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From Logic to Theoretical Computer
Science

Foreword

In October 1997, whilst touching up this text, exactly 50 years had past since
I was accepted for graduate studies under P. S. Novikov. I started then study
and research in logic and computability, which developed, as time will show, into
research in Theoretical Computer Science (TCS).

After my emigration from the Soviet Union (December 1980) I was encour-
aged by colleagues to experience the genre of memoirs. That is how appeared
[T84, T85], and more recently [T97], conceived as contributions to the history of
TCS in the SU. The present paper is intended as a more intimate perspective on
my research and teaching experience. That is mainly an account of how my inter-
ests shifted from classical logic and computability to TCS, notably to Automata
and Computational Complexity. Most of these reminiscences, recounting espe-
cially the scientific, ideological and human environment of those years (roughly,
1945-67),were presented earlier at a Symposium (June 1991) on the occasion of
my retirement. Occasionally, I will quote from [T84, T85, T97], or will refer to
them.

Before starting the main narrative I would like to recall some important
circumstances which characterized those years.

First of all, the postwar period was a time of ground-breaking scientific de-
velopments in Computability, Information Theory, Computers. That is widely
known and need no comments. The subjects were young and so were their
founders. It is amazing that at that time the giants Church, Kleene, Turing,
von Neumann, were only in their thirties and forties!

Now, about the specific background in the Soviet Union.

The genealogical tree of TCS in the SU contains three major branches leading
from A. N. Kolmogorov, A. A. Markov and P. S. Novikov. In those troublesome
times these famous mathematicians also had the reputation of men with high
moral and democratic principles. Their scientific interests, authority and philoso-
phies, for several generations, influenced the development of mathematical logic,
computability, and subsequently TCS in the SU.

Whereas Markov and Kolmogorov contributed directly to TCS, Novikov’s
involvement occurred through his strong influence on his disciples and collabo-
rators. The most prominent of them — A. A. Lyapunov (1911-1974) — became a
widely recognized leader of “Theoretical Cybernetics” — the term which covered
at that time most of what is considered today to belong to TCS.

As a matter of fact, for many offsprings of those three branches, including
myself, the perception of TCS was as of some kind of applied logic, whose concep-
tual sources belong to the theoretical core of mathematical logic. The affiliation
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with logic was evident at the All-Union Mathematical Congress (Moscow, 1956),
where theoretical cybernetics was included in the section of mathematical logic.
Other examples: the books on Automata [KT62,G62] appeared in the series
“Mathematical Logic and Foundations of Mathematics”; also my first papers
on Computational Complexity were published in Anatoly I. Maltsev’s journal
“Algebra and Logic”.

The early steps in TCS coincided with attacks of the official establishment
on various scientific trends and their developers. In particular, cybernetics was
labeled a “pseudo-science”, and mathematical logic — a “bourgeois idealistic
distortion”. That was the last stage of the Stalin era with persecution and vic-
timization of “idealists”, “cosmopolites”, etc. The survival and the long overdue
recognition of Mathematical Logic and Cybernetics is in many respects indebted
to Lyapunov, Markov, Novikov, Kolmogorov and S. A. Yanovskaya. But even
after that, academic controversies often prompted such bureaucratic repression
as the prevention of publications and the denial of degrees. Difficulties with
publications also happened because of the exactingness and selfcriticism of the
authors and/or their mentors, or because the community was far from prepared
to appreciate them. I told about that in [T84] and [T85].

Above, the emphasis was on the Soviet side; now, some remarks on the in-
ternational context in which research in TCS was conducted in the SU.

The chronology of events reveals that quite a number of ideas and results in
TCS appeared in the SU parallel to, independent of, and sometimes prior to,
similar developments in the West. This parallelism is easy to explain by the fact
that these were natural ideas occurring at the right time. In particular, that
is how comprehensive theories of automata and of computational complexity
emerged in the 50’s-60’s; I will elaborate on this subject in the next sections.
But for a variety of reasons, even in those cases where identical or similar re-
sults were obtained independently, the initial motivation, the assessment of the
results and their impact on the development and developers of TCS did not nec-
essarily coincide. In particular, in the SU specific interest in complexity theory
was aroused by discussions on the essence of brute force algorithms (perebor - in
Russian). However, despite this difference in emphasis from the motivating con-
cerns of the American researchers, after a few years these approaches virtually
converged.

In the past, the priority of Russian and Soviet science was constantly pro-
pounded in Soviet official circles and media. This unrestrained boasting was
cause for ironic comments in the West and for self-irony at home. But, as a mat-
ter of fact, the West was often unaware of developments in the SU, and some of
them went almost entirely unnoticed. To some extent this was a consequence of
the isolation imposed by language barriers and socio-political forces. In particu-
lar, travels abroad were a rare privilege, especially to the “capitalist” countries.
My first trip abroad, for example, took place in 1967, but visits to the West
became possible only in 1981 after my emigration to Israel.

Against this unfavorable background it is worth mentioning also the encour-
aging events and phenomena, which eased the isolation.
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The International Mathematical Congress in Moscow (1966) was attended
by the founders of our subject, namely, Church, Kleene, Curry, Tarski and other
celebrities. It was an unforgettable and moving experience to have first-hand
contact with these legendary characters. Later, Andrey P. Ershov (1931-1988)
managed to organize a series of International Symposia on “Theoretical Pro-
gramming”, attended also by people from the West. For many years, A. Meyer
used to regularly send me proceedings of the main TCS symposia, a way to
somehow compensate for the meetings my colleagues and myself were prevented
to attend. All this reinforced our sense of belonging to the international TCS
community.

Early Days

I was born in Brichevo, a village in Northern Bessarabia (now Moldova). Though
my birth place has nothing to do with my career or with other events I am going
to write about, let me begin with the following quotation: “Brichevka a Jewish
agricultural settlement, founded in 1836. According to the general (1897) census
of the population - 1644 inhabitants, 140 houses ...” (From Vol. 5 of “The
Jewish Encyclopedia”, St. Petersburg, 1912. Translated from Russian).

Among the first settlers were Eli and Sarah Helman, the grandparents of my
maternal grandfather. World War 2 brought about the collapse of Brichevo (or
Brichevka). The great majority of the population did not manage to flee and were
deported to the notorious Transnistria camps; only a small number survived and
they dispersed over countries and continents. For years I used “Brichevo” as a
reliable password: easy for me to remember, apparently impossible for outsiders
to guess, and still a way to retain the memory of a vanished community.

After completing of elementary school in Brichevo I attended high school
in the neighboring towns of Belts and Soroka, where I was fortunate to have
very good teachers of mathematics. My success in learning, and especially in
mathematics, was echoed by the benevolence of the teachers and the indulgence
of my fellow pupils. The latter was even more important to me, since it to some
degree compensated for the discomfort and awkwardness caused by my poor
vision.

In 1940 I enrolled in the Faculty of Physics and Mathematics of the newly-
established Moldavian Pedagogical Institute in Kishinev. The curriculum covered
a standard spectrum of teachers’ training topics. In particular, mathematical
courses presented basics in Calculus, Linear Algebra and Algebra of polynomials,
Analytical Geometry, Projective Geometry, Foundations of Geometry (including
Lobachevski Geometry), Elements of Set Theory and Number Theory.

On June 22, 1941, Kishinev (in particular the close neighbourhood of our
campus) was bombed by German air forces. In early July, I managed to escape
from the burning city. Because of vision problems I was released from military
service and, after many mishaps, arrived as a refugee in Chkalov (now Orenburg)
on the Ural River. Here, I enrolled in the local pedagogic institute. A year later
we moved to Buguruslan in the Chkalov region, where the Kishinev Institute was
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evacuated to in order to train personnel for the forthcoming return home as soon
as our region would be liberated. Almost all lecturers were former high school
teachers — skilled people whose interests lay in the pedagogic aspects of mathe-
matics and physics. (There were no recipients of academic degrees among them,
but one of the instructors in the Chkalov institute bore the impressive name
Platon Filosofov). Nikolai S. Titov, a former Ph. D. student of the Moscow Uni-
versity, who happened to flee to Buguruslan, lectured on Set Theory. I was deeply
impressed by the beauty and novelty of this theory. Unfortunately, this was only
a transient episode in those hard and anxious days. Actually, during the war
years 1941-1944, my studies were irregular, being combined with employment in
a felt boot factory, a storehouse and, finally, in the Kuybyshev-Buguruslan Gas
Trust.

