Productive summers with
M.I.T. Lincoln Lab and General Electric further forti�ed my sense that I might
amount to something after all. A major turning point was Tony Oettinger's
numerical analysis seminar in the fall of 1957, where I had the opportunity to
give some talks, and discovered the pleasure of teaching.



The Mysteries of Algorithms 149

Don Knuth has called attention to a breed of people who derive great aes-
thetic pleasure from contemplating the structure of computational processes. I
still recall the exact moment when I realized that I was such a person. It was
when a fellow student, Bill Eastman, showed me the Hungarian Algorithm for
solving the Assignment Problem. I was fascinated by the elegant simplicity with
which the algorithm converged inexorably upon the optimal solution, performing
no arithmetic operations except addition and subtraction.

My Ph.D. dissertation was based on the idea that the ow of control in
a computer program can be represented by a directed graph, and that graph
theory algorithms can be used to analyze programs. In a loose sense this work
was a precursor of the later development of the �eld of code optimization. Tony
Oettinger was my supervisor, and my other readers were Ken Iverson and Gerry
Salton.

The Comp Lab's old boy network was already operative by the time I �nished
my dissertation, and Fred Brooks, who had preceded my by two years at the
Lab and had become a major player at IBM, set me up with a wide range
of interviews. I accepted a position in the Mathematical Sciences Department
within IBM's Research Division.

Nirvana on the Hudson

In January, 1959 I reported for work at the Lamb Estate, a former sanitarium
for wealthy alcoholics that was the temporary home of the edgling IBM Re-
search Division. There was a diverse group of applied mathematicians under
the direction of Herman Goldstine, John von Neumann's long-time collaborator,
and an exciting group under Nat Rochester, doing what would today be called
cognitive science. The atmosphere was informal; a high point of each day was
the lunchtime frisbee game on the vast lawns that surrounded the Lamb Estate.

I was assigned to work on algorithms for logic circuit design under the direc-
tion of the topologist Paul Roth, who had made fundamental contributions to the
subject. It was this work that �rst brought me up against the harsh realities of
combinatorial explosions. While some of the algorithms our group devised scaled
well with increasing problem size, others were essentially enumerative, and their
running time escalated exponentially as the number of variables increased.

To my great good fortune IBM Research became a mecca for combinatorial
mathematicians during the early sixties. Although computers were primitive by
today's standards, they could already be used to solve logistical problems of
signi�cant size. Splendid algorithms for linear programming and network ow
problems had been discovered, and the �eld of combinatorial algorithms was in a
stage of rapid development. In the summer of 1960 the leaders of the �eld came
together at the Lamb Estate for an extended period. Among the visitors were
Richard Bellman, George Dantzig, Merrill Flood, Ray Fulkerson, Ralph Gomory,
Alan Ho�man, Ed Moore, Herb Ryser, Al Tucker and Marco Schutzenberger.
Soon thereafter IBM brought in Ralph Gomory and Alan Ho�man to build a
combinatorics research group.



150 Karp

Alan Ho�man became my mentor. He is a virtuoso at linear algebra, linear
programming and algebraic graph theory, and has a talent for explaining mathe-
matical ideas with clarity, precision and enthusiasm. Although my interests were
more algorithmic than his, his style of exposition became a model for my own.
I gained an understanding of the theory of linear programming and network
ows, and came to appreciate how special their structure was compared to nas-
tier problems such as integer programming and the traveling-salesman problem.
During this period Mike Held and I developed the 1-tree heuristic, which remains
the best method of computing a tight lower bound on the cost of an optimal
traveling-salesman tour. With a bit of help from Alan Ho�man and Phil Wolfe
we realized that our heuristic was a special case of an old method called La-
grangian relaxation; this connection motivated many other researchers to apply
Lagrangian relaxation to di�cult combinatorial optimization problems.

I also visited the National Bureau of Standards to work with Jack Edmonds
on network ow problems. We pointed out, perhaps for the �rst time, the dis-
tinction between a strongly polynomial algorithm, whose running time (assuming
unit-time arithmetic operations) is bounded by a polynomial in the dimension of
the input data, and a polynomial-time algorithm, whose running time is bounded
by a polynomial in the number of bits of input data. We gave the �rst strongly
polynomial algorithm for the max-ow problem. For the min-cost ow problem
we introduced a scaling technique that yielded a polynomial-time algorithm, but
we were unable to �nd a strongly polynomial algorithm. The �rst such algorithm
was obtained by Eva Tardos in the early 80's.

