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Abstract

Computably enumerable (c.e.) reals can be coded by Chaitin machines through
their halting probabilities. Tuning Solovay’s construction of a Chaitin universal ma-
chine for which ZFC (if arithmetically sound) cannot determine any single bit of the
binary expansion of its halting probability, we show that every c.e. random real is the
halting probability of a universal Chaitin machine for which ZFC cannot determine
more than its initial block of 1 bits—as soon as you get a 0 it’s all over. Finally,
a constructive version of Chaitin information-theoretic incompleteness theorem is
proven.

1 Introduction

We will consider only reals in the unit interval (0, 1). A real α is computably enumerable
(c.e.) if it is the limit of a computable, increasing, converging sequence of rationals. In
contrast with the case of a computable real, whose digits are given by a computable
function, during the process of approximation of a c.e. real one may never know how
close one is to the final value. See Downey and LaForte [13] for a recent study on
computably enumerable reals. A real α is random if its binary expansion is a random
(infinite) sequence (cf. Chaitin [7, 8], Calude[1]); the choice of base is irrelevant
(cf. Calude and Jürgensen [5], Hertling and Weihrauch [14], Staiger [20]). C.e. ran-
dom reals have many other interesting properties; for example, they are wtt-complete,
but not tt-complete (cf. Calude and Nies [6]). For computation theory see Odifreddi [15].

In [7] (see also [8, 11, 12]), Chaitin has introduced the halting probability ΩU of a
“Chaitin universal machine” U–Chaitin’s Omega number. He proved:

Theorem 1 For every Chaitin universal machine U , ΩU is a c.e. random real.

Are there other c.e. random reals? The answer is negative, and the proof is con-
structive, cf. Calude, Hertling, Khoussainov, Wang [4] and Slaman [16] (full paper will
appear in [17]; see also Calude and Chaitin [2], Calude [3]):

Theorem 2 The set of c.e. random reals coincides with the set of Chaitin Omega num-
bers.



So, computably enumerable (c.e.) reals can be coded by Chaitin universal machines
through their halting probabilities. How “good” or “bad” are these names? In [7] (see
also [8, 11]), Chaitin proved the following:

Theorem 3 Assume that ZFC1 is arithmetically sound.2 Then, for every Chaitin uni-
versal machine U , ZFC can determine the value of only finitely many bits of ΩU , and
one can give a bound on the number of bits of ΩU which ZFC can determine.

The bound cited in Theorem 3 can be explicitly formulated, but it is not effective, in
the sense that it’s not computable. For example, in [11] Chaitin described, in a dialect
of Lisp, a universal machine U and a theory T , and proved that U can determine the
value of at most H(T ) + 15, 328 bits of ΩU ; H(T ) is the program-size complexity of the
theory T , an uncomputable number.

Fix a universal Chaitin machine U and consider all statements of the form

“The nth binary digit of the expansion of ΩU is k”, (1)

for all n ≥ 0, k = 0, 1. How many theorems of the form (1) can ZFC prove? More
precisely, is there a bound on the set of non-negative integers n such that ZFC proves a
theorem of the form (1)? From Theorem 3 we deduce that ZFC can prove only finitely
many (true) statements of the form (1). This is Chaitin strongest information-theoretic
version of Gödel’s incompleteness (see [11, 12]):

Theorem 4 If ZFC is arithmetically sound and U is a Chaitin universal machine, then
almost all true statements of the form (1) are unprovable in ZFC.

Again, a bound can be explicitly found, but not effectively computed.

Of course, for every c.e. random real α we can construct a Chaitin universal machine
U such that α = ΩU and ZFC is able to determine finitely (but as many as we want)
bits of ΩU . By tuning the construction of the universal Chaitin machine, Solovay [19]
went into the opposite direction and obtained a dramatic improvement of Theorem 3:

Theorem 5 We can effectively construct a universal Chaitin machine U such that ZFC,
if arithmetically sound, cannot determine any single bit of ΩU .

Solovay [19] proved a sharper version of Theorem 5 by replacing ZFC with a
computably axiomatizable 1-consistent theory. Theorem 3 holds true for any universal
Chaitin machine U (it’s easy to see that the finite set of (true) statements of the form
(1) which can be proven in ZFC can be arbitrarily large) while Theorem 5 constructs a
specific U .

A Chaitin machine U for which PA3 can prove its universality and ZFC cannot
determine more than the initial block of 1 bits of the binary expansion of its halting
probability, ΩU , will be called Solovay machine.4 In view of Theorem 2 and Theorem 5,
we may ask the question:

1Zermelo set theory with choice.
2That is, any theorem of arithmetic proved by ZFC is true.
3PA means Peano Arithmetic.
4Of course, U depends on ZFC.
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Which c.e. random reals are halting probabilities of Solovay machines? (2)

The main result of this note answers question (2):

Theorem 6 Assume that ZFC is arithmetically sound. Then, every c.e. random real
is the halting probability of a Solovay machine.