In August 1944 the institute was evacuated to Kishinev and I returned to
my native region for a position in the Belts college to train elementary school
teachers. Only a year later I took my final examinations and qualified as a
high school mathematics teacher. That was my mathematical and professional
background in September 1945 when (already at the age of 24 and a half) I
decided to take a chance and seriously study mathematics.

Chernovtsy

I enrolled at the University of Chernovtsy (Ukraine) to achieve the equivalent
of a master’s degree in mathematics. In that first postwar year the university
was involved in the difficult process of restoration. Since my prior education
covered only some vague mathematical-pedagogical curriculum with examina-
tions partially passed without having attended lectures, I did not know much to
start off with. But there were only a few students and the enrollment policy of
the administration was quite liberal. There were also only a few academic staff
in our Faculty of Physics and Mathematics and soon I became associated with
Alexander A. Bobrov, a prominent character on the general background. A. A.
(b. 1912), who completed his Ph. D. thesis in 1938 under Kolmogorov, gave an
original course in probabilities. The distinguishing quality was not so much in
the content of the course as in his style (completely new to me) of teaching and
of involving the audience. A. A. did not seem to be strongly committed to his
previously prepared lectures; during class he would try to examine new ideas and
to improvise alternative proofs. As such trials did not always succeed he would
not hesitate to there and then loudly criticize himself and appeal to the audience
for collaboration. This challenging style was even more striking in a seminar he
held on Hausdorff’s famous book on Set Theory, with the participation of both
students and academic staff. Due to the “Bobrovian” atmosphere dominating
the seminar, I started to relish the idea of research in this fascinating area. A.
A. also helped me secure a job in the new founded departmental scientific library.
My primary task was to take stock of the heaps of books and journals extracted
earlier from basements and temporary shelters, and to organize them into some
bibliographical service. I remember reverently holding volumes of the “Journal
fiir reine und angewandte Mathematik” with authentic papers and pictures of
Weierstrass and other celebrities. As I later understood the mathematical library



From Logic to Theoretical Computer Science 319

was exclusively complete, and, as a matter of fact, disposed of all the important
journals before WW2. As there was only a handful of graduate students it soon
turned out that my library was not in much demand — in truth, for days there
were no visitors at all; so most of the time I shared the roles of supplier and user
of the library services. Through self study I mastered a significant amount of
literature and reached some scientific maturity. I soon identified “Fundamenta
Mathematicae” to be the journal closest to my interests in descriptive set theory.
All the volumes starting with the first issue dated 1921 were on my table and I
would greedily peruse them.

After considering some esoteric species of ordered sets I turned to the study
of delta-sigma operations, a topic promoted by Andrei N. Kolmogorov and also
tackled in “Fundamenta”. At this stage Bobrov decided that it was the right
time to bring me together with the appropriate experts and why not with Kol-
mogorov himself! In the winter of 1946 Kolmogorov was expected to visit Boris
V. Gnedenko at the Lvov University. So far so good, except that at the last
moment Kolmogorov canceled his visit. Gnedenko did his best to compensate
for that annoying failure. He showed me exclusive consideration, invited me to
lunch at his home and attentively inquired about all my circumstances. It was
the first time that I had talked to a full professor and I felt somehow shy in
his presence and in the splendor of his dwelling. B. V. listened to me patiently
and, I guess, was impressed not as much by my achievements (which were quite
modest, and after all, outside the field of his main interests) but by my enthu-
siastic affection for Descriptive Set Theory. Anyway he explained to me that
for the time-being Kolmogorov had other research preferences and it would be
very useful to contact Piotr S. Novikov and Alexei A. Lyapunov who, unlike
Kolmogorov and other descendants of the famous Lusin set-theoretical school,
were mostly still active in the field.

During this period I met Berta I. Rabinovich, who was to become my wife.

In the summer of 1946 I visited Moscow for the first time. Because it was
vacation time and since no prior appointments had been set up, it was very diffi-
cult to get hold of people. Nevertheless I managed to see Kolmogorov for a short
period at the university and to give him my notes on delta-sigma operations. He
was in a great hurry, so we agreed to meet again in a couple of weeks on my way
back home; unfortunately this did not work out. Novikov was also unreachable
being somewhere in the countryside. I was more fortunate with A. A. Lyapunov
in whose house I spent a wonderful evening of scientific discussions alternated
with tea-drinking with the whole family. A. A. easily came to know my case and
presented me with a deeper picture of the Moscow set-theoretical community
with a stress on the current research done by Novikov and by himself. He offered
to inform Novikov in detail about my case and suggested that I visit Moscow at
a more appropriate time for further discussions.

My second trip to Moscow was scheduled for May 1947 on the very eve of
my graduation from the Chernovtsy University, when, beyond pure mathemat-
ics, the question of my forthcoming (if any) Ph. D studies was on the agenda.
All in all T had to stay in Moscow for at least a couple of weeks and that re-
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quired appropriate logistics — a very nontrivial task at that time, in particular,
because of the shortage of food and the troublesome train connections. Alas, at
the first connection of the Lvov railroad station, local pickpockets managed to
cut out the pocket with all my money. Despite this most regrettable incident,
the trip ultimately turned out to be quite successful. The meetings with Novikov
were very instructive and warm. And again, as in the case of the Lyapunovs,
the atmosphere in the Novikov family was friendly and hospitable. Occasionally
Novikov’s wife, Ludmila V. Keldysh, a prominent researcher in set theory in her
own right, as well as A. A. Lyapunov, would also participate in the conversa-
tions. Counterbalancing my interests and efforts towards descriptive set theory,
Novikov called my attention to new developments I was not aware of in provincial
Chernovtsy. He pointed to the path leading from a handful of hard set theoretical
problems to modern concepts of mathematical logic and computability theory.
He also offered his support and guidance should I agree to follow this path. I
accepted Novikov’s generous proposal although with a sense of regret about my
past dreams about descriptive set theory.

Novikov held a permanent position at the Steklov Mathematical Institute of
the USSR Academy. At that time departments of mathematical logic did not
yet exist in the USSR but Novikov together with Sofia A. Yanovskaya had just
started a research seminar “Mathematical Logic and Philosophical problems of
Mathematics” in the Moscow University unofficially called The Bolshoy (great)
Seminar. So, it was agreed that wherever other options might arise, Novikov
would undertake my supervision and would do his best to overcome bureaucratic
barriers.

Ph. D. Studies

In October 1947 I began my Ph. D. studies at the Kiev Mathematical Institute
of the Ukrainian Academy of Sciences. The director of the institute, Mikhail A.
Lavrentiev, approved my petition to specialize in mathematical logic under P.
S. Novikov and agreed to grant me long-term scientific visits to Moscow where I
would stay with my advisor. In Moscow the Bolshoy Seminar was then the main
medium in which research and related activities in that area were conducted. In
particular, it was the forum where mathematical logicians from the first post-
war generation (mostly students of P. S. Novikov, S. A. Yanovskaya and A.
N. Kolmogorov) joined the community, reported on their ongoing research, and
gained primary approval of their theses; and that is also what happened to me.

The atmosphere dominating the meetings of the seminar was democratic and
informal. Everybody, including the students, felt and behaved at ease without
strong regulations and formal respect for rank. I was happy to acquire these
habits and later to promote them at my own seminars.

Actually the seminar was the successor of the first seminar in the USSR
for mathematical logic, which was founded by Ivan I. Zhegalkin (1869-1947).
After Zhegalkin’s death it became affiliated with the Department of History of
Mathematical Sciences of the Moscow University, whose founder and head was



From Logic to Theoretical Computer Science 321

Yanovskaya. Its exceptional role in the development of mathematical logic in the
USSR is a topic of its own and I will touch on it only very briefly.

The seminar usually engaged in a very broad spectrum of subjects from math-
ematical logic and its applications as well as from foundations and philosophy
of mathematics. Here are some of the topics pursued by the senior participants:
Novikov — consistency of set-theoretical principles; Yanovskaya — philosophy of
mathematics and Marx’s manuscripts; Dmitri A. Bochvar (a prominent chemist
in his main research area) — logic and set-theoretical paradoxes; Victor I. Shes-
takov (professor of physics) — application of logic to the synthesis and analysis
of circuits.