A few years before our collaboration began Edmonds had published a mag-
ni�cent paper entitled \Paths, Trees and Flowers"which gave an algorithm for
constructing a matching of maximum cardinality in any given graph. The paper
began by introducing the concept of a \good algorithm," Edmonds' term for
what is now called a polynomial-time algorithm. He showed that his algorithm
for matching was a good one, and, even more importantly, raised the possibility
that, for some combinatorial optimization problems, a good algorithm might not
exist. This discussion by Edmonds was probably my �rst exposure to the idea
that some standard combinatorial optimization problem might be intractable in
principle, although I later learned that Alan Cobham and Michael Rabin had
thought along similar lines, and that the possibility had been discussed exten-
sively in Soviet circles.

IBM had a strong group in formal models of computation under the leader-
ship of Cal Elgot. Through my contacts with that group I became aware of devel-
opments in automata theory, formal languages and mathematical logic, and fol-
lowed the work of pioneers of complexity theory such as Rabin, McNaughton and
Yamada, Hartmanis and Stearns, and Blum. Michael Rabin paid an extended
visit to the group and became my guide to these subjects. From Hartley Rogers'
splendid book \Theory of Recursive Functions and E�ective Computability" I
became aware of the importance of reducibilities in recursive function theory, but
the idea of using subrecursive reducibilities to classify combinatorial problems
did not yet occur to me.



The Mysteries of Algorithms 151

My own work on formal models centered around parallel computation. Ray
Miller, Shmuel Winograd and I did work that foreshadowed the theory of systolic
algorithms. Miller and I introduced the parallel program schema as a model of
asynchronous parallel computation; in the course of this work we introduced
vector addition systems and initiated the study of related decision problems.
The most notorious of these was the reachability problem, which after many
false tries was proved to be decidable through the e�orts of several researchers,
culminating in a 1982 paper by Rao Kosaraju.

A Zest for Teaching

I moved to Berkeley at the end of 1968 in order to lead a more rounded life
than the somewhat isolated suburban environment of IBM could provide. One
aspect of this was the desire to be more involved with students. My father was a
junior high school mathematics teacher, and I have fond memories of visiting his
classroom as a youngster. He was undoubtedly the role model responsible for my
attraction to teaching. I have been involved in teaching throughout my career
and have always enjoyed it. Recently Greg Sorkin, a former student, reminded
me of some thoughts on teaching that I wrote up for the Berkeley students in
1988. I include them here.

Thoughts on Teaching

Preparation

Follow the Boy Scout motto: Be Prepared!
Never select material that doesn't interest you. Boredom is deadly and con-

tagious. If the standard syllabus is boring, then disregard it and pick material
you like.

Figure out your notation and terminology in advance. Know exactly where
you're going, and plan in detail what you are going to write on the board.

Check out the trivial details. They're more likely to hang you up than the
major points.

Make sure you understand the intuition behind the technical results you are
presenting, and �gure out how to convey that intuition.

Debug your assignments and exams. They're just as important as the lectures.
Don't teach straight out of a textbook or from old notes. Recreate the ma-

terial afresh, even if you're giving the course for the tenth time.

Structuring the Material

Ideally, each lecture should be a cohesive unit, with a small number of clearly
discernible major points.

In organizing your lecture, use the principles of structured design: top-down
organization, modularity, information hiding, etc.



152 Karp

Make sure the students have a road map of the material that is coming up.

Conducting the Lecture

Take a few minutes before each class to get relaxed.

Start each lecture with a brief review.

Go through the material at a moderate but steady pace. Don't worry about
covering enough material. It will happen automatically if you don't waste time.

Write lots on the board; it helps the students' comprehension and keeps you
from going too fast. Print, even if your handwriting is very clear. Cultivate the
skill of talking and writing at the same time.

Talk loud enough and write big enough.

Maintain eye contact with the class.

Develop a sense of how much intensity the students can take. Use humor for
a change of pace when the intensity gets too high.

Be willing to share your own experiences and opinions with the students, but
steer clear of ego trips.

Make it clear that questions are welcome, and treat them with respect. In
answering questions, never obfuscate, mystify or evade in order to avoid showing
your ignorance. It's very healthy for you and the students if they �nd out that
you're fallible.