For example, if α ∈ (3/4, 7/8) is c.e. and random, then in the worst case ZFC can
determine its first two bits (11), but no more.

Corollary 7 Assume that ZFC is arithmetically sound. Then, every c.e. random real
α ∈ (0, 1/2) is the halting probability of a Solovay machine which cannot determine any
single bit of α. No c.e. random real α ∈ (1/2, 1) has the above property.

Gödel Incompleteness Theorem is constructive, but the proof of Theorem 4 appears
to be non-constructive. Is it possible to get a constructive variant of Theorem 4? The
answer is affirmative and here is a possible variant:

Theorem 8 If ZFC is arithmetically sound and U is a Solovay machine, then the
statement “the 0th bit of the binary expansion of ΩU is 0” is true but unprovable in
ZFC.

In fact, one can effectively construct arbitrarily many examples of true and unprov-
able statements of the form (1), where U is a Solovay machine.

The rest of this paper is organised as follows. Section 2 contains a review of the basic
definitions of algorithmic information theory that we need. In Section 3, we present the
proof of Theorem 6. Section 4 is devoted to incompleteness.

2 Basic Definitions and Notation

Let Σ = {0, 1}. By Σ∗ we denote the set of binary strings (including the empty string,
λ). If s is a binary string, we write |s| for the length of s. The concatenation of the
strings s and t will be denoted by s � t. If j is one of 0 or 1, the string of length 1
whose sole component is j will be denoted by 〈j〉. A string s is a prefix of a string t
(s ⊆ t) if t = s � r, for some r ∈ Σ∗. A subset A of Σ∗ is prefix-free if whenever s and
t are in A and s ⊆ t, then s = t.

We will work with the usual theory of partial computable string functions (i.e.,
partial functions whose domains and ranges are subsets of Σ∗); see Calude [1].

Next we move to the probabilistic part. Consider the following experiment: Pick, at
random using the Lebesgue measure on [0, 1], a real x in the unit interval and note that
the probability that some initial prefix of the binary expansion of x lies in the prefix-free
set A is the real number:

ΩA =
∑

s∈A

2−|s|.
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A Chaitin machine (computer) V computes a partial string function whose domain
dom(V ) is a prefix-free set.5 Set ΩV = Ωdom(V ). A Chaitin machine U is universal if
it can simulate any other Chaitin machine. More precisely, U is universal if for every
Chaitin machine V there is a constant c (depending upon U and V ) such that for every
s, t ∈ Σ∗, if V (s) = t, then U(s′) = t, for some s′ ∈ Σ∗ of length |s′| ≤ |s|+ c.

Universal Chaitin machines can be effectively constructed (see [9, 11, 1]). According
to Theorem 1, if U is universal, then ΩU is random. As a corollary, ΩU is irrational and
does not have a computable binary expansion; however, ΩU is c.e., that is, computable
in the limit from below.

The set of Chaitin machines is c.e. Indeed, let (ϕn)n≥0 be a Gödel numbering of all
partial computable string functions. Then, there exists a partial computable function ψ
(depending upon two variables, a non-negative integer and a string) such that:

• for every non-negative integer n, the partial function ψn(s) = ψ(n, s) is a Chaitin
machine, and

• for every ϕn with a prefix-free domain we have ψn(s) = ϕn(s), for all non-negative
integers n and all strings s.

Denote by Dn the domain of ψn and put Ωn = ΩDn . The time relativized versions of
Dn and Ωn are defined in the usual way. Let Dn[t] be the set of all elements of Dn which
have appeared by time t and let Ωn[t] = ΩDn[t], the approximation of Ωn computable at
time t. The following facts follow directly:

1. Given n and t we can effectively compute the finite set Dn[t] and the rational
number Ωn[t].

2. The sequence (Ωn[t])t≥0 increases monotonically to Ωn.

This shows that every real Ωn is c.e. (in fact, every c.e. real is an Ωn, for some n, cf.
[4]); some Ωn’s may be even computable, but, in view of Theorem 1, if ψn is universal,
then Ωn is random, so not computable.

Proposition 9 Let U be a universal Chaitin machine, ΩU = 0.ω0ω1 . . ., and let s =
s0s1 . . . sm be a binary string. Then, we can effectively construct a universal Chaitin
machine W such that ΩW = 0.s0s1 . . . smω0ω1 . . ..