Among the junior participants of the seminar I kept in close contact with the
three Alexanders. Alexander A. Zykov, also a Ph. D. student of Novikov, was
at that time investigating the spectra of first order formulas. A. A. called my
attention to Zhegalkin’s decidability problem,which became the main topic of
my Ph. D. thesis. He also initiated the correspondence, with me sending lengthy
letters to Kiev with scientific Moscow news. This epistolary communication,
followed later by correspondence with Kuznetsov and Yablonski, was a precious
support in that remote time.

Alexander V. Kuznetsov (1927-87) was the secretary of the Bolshoy Seminar
and conducted regular and accurate records of all meetings, discussions and prob-
lems. For years he was an invaluable source of information. For health reasons
A. V. did not even complete high school studies. As an autodidact in extremely
difficult conditions, he became one of the most prominent soviet logicians. I had
the good fortune to stay and to collaborate with him.

Alexander S. Esenin-Volpin was a Ph. D. student in topology under P. A.
Alexandrov, but he early on became involved in logic and foundations of math-
ematics. A. S. became most widely known as an active fighter for human rights,
and already in the late forties the KGB was keeping an eye on him. In the
summer of 1949 we met in Chernovtsy, where he had secured a position after
defending his thesis. Shortly thereafter he disappeared from Chernovtsy and we
later learned that he had been deported to Karaganda (Kazakhstan). A couple
of years later I received a letter from him through his mother. I anxiously opened
the letter, fearful of what I was about to learn. The very beginning of the letter
was characteristic of Esenin-Volpin’s eccentric character — “Dear Boris, let f be
a function ...”.

During the years of my Ph. D. studies (1947-50) I actively (though not regu-
larly) participated in the seminar meetings. Also the results which made up my
thesis “The decidability problem for finite classes and finiteness definitions in
set theory” were discussed there. S. A. Yanovskaya offered the official support of
the Department in the future defense at the Kiev Institute of Mathematics; the
other referees were A. N. Kolmogorov, A. A. Lyapunov and B. V. Gnedenko.

My thesis included the finite version of Church’s Theorem about the unde-
cidability of first order logic: the problem of whether a first order formula is valid
in all finite models is, like the general validity problem, undecidable, but in a
technically different way. The novelty was in the formalization of the algorithm
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concept. Namely, I realized that, in addition to the process of formal inference,
the effective process of (finite) model checking could also be used as a universal
approach to the formalization of the algorithm concept. This observation antic-
ipated my future concern with constructive processes on finite models. Other
results of the thesis which are seemingly less known, deal with the connection
between deductive incompleteness and recursive inseparability.

In 1949 I proved the existence of pairs of recursively enumerable sets which
are not separable by recursive sets. I subsequently learned that P. S. Novikov
had already proved this, but, as usual, had not taken the trouble to publish
what he considered to be quite a simple fact. (Note, that in 1951, Kleene who
independently discovered this fact, published it as “a symmetric form of Gédel’s
theorem”.) In the thesis I showed that the recursive inseparability phenomenon
implies that no reasonably defined set theory can answer the question of whether
two different finiteness definitions are equivalent. This incompleteness result was
also announced in my short note presented by A. N. Kolmogorov to the “Dok-
lady”, but after Novikov’s cool reaction to “inseparability”, I refrained from
explicitly mentioning that I had used these very techniques. Clearly, A. N. had
forgotten that these techniques were in fact developed in the full text of my thesis
and he later proposed the problem to his student Vladimir A. Uspenski. Here is
a quotation from “History of Mathematics” [His70], p. 446: “A. N. Kolmogorov
pointed to the possible connection between the deductive incompleteness of some
formal systems and the concept of recursive inseparability (investigated also by
Trakhtenbrot). V. A. Uspenski established (1953) results, which confirm this
idea ...”

Those early years were a period of fierce struggle for the legitimacy and
survival of mathematical logic in the USSR. Therefore the broad scope of the
agendas on the Bolshoy seminar was beneficial not only for the scientific contacts
between representatives of different trends, but also, in the face of ideological
attacks, to consolidate an effective defense line and to avoid isolation and dis-
credit of mathematical logic. For us, the junior participants of the seminar, it
was also a time when we watched the tactics our mentors adopted to face or
to prevent ideological attacks. Their polemics were not free of abundant quo-
tations from official sources, controlled self-criticism and violent attacks on real
and imaginary rivals.

It was disturbing then (and even more painful now) to read S. A.
Yanovskaya’s notorious prefaces to the 1947-1948 translations of Hilbert and
Ackermann’s “Principles of Mathematical Logic” and Tarski’s “Introduction to
Logic and the Methodology of Deductive Sciences” in which Russel was blamed
as a warmonger and Tarski, as a militant bourgeois. Alas, such were the rules
of the game and S. A. was not alone in that game. I remember the hostile crit-
icism of Tarski’s book by A. N. Kolmogorov (apparently at a meeting of the
Moscow Mathematical Society): “Translating Tarski was a mistake, but trans-
lating Hilbert was the correct decision” he concluded. This was an attempt to
grant some satisfaction to the attacking philosophers in order to at least save
the translation of Hilbert-Ackermann’s book. I should also mention that S. A.
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was vulnerable — she was Jewish — a fact of which I was unaware for a long time.
I learned about it in the summer of 1949 during Novikov’s visit to Kiev. He told
me then with indignation about official pressure on him “to dissociate from S.
A. and other cosmopolitans”.

However difficult the situation was, we - the students of that time - were not
directly involved in the battle which we considered to be only a confrontation of
titanics. As it turned out this impression was wrong.

Toward TCS

In December 1950 after the defense of my thesis, I moved to Penza, about 700
km SE of Moscow, for a position at the Belinski Pedagogical Institute.

At the beginning it was difficult for me to appropriately pattern my be-
haviour to the provincial atmosphere so different from the informal, democratic
surroundings of the places I came from. These circumstances unfavorable influ-
enced my relationships with some of the staff and students (in particular because
of the constant pressure and quest for high marks). Because of this, though I
like teaching, at the beginning, I did not derive satisfaction from it. ! The situ-
ation was aggravated after a talk on mathematical logic I delivered to my fellow
mathematicians. The aim of the talk entitled “The method of symbolic calculi
in mathematics”, was to explain the need and the use of exact definitions for the
intuitive concepts “algorithm” and “deductive system”. I was then accused of
being “an idealist of Carnap-species”. In that era of Stalin paranoia such accusa-
tions were extremely dangerous. At diverse stages of the ensuing developments,
P. S. Novikov and A. A. Lyapunov (Steklov Mathematical Institute) and to some
degree A. N. Kolmogorov and Alexander G. Kurosh (Moscow Mathematical So-
ciety) were all involved in my defense, and S. A. Yanovskaya put my case on the
agenda of the Bolshoy Seminar. This story was told in [T97].

My health was undermined by permanent tension, fear and overwork (often
more than 20 hours teaching weekly). It goes without saying that for about
two years I was unable to dedicate enough time to research. It was in those
circumstances that only the selfish care and support of my wife Berta saved
me from collapse. I should also mention the beneficial and calming effect of
the charming middle-Russian landscape which surrounded our dwelling. Cycling
and skiing in the nearby forest compensated somewhat for our squalid housing.
(Actually, until our move to Novosibirsk in 1961, we shared a communal flat,
without water and heating facilities, with another family.)

But despite all those troubles I remember this period mainly for its happy
ending. In the summer of 1992, 40 years after this story took place, Berta and I
revisited those regions. The visit to Penza was especially nostalgic. Most of the

1 Of course, I also had good students and one of them, Ilya Plamennov, was admitted
through my recommendation to Ph. D. studies at the Moscow University. Later he
became involved in classified research and was awarded the most prestigious Lenin
Prize (1962).
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participants of those events had already passed away. Only the recollections and
of course the beautiful landscape remained.

