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Abstract

We give various characterizations for algorithmically random con®gurations on full shift spaces, based on randomness tests. We

show that all nonsurjective cellular automata destroy randomness and surjective cellular automata preserve randomness. Furthermore

all one-dimensional cellular automata preserve nonrandomness. The last three assertions are also true if one replaces randomness

by richness ± a form of pseudorandomness, which is compatible with computability. The last assertion is true even for an arbitrary

dimension. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cellular automata were originally introduced by Ulam and von Neumann [29] as models for natural
complex systems, especially self-reproducing biological systems. Since then they have been analyzed in
many other contexts, e.g. for the simulation of physical phenomena, for computability questions (cellular
automata are capable of universal computation), for random number generation, in the framework of
formal language theory, in symbolic dynamics, and many more; compare e.g., [31] and other papers in the
same volume [12,18,28].

Cellular automata show a uniform behavior over a certain region of the space. They operate on con-
®gurations which consist of a discrete lattice of cells each of which is in one of ®nitely many states. Time is
discrete; at each time step the value of each cell is updated uniformly according to a ®nite set of rules. The
new value of a cell depends only on the current values of ®nitely many cells in its neighborhood. Although
cellular automata can be described easily by a ®nite set of rules (the local function) they exhibit a rich and
complicated global behavior which often seems chaotic or random. Wolfram [32] discussed some aspects of
cellular automata with respect to randomness in the sense of algorithmic information theory; cf. [5,8,17]. In
this paper we give several rigorous mathematical characterizations of random con®gurations and analyze
the behavior of cellular automata on random and nonrandom con®gurations. The characterizations of
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random con®gurations are based on Martin-L�of's [20] idea to use randomness tests and the generalization
of his ideas carried out by Hertling and Weihrauch [14,15]. We show that a cellular automaton is surjective
if and only if it preserves randomness of con®gurations. This gives a new characterization of the class of
surjective cellular automata. Note that the analysis and comparison of the classes of injective (or reversible)
cellular automata and surjective cellular automata have received great attention in the past, starting with
Moore's Garden of Eden Theorem [4,23]; compare Myhill [4,24], Richardson [25], Maruoka and Kimura
[21,22], and others. It follows directly from known results that nonsurjective cellular automata destroy
randomness. Furthermore, we show that every cellular automaton of dimension 1 preserves nonrandom-
ness, i.e., if started on a nonrandom con®guration then the following con®guration is nonrandom as well.
The same statements are shown to be true also if randomness is replaced by the simpler ``richness'' property
(following Compton's [11] terminology for one-way in®nite sequences we call a con®guration rich if it
contains every ®nite pattern). In fact, cellular automata of arbitrary dimension preserve nonrichness. At
present it seems to be open whether arbitrary cellular automata of dimension 2 or greater preserve non-
randomness. These de®nitions and results may serve as a ®rst step towards a better understanding of the
behavior of cellular automata with respect to random con®gurations. Further possible questions in this
context are formulated in the conclusions section.

We give a short overview over the paper. In the next section we introduce and describe full shift spaces
and basic notions connected with them. We also introduce the notion of an algorithmically random con-
®guration. In Section 3 more characterizations (based on randomness tests) and properties of random
con®gurations are discussed; the possibility to obtain the natural randomness notion on full shift spaces via
products and quotients of randomness spaces is also discussed. In Section 4, we de®ne cellular automata
and analyze their behavior with respect to randomness and nonrandomness of con®gurations. Finally, in
Section 5, we indicate some possible further questions for study.

2. Full shift spaces

We introduce full shift spaces and several elementary notions connected with them, especially richness of
con®gurations.

By N we denote the set f0; 1; 2; . . .g (of nonnegative integers) and by Z the set f. . . ;ÿ2;ÿ1; 0; 1; 2; . . .g
(of integers). Let R be a ®nite set with at least 2 elements, and let d P 1 be a positive integer. Then Zd is the
d-dimensional lattice over the integers Z. The space RZd

is called a full shift space. We call the elements of R
the states, the number d the dimension, and the elements c 2 RZd

the con®gurations of the full shift space.
For a con®guration c 2 RZd

and a 2 Zd we write ca instead of c�a�; elements of Zd will be sometimes called
cells and ca will then be the content of cell a. For r 2 N, let �ÿr; r� denote the set fÿr; . . . ; 0; . . . ; rg. On the
spaces RZd

we use the product topology induced by in®nitely many copies of the discrete topology on the
®nite space R. By Tychono�'s Theorem the space RZd

is compact because it is a countable product of
compact spaces. This space is in fact a metric space. One can, for example, use the metric dist de®ned by
dist�c; c0� � 2ÿm�c;c0� where