Be exible, but don't lose control of the general direction of the lecture, and
don't be afraid to cut o� unproductive discussion. You're in charge; it's not a
democracy.

If you sense from questions or class reaction that you're not getting through,
back up and explain the material a di�erent way. The better prepared you are,
the better you will be able to improvise.

Try the scribe system, in which the students take turns writing up the lectures
and typesetting the notes.

Start on time and end on time.

The Professorial Life

The move to Berkeley marked the end of my scienti�c apprenticeship. At IBM
I had enjoyed the mentorship of Alan Ho�man and Michael Rabin, and the
opportunity to work with a host of other experienced colleagues. At Berkeley I
worked mainly with students and young visiting scientists, and I was expected
to serve as their mentor. The move also caused a sudden leap in my professional
visibility. From 1968 onward I have been steadily besieged with requests to write
letters of reference, do editorial work and serve on committees. With the advent
of e-mail, the ow of requests has become a deluge; I o�er my sincere apologies
to any readers to whom I have been e-brusque.

A professor's life is a juggling act. The responsibilities of teaching, research,
advising, committee work, professional service and grantsmanship add up to a



The Mysteries of Algorithms 153

full agenda. Fortunately, I have always heeded the advice of my former colleague
Beresford Parlett: \If it's not worth doing, it's not worth doing well."

Parlett's wise counsel has helped me resist administrative responsibilities,
but there was one period when I could not avoid them. Berkeley in the 60's
was a cauldron of political controversy, and the mood of dissent extended to
computer science. The faculty were divided as to whether to maintain computer
science in its traditional home within Electrical Engineering, or to establish it
as a separate department in Letters and Science. In 1967 the administration
decided to do both, and I was one of several faculty hired into the newly formed
Computer Science Department. The two-department arrangement was awkward
administratively and only exacerbated the tensions between the two groups. In
1972 the administration decreed that the two groups of computer science faculty
should be combined into a Computer Science Division within the Department
of Electrical Engineering and Computer Sciences. As the faculty member least
tinged with partisanship I emerged as the compromise candidate to head the new
unit, and I somewhat reluctantly took the job for two years. I expected a period
of turmoil, but once the merger was a fait accompli the tensions dissipated and
harmony reigned. Much of the credit should go to Tom Everhart, the department
chair at the time and later the Chancellor of Caltech. Tom nurtured the new
unit and respected its need for autonomy.

Once the political disputes had healed Berkeley was poised to become a great
center for computer science. In theoretical computer science the merger created a
strong group of faculty, anchored by Manuel Blum, Mike Harrison, Gene Lawler
and myself. Berkeley became a mecca for outstanding graduate students, and has
remained so to this day. It is one of the handful of places that have consistently
had a thriving community of theory students, and there has always been a spirit
of cooperation and enthusiasm among them. A major reason for the success
of theory at Berkeley has been Manuel Blum, a deep researcher, a charismatic
teacher, and the best research adviser in all of computer science.

Over the years at Berkeley I supervised thirty-�ve Ph.D. students. I have
made it a rule never to assign a thesis problem, but to work together with each
student to develop a direction that is signi�cant and �ts the student's abilities
and interests. Each relationship with a thesis student is unique. Some students
are highly independent and merely need an occasional sounding board. Others
welcome collaboration, and in those cases the thesis may become a joint e�ort.
Some students have an inborn sense of how to do research, while others learn the
craft slowly, and only gradually develop con�dence in their ability. My greatest
satisfaction has come from working with these late bloomers, many of whom
have gone on to successful research careers.

NP-Completeness

In 1971 I read Steve Cook's paper \The Complexity of Theorem-Proving Pro-
cedures," in which he proved that every set of strings accepted in polynomial
time by a nondeterministic Turing machine is polynomial-time reducible to SAT



154 Karp

(the propositional satis�ability problem). Cook stated his result in terms of
polynomial-time Turing reducibility, but his proof demonstrates that the same
result holds for polynomial-time many-one reducibility. It follows that P = NP

if and only if SAT lies in P . Cook also mentioned a few speci�c problems that
were reducible to SAT as a consequence of this theorem. I was not following
complexity theory very closely, but the paper caught my eye because it made a
connection with real-world problems. I knew that there were people who really
wanted to solve instances of SAT, and Cook's examples of problems reducible to
SAT also had a real-world avor. I realized that the class of problems reducible
to SAT with respect to many-one polynomial-time reducibility (the class that we
now call NP) included decision problems corresponding to all the seemingly in-
tractable problems that I had met in my work on combinatorial optimization, as
well as many of those that I had encountered in switching theory. Thus Cook's
result implied that, if SAT can be solved in polynomial time, then virtually
all the combinatorial optimization problems that crop up in operations research,
computer engineering, economics, the natural sciences and mathematics can also
be solved in polynomial time.