Returning to the “Idealism” affair, the supportive messages I received from
Moscow stressed the urgent need for a lucid exposition of the fundamentals
of symbolic calculi and algorithms for a broad mathematical community. They
insisted on the preparation of a survey paper on the topic, which “should be
based on the positions of Marxism-Leninism and contain criticism of the foreign
scientists-idealists”. There was also an appeal to me to undertake this work which
would demonstrate my philosophical ideological loyalty. Nevertheless I did not
feel competent to engage in work which covered both a mathematical subject
and official philosophical demands. These demands were permanently growing
and changing; they could bewilder people far more experienced than myself. So
it seemed reasonable to postpone the project until more favorable circumstances
would allow separation of logic from official philosophy. Indeed, such a change
in attitude took place gradually, in particular due to the growing and exciting
awareness of computers.

In 1956 the journal Mathematics in School published my tutorial paper “Al-
gorithms and automated problem solving”. Its later revisions and extensions
appeared as books which circulated widely in the USSR and abroad [T57].
(Throughout the years I was flattered to learn from many people, including
prominent logicians and computer scientists, that this tutorial monograph was
their own first reading on the topic as students and it greatly impressed them.)

Meanwhile I started a series of special courses and seminars over and above
the official curriculum, for a group of strong students. These studies covered
topics in logic, set theory and cybernetics, and were enthusiastically supported
by the participants. Most of them were later employed in the Penza Computer
Industry where Bashir I. Rameev, the designer of the “Ural” computers, was a
prominent figure. Later, several moved with me to Novosibirsk. They all contin-
ued to attend the seminar after graduating from their studies. We would gather
somewhere in the institute after a full day of work in Rameev’s laboratories
(the opposite end of town), inspired and happy to find ourselves together. Here
is a typical scene — a late winter’s night, frosty and snowy, and we are clos-
ing our meeting. It is time to disperse into the lonely darkness, and Valentina
Molchanova, a most devoted participant of our seminar, has still to cross the
frozen river on her long walk home.

The publication of my tutorial on algorithms and the above mentioned work
with students increased my pedagogical visibility to such a degree that I was
instructed by the Education Ministry, to compile the program of a course “Al-
gorithms and Computers” for the pedagogical institutes. Moreover, the Ministry
organized an all-Russian workshop in Penza, dedicated to this topic, with the
participation of P. S. Novikov, A. I. Maltsev, and other important guests from
Moscow.

In Penza there was a lack of scientific literature, not to mention normal

contacts with well established scientific bodies. This obvious disadvantage was
partially compensated by sporadic trips to Moscow for scientific contacts (and
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food supply), as well by correspondence with Kuznetsov, Sergey V. Yablonsky
and Lyapunov.

I continued the work on recursive nonseparability and incompleteness of for-
mal theories, started in the Ph. D. thesis. At the same time, I was attracted by
Post’s problem of whether all undecidable axiomatic systems are of the same
degree of undecidability. This super-problem in Computability and Logic, with
a specific flavor of descriptive set theory, was for a long time on the agenda
of the Bolshoy Seminar. It inspired also my work on classification of recursive
operators and reducibilities. Later, A. V. Kuznetsov joined me and we extended
the investigation to partial recursive operators in the Baire space. These issues,
reflected our growing interest in relativized algorithms (algorithms with oracles)
and in set-descriptive aspects of computable operators. I worked then on a survey
on this subject, but the (uncompleted) manuscript was never published. Never-
theless, the accumulated experience helped me later in the work on relativized
computational complexity.

In 1956 Post’s problem was solved independently by Albert A. Muchnik - a
young student of P. S. Novikov - and by the American Richard Friedberg. Their
solutions were very similar and involved the invention of the priority method
of computability theory. At that point it became clear to me that I had ex-
hausted my efforts and ambitions in this area, and, that I am willing to switch
to what nowadays would be classified as “Theoretical Computer Science”. From
the early 50’s this research was enthusiastically promoted by A. A. Lyapunov and
S. V. Yablonski under the general rubric “Theoretical Cybernetics”; it covered
switching theory, minimization of boolean functions, coding, automata, program
schemes, etc. Their seminars at the Moscow University attracted many students
and scholars,and soon became important centers of research in these new and
exciting topics. I was happy to join the cybernetics community through cor-
respondence and trips to Moscow. The general atmosphere within this fresh
and energetic community was very friendly, and I benefited much from it. Many
“theoretical cybernetists” started with a background in mathematical logic, com-
putability and descriptive set theory and were considerably influenced by these
traditions. So, no wonder that despite my new research interests in switching and
automata theory, I considered myself (as did many others) to be a logician. My
formal “conversion” to cybernetics happened on 9 January 1960 when Sergey
L. Sobolev invited me to move to the Novosibirsk Akademgorodok and to join
there the cybernetics department of the new Mathematical Institute.

Topics in combinational complexity were largely developed by the Yablonski
school, which attributed exceptional significance to asymptotic laws governing
synthesis of optimal control systems. The impetus for these works was provided
by Shannon’s seminal work on synthesis of circuits. However, the results of S.
V. Yablonski, Oleg B. Lupanov and their followers surpassed all that was done
in the West at that time as can be seen from Lupanov’s survey [L65]. But
focusing on asymptotic evaluations caused the oversight of other problems for
which estimates up to a constant factor are still important.
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A perebor algorithm, or perebor for short, is Russian for what is called in
English a “brute force” or “exhaustive search” method. Work on the synthesis
and minimization of boolean functions led to the realization of the role of perebor
as a trivial optimization algorithm, followed by Yablonski’s hypothesis of its
nonelimination. In 1959 he published a theorem which he considered to be a
proof of the hypothesis [Y59]. However his interpretation of his results was not
universally convincing, — a presage of future controversies in the TCS community.
I told this story in detail in [T84], and will touch it briefly in the next section.

In the winter of 1954, I was asked to translate into Russian a paper by
A. Burks and J. Wright, two authors I didn’t know earlier. Unexpectedly, this
episode strongly influenced my “Cybernetical” tastes and provided the impetus
to research in automata theory. A curious detail is that in [BW53], the authors
don’t even mention the term “automaton”, and focus on Logical Nets as a mathe-
matical model of physical circuits. Afterwards, “Logical Nets” would also appear
in the titles of my papers in Automata Theory, even though the emphasis was
not so much on circuitry, as on operators, languages and logical specifications.

The use of propositional logic, promoted independently by V. I. Shestakov
and C. Shannon, turned out to be fruitful for combinational synthesis, because
it suffices to precisely specify the behaviour of memoryless circuits. However,
for the expression of temporal constraints one needs other, appropriate, specifi-
cation tools, which would allow to handle synthesis at two stages: At the first,
behavioral stage, an automaton is deemed constructed once we have finite ta-
bles defining its next-state and output functions, or, equivalently, its canonical
equations. This serves as raw material for the next stage, namely for structural
synthesis, in which the actual structure (circuit) of the automaton is designed.
(Note, that in [AS56] Kleene does not yet clearly differentiate between the stages
of behavioural and structural synthesis.) After some exercises in structural syn-
thesis I focused on behavioral synthesis and began to collaborate with Nathan
E. Kobrinsky, who at that time held a position in the Penza Polytechnical In-
stitute. Our book “Introduction to the Theory of Finite Automata” [KT62] was
conceived as a concord of pragmatics (N. E. ’s contribution) and theory (sum-
mary of my results). The basic text was written in 1958, but the book was
typeset in 1961, and distributed only in early 1962, when both of us had already
left Penza.