m�c; c0� � minfr 2 N j 9a 2 �ÿr; r�d : ca 6� c0ag

for c; c0 2 RZd
; here min ; � 1. The sets

fc 2 RZd j cz � sg; s 2 R; z 2 Zd

form a subbase of the topology on RZd
. Cellular automata operate on full shift spaces. Cellular automata

will be discussed in Section 4.
The name shift spaces comes from the fact that the shift mappings on the space RZd

play an important
role. Each integer vector a � �a1; . . . ; ad� 2 Zd induces a bijection r�d�a : RZd ! RZd

de®ned by
r�d�a �c�b � cb�a, for every b 2 Zd ; it is called the shift map associated with a. In the sequel the superscript �d�
will be omitted when the dimension is clear from the context. The shift map rei associated with the unit
vector ei � �0; . . . ; 0; 1; 0; . . . ; 0� 2 Zd having a 1 in position i and zeroes in all other positions is also written
ri. The shift mapping r1 is the usual left shift in the one-dimensional case.
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We wish to de®ne a random con®guration of a full shift space. First let us look at the simplest case, when
the dimension d is equal to 1. For one-way in®nite sequences 1 in RN � fp j p : N! Rg one obtains the
well-known randomness notion from algorithmic information theory; see [5,17]. Random one-way se-
quences can be de®ned via Martin-L�of's [20] randomness tests or Chaitin [7,8,10] program-size complexity.
This ``notion of randomness'' will be de®ned precisely below. The simplest way to de®ne randomness for
two-way in®nite sequences over R, that is, for elements of RZ, is to use a standard bijection from Z to N,
e.g. the bijection h� � �i : Z! N de®ned by

hzi � 2z if z P 0;
2�ÿz� ÿ 1 if z < 0:

�
This bijection induces a bijection from RN to RZ in the obvious way: one maps an element p � �pi�i 2 RN to
the two-way sequence q � �qz�z 2 RZ de®ned by qz � phzi, for all z 2 Z. Now it seems natural to call a two-
way in®nite sequence q 2 RZ random if and only if the corresponding one-way in®nite sequence p 2 RN is
random.

This procedure can also be carried out in the case of a dimension d P 1. For this aim we use a bijection
from Zd onto N. The mapping p : N2 ! N de®ned by p�i; j� � 1=2�i� j��i� j� 1� � i is a bijection. For
d P 2 we de®ne h� � �i : Zd ! N recursively by

hz1; . . . ; zdi � p�hz1i; hz2; . . . ; zdi�:
This is a bijection for each d P 1.

If L1 and L2 are countable sets, then a total mapping f : L1 ! L2 induces a mapping f : RL2 ! RL1 via

f �p�l1
� pf �l1�

for all p 2 RL2 and l1 2 L1. If f is a bijection, then also f is a bijection. Hence, for each d P 1, the induced
mapping h� � �i : RN ! RZd

is a bijection. It is clear that it is even a homeomorphism and induces a bijection
of the following subbases of the respective topologies: the pre-image under h� � �i of the cylinder
fc 2 RZd j cz � sg � RZd

for s 2 R and z 2 Zd is the cylinder fc 2 RN j chzi � sg, and these sets form a
subbase of the product topology on RN. Furthermore, if we consider the product measure el on RN and el on
RZd

of the uniform measure l on R, given by l�fsg� � 1=jRj, then h� � �i is also measure preserving,
i.e., el�h� � �iÿ1�U�� � el�U� for all open U � RZd

. Thus, the mapping h� � �i really shows that the spaces RN

and RZd
are identical with respect to topology and measure. Using these considerations we shall see later

that it makes sense to call a con®guration c 2 RZd
random if and only if the one-way in®nite sequence

h� � �iÿ1�c� 2 RN is random.
There is just one more point which should be discussed: does the construction above depend upon the

bijection h� � �i : Zd ! N? Does the choice of the bijection in¯uence the de®nition? Certainly it does, because
the notion of randomness for elements of RN is not invariant under an arbitrary permutation of its entries.