It was not by accident that I was struck by the signi�cance of Cook's The-
orem. My work in combinatorial optimization had made me familiar with the
traveling-salesman problem, the maximum clique problem and other di�cult
combinatorial problems. Jack Edmonds had opened my eyes to the possibility
that some of these problems might be intractable. I had read a paper by George
Dantzig showing that several well-known problems could be represented as in-
teger programming problems, and suggesting that integer programming might
be a universal combinatorial optimization problem. My reading in recursion the-
ory had made me aware of reducibilities as a tool for classifying computational
problems.

It occurred to me that other problems might enjoy the same universal char-
acter as SAT. I called such problems polynomial complete, a term which was
later supplanted by the more appropriate term NP-complete. I set about to con-
struct reductions establishing the NP-completeness of many of the seemingly
intractable problems that I had encountered in my work on combinatorial algo-
rithms.

It was an exciting time because I had the clear conviction that I was doing
work of great importance. Most of the reductions I was after came easily, but
the NP-completeness of the Hamiltonian circuit problem eluded me, and the �rst
proofs were given by Gene Lawler and Bob Tarjan, who were among the �rst
to grasp the signi�cance of what I was doing. The �rst opportunity to speak
about NP-completeness came at a seminar at Don Knuth's home. In April, 1972
I presented my results before a large audience at a symposium at IBM, and in the
following months I visited several universities to give talks about NP-complete
problems. Most people grasped the signi�cance of the work, but one eminent
complexity theorist felt that I was merely giving a bunch of examples - and I
suppose that, in a sense, he was right. A year or so later I learned that Leonid



The Mysteries of Algorithms 155

Levin, in the Soviet Union, had independently been working along the same lines
as Cook and myself, and had obtained similar results.

The early work on NP-completeness had the great advantage of putting com-
putational complexity theory in touch with the real world by propagating to
workers in many �elds the fundamental idea that computational problems of
interest to them may be intractable, and that the question of their intractability
can be linked to central questions in complexity theory. Christos Papadimitriou
has pointed out that in some disciplines the term NP-completeness has been used
loosely as a synonym for computational di�culty. He mentions, for example, that
Di�e and Hellman, in their seminal paper on public-key cryptography, cited NP-
completeness as a motivation for positing the existence of one-way functions and
trapdoor functions, even though it can be shown that, when translated into a de-
cision problem, the problem of inverting a one-way function lies inNP\co�NP ,
and thus is unlikely to be NP-complete.

The study of NP-completeness is more or less independent of the details of the
abstract machine that is used as a model of computation. In this respect it di�ers
markedly from much of the earlier work in complexity theory, which had been
concerned with special models such as one- or two-tape Turing machines and
with low levels of complexity such as linear time or quadratic time. For better
or for worse, from the birth of NP- completeness onward, complexity theory
has been mainly concerned with properties that are invariant under reasonable
changes in the abstract machine and distortions of the time complexity measure
by polynomial factors. The concepts of reducibility and completeness have played
a central role in the e�ort to characterize complexity classes.

After my 1972 paper I did little further work on NP -completeness proofs.
Some colleagues have suggested that I had disdain for such results once the
general direction had been established, but the real reason is that I am not
particularly adept at proving re�ned NP -completeness results, and did not care
to compete with the virtuosi of the subject who came along in the 70's.

Dealing with NP-Hard Problems

There is ample circumstantial evidence, but no absolute proof, that the worst-
case running time of every algorithm for solving an NP -hard optimization prob-
lem must grow exponentially with the size of the instance. Since NP -hard prob-
lems arise frequently in a wide range of applications they cannot be ignored;
some means must be found to deal with them.

The most fully developed theoretical approach to dealing withNP -hard prob-
lems is based on the concept of a polynomial-time approximation algorithm.
An NP -hard minimization problem is said to be r-approximable if there is a
polynomial-time algorithm which, on all instances, produces a feasible solution
whose cost is at most r times the cost of an optimal solution. A similar de�nition
holds for maximization problems.