Automata

Languages and Operators

The concept of a finite automaton has been in use since the 1930s to describe
the growing automata now known as Turing machines. Paradoxically, though fi-
nite automata are conceptually simpler than Turing machines, they were not
systematically studied until the fifties, if we discount the early work of McCul-
loch and Pitts. A considerable part of the collection “Automata Studies” [AS56)
was already devoted to finite automata. Its prompt translation into Russian,
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marked the beginning of heightened interest by Soviet researchers in this field.
In particular, the translation included a valuable appendix of Yuri T. Medvedev
(one of the translators), which simplified and improved Kleene’s results, and an-
ticipated some of Rabin and Scott’s techniques for nondeterministic automata.
As in the West, the initial period was characterized by absence of uniformity,
confusion in terminology, and repetition of basically the same investigations with
some slight variants. The subject appeared extremely attractive to many Soviet
mathematicians, due to a fascination with automata terminology with which
people associated their special personal expectations and interests. Automata
professionals who came from other fields readily transferred their experience and
expertise from algebra, mathematical logic, and even physiology to the theory
of finite automata, or developed finite-automata techniques for other problems.
Kleene’s regular expressions made evident that automata can be regarded
as certain special algebraic systems, and that it is possible to study them from
an algebraic point of view. The principal exponents of these ideas in the SU
were Victor M. Glushkov and his disciples, especially Alexander A. Letichevski,
Vladimir N. Red’ko, Vladimir G. Bodnarchuk. They advocated also the use
of regular expressions as a primary specification language for the synthesis of
automata. Later, adherents of this trend in the SU and abroad developed a rich
algebraic oriented theory of languages and automata (see [RS97]).
Counterbalancing this “algebra of languages” philosophy, I followed a “logic
of operators” view on the subject, suggested by A. Burks and J. Wright. In
[BW53] they focused on the input-output behaviour of logical nets, i. e. on
operators that convert input words in output words of the same length, and
infinite input sequences into infinite output sequences. 2 Apparently, they were
the first to study infinite behaviour of automata with output, and to (implicitly)
characterize input-output operators in terms of retrospection and memory. Fur-
thermore, they considered Logical Nets as the basic form of interaction between
input-output agents.
To summarize, Burks and Wright suggested the following ideas I adopted
and developed in my further work on the subject:

1. Priority of semantical considerations over (premature) decisions concerning
specification formalisms.

2. Relevance of infinite behaviour; hence, w-sequences as an alternative to finite
words.

3. The basic role of operators as an alternative to languages.

According to those ideas, I focused on two set-theoretical approaches to the
characterization of favorite operators and w -languages (i. e. sets of w-sequences).

2 Compare with D. Scott’s argumentation in [S67]: “The author (along with many
other people) has come recently to the conclusion that the functions computed by the
various machines are more important - or at least more basic - than the sets accepted
by these devices. The sets are still interesting and useful, but the functions are needed
to understand the sets. In fact by putting the functions first, the relationship between
various classes of sets becomes much clear. This is already done in recursive function
theory and we shall see that the same plan carriers over the general theory”.
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The first is in terms of memory; hence, operators and languages with finite
memory. The second one, follows the spirit of descriptive set theory (DST),
and selects operators and w-languages by appropriate metrical properties and
set-theoretical operations. (Note that the set of all w-sequences over a given
alphabet can be handled as a metrical space with suitably chosen metrics.)

My first reaction to the work of Burks and Wright was [T57], submitted in
1956, even before the collection “Automata Studies” was available. A footnote
added in proof mentions: “the author learned about Moore’s paper in [AS], whose
Russian translation is under print”.

The paper [T57] deals with operators, and distinguishes between properties
related to retrospection, which is nothing but a strong form of continuity, and
those related to finite memory. In [T62] a class of finite-memory w-languages
is defined which is proved to contain exactly those w-languages, that are defin-
able in second order monadic arithmetic. Independently Buchi found for them a
characterization in terms of the famous “Biichi automata”. In the paper [T58] I
started my main subject — synthesis of automata, developed later in the books
[KT62] and [TB70].

Experiments and Formal Specifications

Usually, verbal descriptions are not appropriate for the specification of input-
output automata. Here are two alternative approaches.

Specification by examples. This amounts to assembling a table which
indicates for each input word z, belonging to some given set M, the correspond-
ing output word z. Further, the synthesis of the automaton is conceived as an
interpolation, based on that table. This approach was very popular among soviet
practitioners, and suggested the idea of algorithms for automata-identification.
Such an algorithm should comprise effective instructions as to: 1) what questions
of the type “what is the output of the black box for input z?” should be asked;
2) how the answers to these questions should be used to ask other questions,
and 3) how to construct an automaton which is consistent with the results of
the experiment.

In his theory of experiments [AS56] Moore proved that the behavior of an
automaton with k states can be identified (restored) by a multiple experiment
of length 2k — 1. Independently, I established in [T57] the same result, and used
it in [KT62] to identify automata, with an a priori upper bound of memory. I
conjectured also in [T57] that the restorability degree of “almost” all automata is
of order log &, i. e. essentially smaller than 2k — 1. This conjecture was proved by
Barzdins and Korshunov [TB70]. Barzdin developed also frequency identification
algorithms [TB70] which produce correct results with a guaranteed frequency,
even when there is no apriori upper bound of the memory. The complexity es-
timation for such algorithms relies on the proof of the logk conjecture. Later
Barzdin and his group in Riga significantly developed these ideas into a compre-
hensible theory of inductive learning.

Formal Specifications. The second approach, initiated by S. C. Kleene
in [AS56] amounts to designing special specification formalisms, which suitably
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use logical connectives. However the use of only propositional connectives runs
into difficulties, because they cannot express temporal relationships.

Actually, Kleene’s paper in [AS56] contains already some hints as to the ad-
visability and possibility of using formulas of the predicate calculus as temporal
specifications. Moreover, Church attributes to Kleene the following Characteri-
zation Problem (Quotation from [Ch62]): “Characterize regular events directly
in terms of their expression in a formalized language of ordinary kind, such as
the usual formulations of first or second order arithmetic. ”

Towards logical specifications

The years 1956-61 marked a turning point in the field and Church reported
about that on the 1962-International Mathematical Congress. Here is a quotation
from [Ch62] “This is a summary of recent work in the application of mathemat-
ical logic to finite automata, and especially of mathematical logic beyond the
propositional calculus”.

Church’s lecture provides a meticulous chronology of events (dated when
possible up to months) and a benevolent comparison of his and his student J.
Friedman’s results with work done by Biichi, Elgot and myself. Nevertheless,
in the surveyed period (1956-62) the flow of events was at times too fast and
thus omission prone. That is why his conclusion: “all overlaps to some extent,
though more in point of view and method than in specific content” needs some
reexamination. Actually, the reference to Biichi’s paper [Bu62] as well as the
discussion of my papers [T58], [T61] were added only “in proof” to the revised
edition of the lecture (1964). My other Russian papers [T61b], [T62] were still
unknown to Church at that time.

Independently, myself, [T58] and somewhat later A. Church [Ch59], devel-
oped languages based on the second order logic of monadic predicates with nat-
ural argument. Subsequently another variant was published by R. Biichi [Bu60]
In those works the following restrictions were assumed: [T58]: restricted first
order quantification; [Ch59]: no second order quantification; [Bu60]: restriction
to predicates that are true only on a finite set of natural numbers.

All these languages are particular cases of a single language, widely known
now as S1S - Second Order Monadic Logic with One Successor, in which all the
restrictions above are removed.

Various arguments can be given in favor of choosing one language or an-
other, or developing a new language. Nevertheless, two requirements seem to be
quite natural: The first one (expressiveness) represents the interest of the client,
making easier for him the formulation of his intention. The second requirement
reflects the viewpoint of the designer; there must be a (fairly simple?) algorithm
for the synthesis problem in the language.

These two requirements are contradictory. The more comprehensive and ex-
pressive the language, the more universal and so more complex is the algorithm.
Moreover, if the language is too comprehensive the required algorithm may not
exist at all. It turned out that the choice of S1S supports the demand of expres-
siveness and still guarantees a synthesis algorithm. Indeed, one can show, that
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all other known specification formalisms can be embedded naturally into S1S.
However, this process is in general irreversible.
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Synthesis

Church’s lecture focuses on four problems, namely: 1) simplification, 2) syn-
thesis, 3) decision, 4) Kleene’s Characterization Problem. *

Problem 2, better known as the Church-synthesis problem, amounts roughly
to the following: Given a S1S-formula A(z,y): a) Does there exist an automaton
M with input z and output y, whose behaviour satisfies A(z,y)? b) If the answer
is “yes”, then construct such an automaton. Solutions are algorithms which
provide the correct answers and/or constructions.

Problem 4 presumes the invention of a logical formalism L (actually a rich
sublanguage of S1S), which expresses exactly the operators (or events) definable
by finite automata, and is equipped with two translation algorithms: (i) from
formulas to automata (Kleene-synthesis) and (ii) from automata to formulas
(Kleene-analysis).