For every universal Chaitin machine U we can effectively construct two universal
Chaitin machines V1 and V2 such that ΩV1 = 1

2 ·ΩU and ΩV2 = 1
2(1 + ΩU ): put V1(0x) �

U(x) and V2(0x) � U(x), V2(1) = 0, respectively.

3 Solovay’s Theorem Revisited

We fix an interpretation of Peano Arithmetic (PA) in ZFC. Each sentence of the
language of PA has a translation into a sentence of the language of ZFC, determined
by the interpretation of PA in ZFC. A “sentence of arithmetic” indicates a sentence of
the language of ZFC that is the translation of some sentence of PA. We shall assume

5We follow Solovay’s terminology [18, 19].
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that ZFC is arithmetically sound, that is, any sentence of arithmetic which is a theorem
of ZFC is true (in the standard model of PA).6

A dyadic rational is a rational number of the form r/2s, where r and s are
integers and s ≥ 0; for example, Ωn[t] is a dyadic rational. If x is a real num-
ber which is not a dyadic rational, then x has a unique binary expansion. We start
numbering the digits of the binary expansion of a real α with the 0th digit: α = 0.α0α1 . . .

Every statement of the form

“The nth binary digit of the expansion of Ωl is k”, (3)

for all n, l ≥ 0, k = 0, 1, can easily be formalized in PA. Moreover, if ψl is a Chaitin
machine which PA can prove universal and ZFC proves the assertion (3), then this
assertion is true.

Theorem 10 Assume ZFC is arithmetically sound. Let i ≥ 0 and consider the c.e. ran-
dom real

α = 0.α0α1 . . . αi−1αiαi+1 . . . , where α0 = α1 = . . . αi−1 = 1, αi = 0.

Then, we can effectively construct a universal Chaitin machine, U (depending upon
ZFC and α), such that the following three conditions are satisfied:

a) PA proves the universality of U .

b) ZFC can determine at most i initial bits of ΩU .

c) α = ΩU .

A machine satisfying all conditions in Theorem 10 will be called Solovay machine.

We start by fixing a universal Chaitin machine V such that the universality of V is
provable in PA and ΩV = α. Use Theorem 2 and Proposition 9 to effectively construct
a universal Chaitin machine Ṽ such that

ΩṼ = 0. 00 . . . 0︸ ︷︷ ︸
i 0′s

αi+1αi+2 . . . ,

if i ≥ 1, and a universal Chaitin machine V̂ such that

ΩV̂ = 0.α1α2 . . . ,

in case i = 0. Next we construct, by cases, a partial computable function W (l, s) (l is a
non-negative integer and s ∈ Σ∗) as follows:

Step 1: Set W (l, λ) to be undefined.
Step 2: If i = 0, then go to Step 6. Otherwise, set

W (l, 〈1〉) = W (l, 10) = . . . = W (l, 11 . . . 1︸ ︷︷ ︸
i 1′s

0) = λ.

6The metatheory is ZFC itself, that is, “we know” that PA itself is arithmetically sound.
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Step 3: If s = 00 � t, for some t ∈ Σ∗, then set

W (l, s) � Ṽ (t), 7

and stop.
Step 4: If s = 01 � t, for some t ∈ Σ∗, then go to Step 5.
Step 5: List all theorems of ZFC, in some definite order, not

depending on t, and search for a theorem of the form (3). If no such
theorem is found, then W (l, s) is undefined, and stop. If such a theorem
is found, then let n, l, k be its parameters.

• If |t| 
= n, then W (l, s) is undefined, and stop.

• If |t| = n, then let r be the unique dyadic rational, in [0, 1), whose
binary expansion is t � 〈k〉 and set r′ = r + 2−(n+1). Search for the
least integer m such that Ωl[m] ∈ (r, r′). If this search fails, or
s ∈ Dl[m], then W (l, s) is undefined, and stop. In the opposite case
set W (l, s) = λ, and stop.

Step 6: If s = 〈0〉� t, for some string t, then set

W (l, s) � V̂ (t),

and stop.
Step 7: If s = 〈1〉� t, for some string t, then go to Step 5.

The Recursion Theorem provides a j such that ϕj(s) � W (j, s). We fix such a j
and set U = ϕj . We will show that U is a universal Chaitin machine which satisfies
conditions a) – c).