NP -hard problems di�er greatly in their degree of approximability. The min-
imum makespan problem in scheduling theory and the knapsack problem are



156 Karp

(1 + �)- approximable for all positive �. By a recent spectacular result due to
Sanjeev Arora, the Euclidean traveling-salesman problem also enjoys this prop-
erty, but the execution time of the approximation algorithm grows very steeply
as a function of 1

�
. Many problems are r-approximable for certain values of r but,

unless P = NP , are not r-approximable for every r > 1. Unless P = NP , the
maximum clique problem and the minimum vertex coloring problem in graphs
are not r-approximable for any r.

The theory of polynomial-time approximation algorithms is elegant, but for
most problems the approximation ratios that can be proven are too high to be of
much interest to a VLSI designer or a foreman in a factory who is seeking near-
optimal solutions to speci�c problem instances. Even when a problem is (1+ �)-
approximable for an arbitrarily small �, the time bound for the approximation
algorithm may grow extremely rapidly as � tends to zero.

In practice, many NP -hard problems can reliably be solved to near-
optimality by fast heuristic algorithms whose performance in practice is far bet-
ter than their worst-case performance. In order to explain this phenomenon it is
necessary to depart from worst-case analysis and instead study the performance
of fast heuristic algorithms on typical instances. The di�culty, of course, is that
we rarely have a good understanding of the characteristics of typical instances.

In 1974 I decided to study the performance of heuristics from a probabilistic
point of view. In this approach one assumes that the problem instances are drawn
from a probability distribution, and tries to prove that a fast heuristic algorithm
�nds near-optimal solutions with high probability. Probabilistic analysis has been
a major theme in my research. I have applied it to the traveling-salesman prob-
lem in the plane, the asymmetric traveling-salesman problem, set covering, the
subset-sum problem and 1-dimensional and 2-dimensional bin-packing problems,
as well as problems solvable in polynomial time, such as linear programming,
network ow and graph connectivity. There is a signi�cant school of researchers
working along these lines, but the approach has certain technical limitations. To
make the analysis tractable it is usually necessary to restrict attention to very
simple heuristics and assume that the problem instances are drawn from very
simple probability distributions, which may not reect reality. The results are
often asymptotic, and do not reveal what happens in the case of small problem
instances. The results we are obtaining do shed some light on the performance of
heuristics, but the reasons why heuristics work so well in so many cases remain
a mystery.

Randomization and Derandomization

In the Fall of 1975 I presented a paper on probabilistic analysis at a symposium
at Carnegie-Mellon University, giving some early results and a road map for
future research. At the same symposium Michael Rabin presented a seminal
paper on randomized algorithms. A randomized algorithm is one that receives, in
addition to its input data, a stream of random bits that it can use for the purpose
of making random choices. The study of randomized algorithms is necessarily



The Mysteries of Algorithms 157

probabilistic, but the probabilistic choices are internal to the algorithm, and no
assumptions about the distribution of input data are required.

As I stated in a 1991 survey paper, \ Randomization is an extremely im-
portant tool for the construction of algorithms. There are two principal types
of advantages that randomized algorithms often have. First, often the execution
time or space requirement of a randomized algorithm is smaller than that of
the best deterministic algorithm that we know of for the same problem. But
even more strikingly, if we look at the various randomized algorithms that have
been invented, we �nd that invariably they are extremely simple to understand
and to implement; often, the introduction of randomization su�ces to convert
a simple and naive deterministic algorithm with bad worst-case behavior into a
randomized algorithm that performs well with high probability on every possible
input."

Inspired by Rabin's paper and by the randomized primality test of Solovay
and Strassen, I became a convert to the study of randomized algorithms. With
various colleagues I have worked on randomized algorithms for reachability in
graphs, enumeration and reliability problems, Monte Carlo estimation, pattern
matching, construction of perfect matchings in graphs, and load balancing in
parallel backtrack and branch-and-bound computations. We have also investi-
gated randomized algorithms for a variety of on-line problems and have made
a general investigation of the power of randomization in the setting of on-line
algorithms. I take special pride in the fact that two of my former students,
Rajeev Motwani and Prabhakar Raghavan, wrote the �rst textbook devoted to
randomized algorithms.