According with the above classification, [KT62] deals with Kleene-synthesis
and Kleene-analysis. Actually, in [KT62] we used the following three formalisms
to specify input-output operators:* 1) at the highest level — formulas of S1S);
2) at the intermediate level — finite input-output automata represented by their
canonical equations; 3) at the lower level — logical nets.

Correspondingly, we dealt there with both behavioral synthesis (from 1 to 2)
and with structured synthesis (from 2 to 3).

Biichi was the first to use automata theory to logic and proved [Bu62]
that S18S is decidable. These achievements, notwithstanding the general Church-
synthesis problem for specifications in full S1S, remained open, not counting a
few special classes of S1S-formulas, for which the problem was solved by Church
and myself (see [Ch57] and [T61a]). The game theoretic interpretation of Church-
synthesis is due to Mc. Naughton [Mc65]. R. Biichi and L. Landweber used this
interpretation to solve the general Church-synthesis problem. Note that the orig-
inal proof in [Mc65] was erroneous. Unfortunately I did not detect this error,
which was reproduced in the Russian edition of [TB70], and corrected later by
L. Landweber in the English translation.

Part 1 of the book [TB70] constitutes a revised version of my lectures at
Novosibirsk University during the spring semester of 1966; it summarizes the
results of Church, Biichi-Landweber, Mc. Naughton and myself, as explained
above. Part two, written by Barzdin, covers his results on automaton identifica-
tion.

About The Trinity

The choice of the three formalisms in [KT62] is the result of two decisions.
The first identifies three levels of specifications; one can refer to them respec-
tively as the declarative, executable and interactive levels. The second chooses
for each of these levels a favorite formalism. In [KT62] those were, respectively,
S1S-Formulas, Automata and Logical Nets; these three are collectively called

% Of course there is also the problem of efficiency: estimate and improve the complexity
of the algorithms and/or the succinctness of the results they provide.
* Note that in [KT62] regular expressions are not considered!
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“The Trinity” in [T95]. The first decision is more fundamental, and is recog-
nizable also in computational paradigms beyond finite automata. The second
decision is flexible even for finite automata; for example, the Trinity does not
include Regular Expression (in [KT62], they are not even mentioned!) After
Pnueli’s seminal work, Linear Temporal Logics (LTL) became very popular as
a declarative formalism. But note that various versions of LTL are in fact just
the friendly syntactical sugar of S1S-fragments, and that the most extended one,
called ETL, has the same expressive power as the whole S1S. In this sense one
can argue that S1S is the genuine temporal logic, and that the Trinity has a basic
status. Moreover, recent computational paradigms are likely to revive interest in
the original Trinity and its appropriate metamorphosis.

Complexity

Entering the field

In 1960, I moved to the Akademgorodok, the Academic Center near Novosi-
birsk, where, through the initiative and guidance of Lyapunov, the Department
of Theoretical Cybernetics was established within the Mathematical Institute.

I continued to work on automata theory which I had begun at Penza, at first,
focusing mainly on the relationship between automata and logic, but also doing
some work in structural synthesis [T64]. At that time automata theory was quite
popular, and that is what brought me my first Ph. D. students in Novosibirsk:
M. Kratko, Y. Barzdin, V. Nepomnyashchy.

However, this initial interest was increasingly set aside in favor of computa-
tional complexity, an exciting fusion of combinatorial methods, inherited from
switching theory, with the conceptual arsenal of the theory of algorithms. These
ideas had occurred to me earlier in 1956 when I coined the term “signalizing
function” which is now commonly known as computational complexity measure.
(But note that “signalizing” persisted for a long time in Russian complexity
papers and in translations from Russian, puzzling English-speaking readers.)
In [T56] the question was about arithmetic functions f specified by recursive
schemes R. I considered there the signalizing function that for a given scheme R
and nonnegative z, returns the maximal integer used in the computation of f(x)
according to R. As it turned out, G. S. Tseytin, then a 19-year old student of
A. A. Markov at Leningrad University, began in 1956 to study time complexity
of Markov’s normal algorithms. He proved nontrivial lower and upper bounds
for some concrete tasks, and discovered the existence of arbitrarily complex 0-1
valued functions (Rabin’s 1960 results became available in the SU in 1963). Un-
fortunately, these seminal results were not published by Tseitin; later, they were
reported briefly (and without proofs) by S. A. Yanovskaya in the survey [Ya59].

Because of my former background, my interest in switching theory, automata,
etc. it never meant a break with mathematical logic and computability. In fact,
the sixties marked a return to those topics via research in complexity of compu-
tations.
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I profited from the arrival of Janis M. Barzdins and Rusins V. Freivalds in
Novosibirsk as my postgraduate students. These two, both graduates of the Lat-
vian University in Riga, engaged actively and enthusiastically in the subject.
Alexey V. Gladkiy and his group in mathematical linguistics became also inter-
ested in complexity problems, concerning grammars and formal languages. Soon
other people joined us, mainly students of the Novosibirsk University. My semi-
nar “Algorithms and Automata” was the forum for the new complexity subjects,
and hosted often visitors from other places. This is how research in computa-
tional complexity started in Novosibirsk; a new young generation arose, and I
had the good fortune to work with these people over a lengthy period.

Subsequently I joined forces with A. V. Gladkiy in a new department of our
Mathematical Institute, officially called the Department of Automata Theory
and Mathematical Linguistics. Its staff in different periods included our former
students Mikhail L. Degtyar, Mars K. Valiev, Vladimir Yu. Sazonov, Aleksey D.
Korshunov, Alexander Ya. Dikovski, Miroslav I. Kratko and Valeriy N. Agafonov
(1943-1997).

The basic computer model we used was the Turing machine with a variety
of complexity measures; for example, besides time and space, also the number
of times the head of the machine changes its direction. Along with deterministic
machines we considered also nondeterministic machines, machines with oracles,
and probabilistic machines.

It is not surprising that we were attracted by the same problems as our col-
leagues in the West, notably - as J. Hartmanis and R. Stearns. Independently
and in parallel we worked out a series of similar concepts and techniques: com-
plexity measures, crossing sequences, diagonalization, gaps, speed-up, relative
complexity, to cite the most important ones.

Blum’s machine independent approach to complexity was new for us, and it
aroused keen interest in our seminar. But, when later, at a meeting with Tseitin,
I began telling him about Blum’s work, he interrupted me almost at once and
proceeded to set forth many basic definitions and theorems. As it turned out,
he had realized it for some time already, but had never discussed the subject in
public!

My “gap” theorem [T67] was stimulated by Blum’s theory. It illustrated a set
of pathological time-bounding functions which need to be avoided in developing
complexity theory. Meyer and McCreight’s “Honesty Theorem” [McM69] showed
how this can be done through the use of appropriate “honest” functions.

In 1967, I published a set of lecture notes [T67] for a course “Complexity
of Algorithms and Computations” that I had given in Novosibirsk. The notes
contained an exposition of results of Blum and Hartmanis-Stearns, based on
their published papers, as well as results of our Novosibirsk group: my “gap”
theorem, Barzdin’s crossing sequences techniques, and other results reported on
our seminar.

I sent a copy of these notes to M. Blum (by then at Berkeley). Further I am
quoting Albert Meyer [M84]: “Blum passed on a copy of the Trakhtenbrot notes
to me around 1970 when I was at MIT since I knew of a graduate student who
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was interested in translating them. His work was not very satisfactory, but then
Filloti came to MIT to work as a Post-Doc with me and did a respectable job. By
this time the notes began to seem outdated (about five years old in 1972!) and I
decided that they needed to be revised and updated. This youthful misjudgment
doomed the project since I was too impatient and perfectionist to complete the
revision myself, and the final editing of the translation was never completed”.

In the academic year 1970-71, V. N. Agafonov continued my 1967-course,
and published the lecture notes [Ag75] as Part 2 of “Complexity of Algorithms
and Computations”. But, unlike Part 1, which focused on complexity of compu-
tations (measured by functions) Part 2 was dedicated to descriptive complexity
of algorithms (measured by numbers). It contained a valuable exposition of the
literature around bounded Kolmogorov complexity and pseudo-randomness, in-
cluding contributions of Barzdin and of Valery himself.