First we prove that U is a Chaitin machine. Let i = 0. Suppose that s1 and s2 are
in the domain of U and s1 ⊆ s2. Since U is undefined on the empty string, |s1| ≥ 1.
Let k be the first bit of s1. Let si = 〈k〉 � ti. Clearly t1 ⊆ t2. If k = 0, then t1 and t2
are in the domain of the Chaitin machine V , hence t1 = t2 and s1 = s2. If k = 1 and
U(s1) and U(s2) are defined, then the integer n has to be defined in the course of the
computation; n is the same for both s1 and s2 as the enumeration of theorems of ZFC
does not depend upon ti. But then |t1| = |t2| = n, so |s1| = |s2| = n + 1 and s1 = s2.
Now assume that i ≥ 1 and, again, s1 and s2 are in the domain of U and s1 ⊆ s2. Let k
be the first bit of s1. If k = 1, then according to Step 2, s1, s2 belong to the prefix-free
set

{1, 10, 110, . . . , 11 . . . 1︸ ︷︷ ︸
i 1′s

0},

so s1 = s2. If k = 0, then two cases may appear. If si = 00 � ti, then t1, t2 belong to the
domain of the Chaitin machine Ṽ (see Step 3), so t1 = t2 and s1 = s2. If si = 01 � ti,
then in view of Step 5, a similar argument as in case i = 0 shows that s1 = s2.

It follows that U is a Chaitin machine, i.e., U = ψj and Ωj = ΩU . The uni-
versality of U follows from the definition of W (l, s) on Steps 3 and 6 as Ṽ and V̂

7As usual x � y holds between two partially defined objects x and y if (a) x is defined iff y is defined
and (b) if they are both defined, then they are equal.
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are universal. More, U inherits from Ṽ (V̂ ) the fact that its universality is provable in PA.

Assume now that i = 0 and ZFC can determine some bit of ΩU . Then, in the course
of the computation the integers n and k are defined. Let r be a dyadic rational with
denominator 2n+1 such that

r < ΩU < r + 2−(n+1),

(r exists because ΩU is irrational). Let r′ = r + 2−(n+1).
Since ZFC is arithmetically sound, the assertion “The nth binary bit of ΩU is k” is

true. Hence the first n+1 bits of the binary expansion of r have the form t � 〈k〉 where
t is a string of length n. For all sufficiently large m, Ωj [m] will lie in the interval (r, r′).

Let s = 〈1〉 � t and consider the computation of U(s). The rationals r and r′

involved in that computation are exactly the ones just defined above. The search for an
m such that Ωj [m] ∈ (r, r′) will succeed and s 
∈ Dj [m]. Reason: if s ∈ Dj [m], then U(s)
is undefined. But Dj [m] ⊆ Dj , so s ∈ Dj , the domain of U , a contradiction.

Consequently, U(s) is defined, and Dj contains in addition to the members of Dj [m]
the string s of length n + 1. It follows that ΩU ≥ r + 2−(n+1) = r′, which contradicts the
definition of r.

With a similar argument as above one can show that the assumption that ZFC can
determine some bit of ΩU beyond its first i ≥ 1 bits leads to a contradiction.

The analysis just described above shows that for i = 0, U(〈1〉� t) is undefined, and
in case i ≥ 1, U(01 � t) is undefined, for every string t. To finish the proof we notice
that for i = 0,

ΩV =
1
2
· ΩV̂ = ΩU ,

and for i ≥ 1,

ΩV = (1− 2−i) +
1
4
· ΩṼ = ΩU .

If we set i = 0 in Theorem 10, then we get Corollary 7. Indeed, every c.e. random real
in the interval (0, 1/2) has its 0th digit 0, so it can be represented as the halting probability
of a Solovay machine for which ZFC cannot determine any single bit. However, if α is
c.e. and random, but α > 1/2, then ZFC can determine the 0th bit of α which is 1.

4 Incompleteness

Theorem 8 follows directly from Corollary 7. Indeed, start with a universal Chaitin
machine U and effectively construct a Solovay machine U ′ such that ΩU ′ = 1

2 · ΩU .
Then, ΩU ′ is less than 1/2, so its 0th bit is 0, but ZFC cannot prove this fact!

We can now use Chaitin’s Theorem [10]

Theorem 11 Given a universal Chaitin machine U one can effectively construct an
exponential Diophantine equation P (n, x, y1, y2, . . . , ym) = 0 such that for every natural
fixed k the equation P (k, x, y1, y2, . . . , ym) = 0 has an infinity of solutions iff the kth bit
of ΩU is 1.
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to effectively construct an exponential Diophantine equation which has only finitely
many solutions, but this fact cannot be proven in ZFC.

In fact, for every binary string s = s1s2 . . . sn use Proposition 9 to effectively construct
a Solovay machine U such that the binary expansion of ΩU has the string 〈0〉� s1s2 . . . sn

as prefix. Consequently, the following statements

“The 0th binary digit of the expansion of ΩU is 0”,

“The 1th binary digit of the expansion of ΩU is s1”,

“The 2th binary digit of the expansion of ΩU is s2”,

...

“The (n + 1)th binary digit of the expansion of ΩU is sn”,

are true but unprovable in ZFC.
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