In a 1982 paper Les Valiant suggested the problem of �nding a maximal
independent set of vertices in a graph as an example of a computationally trivial
problem that appears hard to parallelize. Avi Wigderson and I showed that
the problem can be parallelized, and in fact lies in the class NC of problems
solvable deterministically in polylog time using a polynomial-bounded number
of processors. It was fairly easy to construct a randomized parallel algorithm of
this type, and the harder challenge was to convert the randomized algorithm to a
deterministic one. We achieved this by a technique that uses balanced incomplete
block designs to replace random sampling by deterministic sampling. This was
one of the �rst examples of derandomization - the elimination of random choices
from a randomized algorithm. Later, Mike Luby and Noga Alon found simpler
ways, also based on derandomization, to place the problem in NC.

In 1985 Nick Pippenger, Mike Sipser and I gave a rather general method of
reducing the failure probability of a randomized algorithm exponentially at the
cost of a slight increase in its running time. Our original construction, which
is based on expander graphs, has been re�ned by several researchers, and these
re�nements constitute an important way of reducing the number of random bits
needed to ensure that a randomized algorithm achieves a speci�ed probability
of success.



158 Karp

The Complexity Year

Early in 1985 the mathematician Steve Smale asked me to join him in a proposal
for a special year in computational complexity at the Mathematical Sciences
Research Institute in Berkeley. I gladly agreed, and our proposal was accepted
by the Advisory Committee of the Institute, which had already recognized the
signi�cance of complexity theory as a mathematical discipline, and had been
hoping for just such a proposal. The National Science Foundation provided gen-
erous funding, and over the next several months I worked with Smale and Cal
Moore, the Associate Director of the Institute, to arrange for an all-star cast
of young computer scientists and mathematicians to work at the Institute for a
year, and to attract a number of the leading senior scientists in the �eld.

In the informal atmosphere of the Institute we worked hard, both at the
blackboard and on hikes in the Berkeley hills, on structural complexity, cryp-
tography, computational number theory, randomized algorithms, parallel com-
putation, on-line algorithms, computational geometry, graph algorithms, and
numerical algorithms. Although we didn't crack the P:NP problem, the Com-
plexity Year met its main goal of broadening the outlook of the young scientists
by exposing them to a wide variety of areas within complexity theory. It also
led to a marriage between two of the young scientists, whose romance ourished
after I asked them to work together to organize the Institute's colloquium series.

Some theoretical computer scientists believe that precious research funds are
better spent on individual investigators than on special programs such as the
Complexity Year that create a concentration of researchers at a single location.
Both kinds of funding are crucially important, but I believe that the special
programs provide a breadth of exposure to new ideas that is extremely bene�cial
to young scientists, and could not be provided through individual grants. Special
programs can attract large-scale funding that would not otherwise be available
at all. Over the past decade I have served on the External Advisory Committee
of DIMACS, the NSF Science and Technology Center for Discrete Mathematics
and Theoretical Computer Science, and have seen how the special years there
have strengthened the research communities in a number of emerging areas,
including computational molecular biology, which has become one of my own
main interests.

A Spirited Debate

In 1995 I agreed to chair a committee to provide advice on the directions NSF
should take in the funding of theoretical computer science. The committee rec-
ognized that the theory community had a splendid record of achievement, but
also felt that the community was not achieving the maximum possible impact
on the rest of computer science and on the phenomenal developments in infor-
mation processing that were transforming our society. We developed a set of
recommendations for increasing the impact of theory by communicating our re-
sults to nonspecialists, restructuring computer science education to bring theory



The Mysteries of Algorithms 159

and applications closer together, and broadening the scope of theory research to
connect it better with emerging applications.

In the Fall of 1995, just before the IEEE Symposium on Foundations of Com-
puter Science, I had the pleasure of attending a program of lectures organized
by some of my colleagues in honor of my sixtieth birthday. I thoroughly enjoyed
the company of former students and other old friends, the interesting lectures,
some of which pursued themes from my work, as well as the somewhat overstated
praise that is customary at events of this sort.

Just a few days later, another memorable event occurred. I was asked to
present an oral report at an evening session of the symposium, laying out the
concerns of our committee. In the afterglow of my birthday celebration I put
my report together hastily and made some fundamental errors. I spent very
little time extolling the past achievements of theory, feeling that I was address-
ing an audience that didn't need to be reminded of them. Instead of stressing
the advantages and opportunities that would come from reaching out to applica-
tions, I took a negative tone, criticizing the theory community for being ingrown,
worshiping mathematical depth, working on arti�cial problems and making un-
supported claims of applicability. As a result my positive message was almost
completely lost, and I became the focus of a �restorm of criticism. I was accused
of trying to prescribe what people should and shouldn't work on, failing to ap-
preciate the achievements of theory, providing ammunition for the enemies of
theory, and selling out to anti-theory forces in the funding agencies.