Towards applications

In the SU it was fully in the tradition of the theory of algorithms to handle
applications of two kinds: (i) proving or disproving decidability for concrete
problems, (ii) algorithmic interpretation of mathematical concepts (for example,
along the line of constructive analysis in the Markov School). So, it seemed
natural to look for similar applications in the complexity setting.

The attitude of the “classical” cybernetics people, (notably of Yablonski) to
the introduction of the theory of algorithms into complexity affairs was quite
negative. The main argument they used was that the theory of algorithms is
essentially a theory of diagonalization, and is therefore alien to the complexity
area that requires combinatorial constructive solutions. And indeed, except some
simple lower bounds supported by techniques of crossing sequences, all our early
results rested on the same kind of “diagonalization” with priorities, as in classical
computability theory.

But whereas in Algebra and Logic there were already known natural exam-
ples for undecidability phenomena which were earlier analyzed in the classical
theory, no natural examples of provable complexity phenomena were known. This
asymmetry was echoed by those who scoffed at the emptiness of the diagonal
techniques with respect to applications of complexity theory. In particular, they
distrusted the potential role of algorithm based complexity in the explanation
of perebor phenomena, and insisted on this view even after Kolmogorov’s new
approach to complexity of finite objects.

In the summer of 1963, during a visit by A. N. Kolmogorov to the Novosi-
birsk University, I learned more about his new approach to complexity and the
development of the concepts of information and randomness by means of the
theory of algorithms. In the early cybernetics period it was already clear that
the essence of problems of minimization of boolean functions was not in the
particular models of switching circuits under consideration. Any other natural
class of ‘schemes’, and ultimately any natural coding of finite objects (say, fi-
nite texts) could be expected to exhibit similar phenomena, and, in particular,
those related to perebor. But, unlike former pure combinatorial approaches, the
discovery by Kolmogorov (1965), and independently by Solomonoff (1964) and
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Chaitin (1966), of optimal coding for finite objects occurred in the framework
of algorithm and recursive function theory. (Note that another related approach
was developed by A. A. Markov (1964) and V. Kuzmin (1965).)

Algorithms and randomness

I became interested in the correlation between these two paradigms back in
the fifties, when P. S. Novikov called my attention to algorithmic simulation
of randomness in the spirit of von Mises-Church strategies. Ever since, I have
returned to this topic at different times and for various reasons, including the
controversies around perebor. Since many algorithmic problems encounter es-
sential difficulties (non existence of algorithms or non existence of feasible ones),
the natural tendency is to use devices that may produce errors in certain cases.
The only requirements are that the probability or frequency of the errors does
not exceed some acceptable level and that the procedures are feasible. In the
framework of this general idea, two approaches seemed to deserve attention:
probabilistic algorithms and frequential algorithms.

In the academic year 1969-70 I gave a course “Algorithms and Randomness”
which covered these two approaches, as well as algorithmic modelling of Mises-
Church randomness.

The essential features of a frequential algorithm M are generally as follows:

1. M is deterministic, but each time it is applied, it inputs a whole suitable
sequence of inputs instead of an individual one, and then produces the cor-
responding sequence of outputs.

2. The frequency of the correct outputs must exceed a given level.

The idea of frequency computations is easily generalized to frequency enu-
merations, frequency reductions, etc.

I learned about a particular such model from a survey by Mc. Naughton
(1961), and soon realized that as in the probabilistic case, it is impossible to
compute functions that are not computable in the usual sense.

Hence, the following questions:

1. Isit possible to compute some functions by means of probabilistic or frequen-
tial algorithms with less computational complexity than that of deterministic
algorithms?

2. What reasonable sorts of problems (not necessarily computation of func-
tions) can be solved more efficiently by probabilistic or frequential algorithms
than by deterministic ones?

3. Do problems exist that are solvable by probabilistic or frequential algorithms
but not by deterministic algorithms?

These problems were investigated in deep by Barzdin, Freivalds and their
students.

Relativized complexity

Computations with oracles are a well established topic in the Theory of Al-
gorithms, especially since Post’s classical results and the solution of his famous
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problem by Muchnik and Friedberg. So it seemed to me quite natural to look how
such issues might be carried to the complexity setting. At this point I should men-
tion that Meyer’s confession, about the translation of my lecture notes, points
only on a transient episode in our long-time contacts. Let me quote again Al-
bert [M84]: “Repeatedly and independently our choices of scientific subareas,
even particular problems, and in one instance even the solution to a problem,
were the same. The similarity of our tastes and techniques was so striking that it
seemed at times there was a clairvoyant connection between us. Our relationship
first came about through informal channels — communications and drafts circu-
lated among researchers, lecture notes, etc. These various links compensated for
the language barrier and the scarcity of Soviet representation at international
conferences. Through these means there developed the unusual experience of dis-
covering an intellectual counterpart, tackling identical research topics, despite
residing on the opposite side of the globe ... Today ...we find ourselves collab-
orating firsthand in an entirely different area of Theoretical Computer Science
than complexity theory to which we were led by independent decisions reflecting
our shared theoretical tastes”. (End of quotation)

As to computations with oracles, we both were attracted by the question: to
what extent can be simplified a computation by bringing in an oracle, and how
accurately can the reduction of complexity be controlled depending on the choice
of the oracle? This was the start point for a series of works of our students (mainly
M. Degtyar, M. Valiev in Novosibirsk and N. Lynch at MIT) with similar results
of two types: about oracles which do help (including the estimation of the help)
and oracles which cannot help. The further development of the subject by A.
Meyer and M. Fischer ended with a genuine complexity-theoretic analog to the
famous Friedberg-Muchnik theorem. It reflects the intuitive idea that problems
might take the same long time to solve but for different reasons! Namely: There
exist nontrivial pairs of (decidable!) sets, such that neither member of a pair
helps the other be computed more quickly.

Independently of Meyer and Fischer, and using actually the same techniques,
I obtained an improvement of this theorem. That happened in the frame of my
efforts to use relative algorithms and complexity in order to formalize intuitions
about mutual independence of tasks and about perebor.

Formalizing intuitions

Autoreducibility. When handling relativized computations it is sometimes
reasonable to analyze the effect of restricted access to the oracle. In particular,
this is the case with the algorithmic definition of “collectives”, i. e. of random
sequences in the sense of von Mises-Church. This definition relies on the use
of “selection strategies”, which are relative algorithms with restricted access to
oracles. A similar situation arises with the intuition about mutual independence
of individual instances which make up a general problem [T70a]. Consider, for
example, a first order theory T'. It may well happen that there is no algorithm,
which, for an arbitrary given formula A, decides whether A is provable or not
in T. However, there is a trivial procedure W which reduces the question about
A to similar questions for other formulas; W just inquires about the status of
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the formula (—(—.4)). The procedure W is an example of what may be called
autoreduction. Now, assume that the problem is decidable for the theory 7', and
hence the correct answers can be computed directly (without autoreduction). It
still might happen that one cannot manage without very complex computations,
whereas the autoreduction above is simple.

A guess strategy is a machine M with oracle, satisfying the con-
dition: for every oracle G and natural number n, the machine M,
having been started with n as input, never addresses the oracle
with the question “n € G?7” (although it may put any question
“v € G? for v # n). A set G is called autoreducible if it possesses an au-
toreduction, i. e. a guess strategy which, having been supplied with the oracle
G, computes the value G(n) for every n. Otherwise G is nonautoreducible, which
should indicate that the individual queries “n € G?” are mutual independent.

It turned out that:

1. The class of nonautoreducible sequences is essentially broader than the class
of random sequences.

2. There are effectively solvable mass problems M of arbitrary complexity with
the following property: autoreductions of M are not essentially less complex
than their unconditional computations.

Understanding perebor. Disputes about perebor, stirred by Yablonski’s
paper [Y59], had a certain influence on the development, and developers of com-
plexity theory in the SU. By and large, reflections on perebor activated my
interest in computational complexity and influenced my choice of special top-
ics, concerning the role of sparse sets, immunity, oracles, frequency algorithms,
probabilistic algorithms, etc. I told this story in details in [T84]; below I will
reproduce a small fragment from [T84].