Upon reection I realized that my criticisms had been excessively harsh, and
could only detract from the e�ectiveness of our report. Over the ensuing months
the committee produced a report with a more positive tone. My coauthors and
I expected that, with the submission of our report, we had put the incident
behind us, but upon arriving at the May, 1996 ACM Symposium on Theory of
Computing I learned that this was not the case. Oded Goldreich and Avi Wigder-
son had circulated an extended critique of our report, and an ad hoc meeting
was scheduled at which Wigderson and I were to present our viewpoints. The
Goldreich-Wigderson critique stressed the fundamental importance of TOC as an
independent discipline with deep scienti�c and philosophical consequences, and
rejected the opinion that the prosperity of TOC depends on service to other dis-
ciplines and immediate applicability to the current technological development.
In my reply I expressed my deep respect for the fundamental work that had
been done in TOC, but continued to assert that the subject could gain intel-
lectual stimulation not only by pursuing the deep questions that had originated
within theory itself, but also by linking up with applications, and that the two
approaches could be complementary rather than competitive.

In the end the debate surrounding our report was quite valuable for the
TOC community. It provoked a lively and continuing dialogue on the directions
our �eld should be taking, and stimulated many people in the community to do
some soul-searching about their own research choices. For my part, I learned how
tactfully and clearly one must communicate in order to contribute e�ectively to
public debate on sensitive topics.



160 Karp

Computational Molecular Biology

In the second half of this century molecular biology has been one of the most
rapidly developing �elds of science. Fundamental discoveries in the 50's and 60's
identi�ed DNA as the carrier of the hereditary information that an organism
passes on to its o�spring, determined the double helical structure of DNA, and
illuminated the processes of transcription and translation by which genes within
the DNA direct the production of proteins, which mediate the chemical processes
of the cell. The connections between these processes and digital computation are
striking: the information within DNA molecules is encoded in discrete form as
a long sequence of chemical subunits of four types, and the genes within these
molecules can be thought of as programs which are activated under speci�c
conditions. Technology for manipulating genes has led to many applications to
agriculture and medicine, and nowadays one can hardly pick up a newspaper
without reading about the isolation of a gene, the discovery of a new drug, the
sequencing of yet another microbe, or new insights into the course of evolution.

In 1963 the Mathematical Sciences Department at IBM decided to look into
the applications of mathematics to biology and medicine, and I visited the Cor-
nell Medical Center in New York City and the M.D. Anderson Hospital in Hous-
ton, looking for a suitable research problem. Nothing came of this venture, except
that I ran across the work of the geneticist Seymour Benzer, in which he invented
the concept of an interval graph in connection with his studies of the arrange-
ment of genes on chromosomes; this was one of the earliest connections between
discrete mathematics and genetics.

Over the next decades I was an avid reader of popular literature about molec-
ular biology and genetics, but it was not until 1991 that I began to think seriously
about applying my knowledge of algorithms to those �elds. By then the Human
Genome Project had come into existence, and it was evident that combinatorial
algorithms would play a central role in the daunting task of putting the three
billion symbols in the human genome into their proper order. The databases
of DNA and protein sequences, genetic maps and physical maps had begun to
grow, and to be used as indispensable research tools. My friend and colleague
Gene Lawler and my former student Dan Gus�eld, as well as several Berkeley
graduate students, were working closely with the genome group at the Lawrence
Berkeley Laboratory up the hill from the Berkeley campus, and I began to at-
tend their seminars, as well as Terry Speed's seminar on the statistical aspects
of mapping and sequencing.

To get started in computational biology I decided to tackle the problem of
physical mapping of DNA molecules. We can view a DNA molecule as a very
long sequence of symbols from the alphabet fA;C; T;Gg. Scattered along the
molecule are features distinguished by the occurrence of particular short DNA
sequences. The goal of physical mapping is to determine the locations of these
features, which can then be used as reference points for locating the positions of
genes and other interesting regions of the DNA. The map is inferred from the
�ngerprints of clones; a clone is a segment of the DNA molecule being mapped,
and the �ngerprint gives partial information about the presence or absence of



The Mysteries of Algorithms 161

features on the clone. The problem of determining the arrangement of the clones
and the features along the DNA molecule is a challenging combinatorial puzzle,
complicated by the fact that the �ngerprint data may be noisy and incomplete.