The development of computational complexity created a favorable back-
ground for alternative approaches to the perebor topics: the inevitability of
perebor should mean the nonexistence of algorithms that are essentially more
efficient. My first attempt was to explain the plausibility of perebor phenomena
related to the “frequential Yablonski-effect”; it was based on space complexity
considerations. Already at this stage it became clear that space complexity was
too rough and that time complexity was to be used. Meanwhile I began to feel
that another interpretation of perebor was worth considering, namely, that the
essence of perebor seemed to be in the complexity of interaction with a “check-
ing mechanism”, as opposed to the checking itself. This could be formalized in
terms of oracle machines or reduction algorithms as follows. Given a total func-
tion f that maps binary strings into binary strings, consider Turing machines,
to compute f, that are equipped with the oracle G that delivers (at no cost!)
the correct answers to queries “f(z) = y?” (x,y may vary, but f is always the
same function). Among them is a suitable machine Mperepor that computes f(z)
by subsequently addressing the oracle with the queries

f(z) = B(0)?, f(z) = B(1)?,..., f(z) = B(i)?...
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where B(7) is the ith binary string in lexicographical order. Hence, in the compu-
tation of the string f(z) the number of steps spent by Mperebor is that represented
by the string f(z). I conjectured in 1966 that for a broad spectrum of functions f,
no oracle machine M can perform the computation essentially faster. As for the
“graph predicates” G(z,y) =def f(z) = y, it was conjectured that they would
not be too difficult to compute. By this viewpoint, the inevitability of perebor
could be explained in terms of the computational complexity of the reduction
process. The conjecture was proved by M. I. Degtyar in his Master’s thesis [1969]
for different versions of what “essentially faster” should mean. Using modern ter-
minology, one can say that Degtyar’s construction implicitly provides the proof
of the relativized version of the NP # P conjecture. For the first time, this ver-
sion was explicitly announced by Baker, Gill and Solovay (1975) together with
the relativized version of the NP = P conjecture. Their intention was to give
some evidence to the possibility that neither NP = P nor NP # P is provable in
common formalized systems. As to my conjecture it had nothing to do with the
ambitious hopes to prove the independence of the NP = P conjecture. As a mat-
ter of fact, I then believed (and to some extent do so even now) that the essence
of perebor can be explained through the complexity of relative computations
based on searching through the sequence of all binary strings. Hence, being con-
fident that the true problem was being considered (and not its relativization!),
I had no stimulus to look for models in which perebor could be eliminated.

To the perebor account [T84] it is worth adding the following quotations
from my correspondence with Mike Sipser (Feb. 1992).

S.  You write that Yablonski was aware of perebor in the early 50’s, and
that he even conjectured that perebor is inevitable for some problems in 1953-
54. But the earliest published work of Yablonski that you cite is 1959. Is there
a written publication which documents Yablonski’s awareness of these issues at
the earlier time? This seems to be an important issue, at least from the point
of establishing who was the first to consider the problem of eliminating brute
force search. Right now the earliest document I have is Go6del’s 1956 letter to
Von-Neumann.

T. I cannot remember about any publication before 1959 which documents
Yablonski’s awareness of these issues but I strongly testify and confirm that
(a quotation follows from my paper [T65]): “Already in 1954 Yablonski conjec-
tured that the solution of this problem is in essence impossible without complex
algorithms of the kind of perebor searching through all the versions ...”

He persistently advocated this conjecture on public meetings (seminars and
symposia).

S.  Second, is it even clear that Yablonski really understands what we
presently mean by eliminating brute force search? He claimed to have proven
that it could not be eliminated in some cases back in 1959. So there must be
some confusion.

T. That is indeed the main point I am discussing in Section 1 of my perebor
paper [T84]. The conclusion there is that there is no direct connection between



From Logic to Theoretical Computer Science 339

Yablonski’s result and what we presently mean by eliminating perebor. Hence
the long year controversy with Yablonski.

S. I’d appreciate your thoughts on how to handle Yablonski’s contribution
to the subject.

T. I would mention three circumstances:

1. In Yablonski’s conjecture the notion of perebor was a bit vague and did not
anticipate any specific formalization of the idea of complerity. Nevertheless
(and may be just due to this fact) it stimulated the investigation of different
approaches to such a formalization, at least in the USSR.

2. Yablonski pointed from the very beginning on very attractive candidates for
the status of problems which need essentially perebor. See Section 1 of [T84],
where synthesis of circuits is considered in this context.

3. Finally, he made the point that for his candidates the disaster caused by
perebor might be avoided through the use of probabilistic methods.

...let me mention that as an alternative to Yablonski’s approach I advocated
the idea of complexity of computations with oracles. In this terms I formulated
a conjecture which presently could be interpreted as the relativised version of
P not equal NP. This conjecture was proved by my student M. Degtyar [D69].
(End of quotations)

Turning points

The controversies around perebor were exacerbated by the emergence of the
new approach to complexity of algorithms and computations. And it was pre-
cisely this approach which was relevant for the genuine advance in the inves-
tigation of perebor in the seminal works of Leonid Levin in the SU and the
Americans, Steven Cook and Richard Karp.

The discovery of NP-complete problems gave evidence to the importance
of the Theory of Computational Complexity. Soon another prominent result
strengthened this perception. In 1972 A. Meyer and Stockmeyer (see [M73])
found the first genuine natural examples of inherently complex computable prob-
lems. This discovery was particularly important for me because the example
came from the area of automata theory and logic in which I had been involved
for a long time. Clearly, for the adherents of the algorithmic approach to com-
plexity, including myself, these developments confirmed the correctness of their
views on the subject and the worthwhileness of their own efforts in the past.
However the time had also come for new research decisions, inspired by the de-
velopments in semantics, verification, lambda calculus and schematology. But
that is another story!

Epilogue

For a long time I was not actively involved in automata and computational com-
plexity, being absorbed in other topics. During that period both areas underwent
impressive development, which is beyond the subject of this account.
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My entry into the field happened at an early stage, when formation of con-
cepts and asking the right questions had high priority, at least as solving well
established problems. This is also reflected in my above exposition in which the
emphasis was rather on the conceptual framework in the area. Some of those
concepts and models occurred in very specific contexts, or were driven by cu-
riosity rather than by visible applications. Did they make sense beyond their
first motivation? I would like to conclude with some remarks about this.

The first is connected to the new and very attractive paradigms of timed
automata and hybrid systems (HS). Nowadays, despite significant achievements,
the area is still dominated by an explosion of models, concepts and ad hoc nota-
tion, a reminder of the situation in automata theory in the fifties. It seems that
the “old” conceptual framework was not used enough to elucidate the underlying
computational intuition and to avoid reinvention of existing ideas.

One way to do so is to start with two separate and orthogonal extensions of
the basic model of a finite automaton M. The first one is by interconnecting M
with an oracle NV, which is also an automaton, but, in general, with an infinite
set of states. Typically, think about a logical net over components M and N,
with subsequent hiding of N. Whatever M can do while using IV is called its
relativization with respect to this oracle. The other extension is with continuous
time (instead of discrete, as in the classical case) but without oracles.

For each of these extensions, considered apart, it becomes easier to clarify
how (if any) to adapt the Trinity of formalisms

{Logic, Automata, Nets},

and the algorithms that manipulate specifications of some level, or translate
from one level to another (see [RT97]). An appropriate combination of the two
extensions might facilitate the formalization of hybrid systems and the lifting of
the classical heritage.

The next remark is about a resurgence of interest in autoreducibility and
frequency computations.

It was instructive to learn that the idea of restricting access to oracles, now
underlies several concepts, which are in fact randomized and/or time bounded
versions of autoreducibility: coherence, checkability, selfreducibility, etc. Most
of these concepts were identified independently from (though later than) my
original autoreducibility, and have occupied a special place in connection with
program checking and secure protocols (see [BF92] for details and references).

On the other hand, the idea of frequency computation was extended to
bounded query computations and parallel learning. Also interesting relationships
were discovered between autoreducibility, frequency computations and various
other concepts.

A final remark about the continuous conceptual succession since my youth-
ful exercises in descriptive set theory, which I tried to emphasize in my previous
exposition. In particular, it is quite evident that computational complexity is in-
spired by computability. But the succession can be traced back even to descrip-
tive set theory; just keep in mind the ideas which lead from the classification of
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sets and functions to the classification of what is computable, and ultimately to
hierarchies within computational complexity.

Acknowledgement. The help of Mrs. Diana Yellin in editing and formatting
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