Beginning around 1991 my students and I developed computer programs to
solve a number of versions of the physical mapping problem, but at �rst we lacked
the close connections with the Human Genome Project that would enable us to
have a real impact. In 1994, through my friends Maria Klawe and Nick Pippenger
at the University of British Columbia, I made contact with a group of computer
scientists and biologists who were meeting from time to time at the University of
Washington to discuss computational problems in genomics. In addition to Maria
and Nick, the group included the computer scientists Larry Ruzzo and Martin
Tompa , as well as the geneticist Maynard Olson and the computational biologist
Phil Green. I found the meetings very useful, and realized that the University
of Washington was a hotbed of activity in the application of computational
methods to molecular biology and genetics.

During the early 90's the University of California had a rich pension fund
but a lean operating budget. In order to solve its �nancial problems the Uni-
versity o�ered a series of attractive early retirement o�ers to its older and more
expensive faculty. Although I knew that it would not be easy to leave Berkeley
after twenty-�ve years, I succumbed to the third of these o�ers.

In 1988 I had been part of a group of Berkeley faculty who helped estab-
lish ICSI, an international computer science research institute at Berkeley. Mike
Luby, Lenore Blum and I built up a theoretical computer science group at ICSI
which attracted outstanding postdocs and visitors from around the world. For
the �rst year of my `retirement' I based myself at ICSI, but in 1995 I moved
to the University of Washington. I was attracted by the congenial atmosphere
and strong colleagues in the computer science department at UW, and by the
strength and depth of the activity in molecular biotechnology, led by Lee Hood.
Hood saw the sequencing of genomes as merely a �rst step towards the era of
functional genomics, in which the complex regulatory networks that control the
functioning of cells and systems such as the immune system would be understood
through a combination of large-scale automated experimentation and subtle al-
gorithms. I decided that nothing else I might work on could be more important
than computational biology and its application to functional genomics.

How is it that liver cells, blood cells and skin cells function very di�erently
even though they contain the same genes? Why do cancer cells behave di�erently
from normal cells? Although each gene codes for a protein, complex regulatory
networks within the cell determine which proteins are actually produced, and in
what abundance. These networks control the rate at which each gene is tran-
scribed into messenger RNA and the rate at which each species of messenger
RNA is translated into protein. These rates depend on the environment of the
cell, the abundance of di�erent proteins within the cell and the presence of mu-
tated genes within the cell. Newly developed technologies make it possible to
take a detailed snapshot of a cell, showing the rates of transcription of thou-
sands of genes and the levels of large numbers of proteins. In model organisms



162 Karp

such as yeast we also have the ability to disrupt individual genes and observe
how the e�ects of those disruptions propagate through the cell. The problem of
characterizing the regulatory networks by performing strategically chosen dis-
ruption experiments and analyzing the resulting snapshots of the cell will be the
focus of much of my future work. I expect to draw on the existing knowledge in
statistical clustering theory and computational learning theory, and will need to
advance the state of the art in these �elds in order to succeed.

With the help of outstanding mentors I have enjoyed learning the rudiments
of molecular biology. I have found that the basic logic of experimentation in
molecular biology can, to some extent, be codi�ed in abstract terms, and I have
discovered that the task of inferring the structure of genomes and regulatory
networks can lead to interesting combinatorial problems. With enough simplify-
ing assumptions these problems can be made quite clean and elegant, but only
at the cost of disregarding the inherent noisiness of experimental data, which
is an essential aspect of the inference task. Combinatorial optimization is often
useful, but unless the objective function is chosen carefully the optimal solution
may not be the true one. Typically, the truth emerges in stages through an in-
terplay between computation and experimentation, in which inconsistencies in
experimental data are discovered through computation and corrected by further
experimentation.

Conclusion

Being a professor at a research university is the best job in the world. It provides a
degree of personal autonomy that no other profession can match, the opportunity
to serve as a mentor and role model for talented students, and an environment
that encourages and supports work at the frontiers of emerging areas of science
and technology. I am fortunate to have come along at a time when such a career
path has been available.