Example 2.1. For every sequence c0c1c2 � � � 2 RN, there exists a bijection w : N! N such that the sequence
cw�0�cw�1�cw�2� � � � 2 RN is nonrandom. Such a w can be obtained for example as follows. If the sequence
c0c1c2 . . . is not random we can take w to be the identity. Otherwise we can assume, without loss of gen-
erality, that R � f0; 1; . . . ; qÿ 1g, for some q P 2. Some element of R appears in the sequence in®nitely
many times, say ci � 0, for in®nitely many i. Let f : N! N be the unique and increasing function such that
cf �i� is the �i� 1�st zero in c0c1c2 . . . for all i. We de®ne w by

w�i� �
f �2j� 1� if i � f �2j� � 1;

f �2j� � 1 if i � f �2j� 1�;
i if i 62 Sj2Nff �2j� � 1; f �2j� 1�g:

8><>:

1 In formal language theory one writes Rx instead of RN and the elements of RN are called x-words.
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Then the sequence cw�0�cw�1�cw�2� � � � does not contain an isolated zero, hence it does not contain the word

101, hence it is nonrandom. 2

But if w : N! N is a computable bijection, then a sequence c0c1c2 . . . 2 RN is random if and only if the
sequence cw�0�cw�1�cw�2� . . . 2 RN is random (see [2, Lemma 3.4] or [15, Corollary 4.9]). Hence, if a bijection
b : Zd ! N is chosen such that h� � �i � bÿ1 is computable we obtain via b the same randomness notion on RZd

as
via the bijection h� � �i.

We would like to consider also a very weak form of randomness for which this is not true: richness.
Following Compton [11], we call a one-way in®nite sequence c 2 RN rich if and only if every word w 2 R�

occurs in c. 3 This can be transferred to con®gurations as follows.
Let A;B � Zd be two ®nite sets and an integer vector a 2 Zd . The sets A;B are called a-equivalent if

A � a� B. Two elements v 2 RA and w 2 RB are called equivalent if there exist an integer vector a and two
a-equivalent ®nite sets A;B such that va�b � wb, for all b 2 B.

The equivalence classes of elements of RA for ®nite subsets A � Zd are called patterns (over R and of
dimension d). The equivalence classes of elements of Rf1;2;...;ng

d
for any positive integer n are called cube

patterns. The number n is called the side length of such a cube pattern. We say that a pattern, given by a
representative w 2 RA for some ®nite set A � Zd , occurs or is contained in a con®guration c 2 RZd

if there
exists an integer vector b 2 Zd such that cb�a � wa for all a 2 A.

De®nition 2.2. We call a con®guration c 2 RZd
rich if every pattern over R and of dimension d occurs in c.

It is clear that a con®guration is rich if and only if every cube pattern (over R, of dimension d) occurs
in c.

We conclude this section with the observation that in contrast to randomness richness is very fragile even
under computable rearrangement of sequences. If a one-way infinite sequence c � c0c1c2 � � � 2 RN is rich,
then also the two-way infinite sequence h� � �i�c� � � � � c3c1c0c2c4 � � � 2 RZ is rich, but the converse is not true.
Indeed, let c � c0c1c2 � � � be a one-way rich sequence and de®ne another one-way sequence ec by ec2i � ci andec2i�1 � s for all i where s is a ®xed element of R. Then ec is not rich, but the corresponding two-way sequence
h� � �i�ec� � � � � ssc0c2c4 � � � is rich. Yet, by choosing a di�erent bijection from Z to N one can achieve
equivalence of the richness notions on RN and RZ: it is not di�cult to check that a two-way sequence
c � � � � cÿ2cÿ1c0c1c2 � � � is rich if and only if the one-way sequence

c0cÿ1c1cÿ2cÿ3c2c3cÿ4cÿ5cÿ6c4c5c6cÿ7cÿ8cÿ9cÿ10c7c8c9c10cÿ11 � � � cÿ15c11 � � � c15 � � �
is rich. Note also that randomness is base invariant but richness is not base invariant: a real number a has a
random binary representation if and only if all representations of a to any base are random; see [5,6]; for
di�erent proofs see [14,27]. But for any two bases b; c P 2 such that bn 6� cm for all n;m P 1, there are real
numbers which have a rich representation to base b, but a nonrich representation to base c; see [26],
compare also [13].

3. Full shift spaces as randomness spaces

In this section, we give another characterization of algorithmically random elements of full shift spaces.
We further study randomness spaces and the construction of new randomness spaces in terms of products
and quotients of randomness spaces.

In the previous section we introduced randomness in RZd
by identifying RN and RZd

via a standard
bijection between Zd and N and by using the randomness notion on RN. There is another more direct way to
de®ne randomness on full shift spaces, without reference to random one-way in®nite sequences: one can
formulate Martin-L�of 's [20] idea to de®ne randomness for one-way in®nite sequences in RN via so-called

2 A random sequence in RN contains every word in R�, see [5].
3 Richness is called disjunctiveness in formal language theory, cf. [16].
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randomness tests in a much more general setting. This has been carried out by Hertling and Weihrauch
[14,15]. One can apply the de®nition of randomness spaces in [14,15] especially to full shift spaces. We
repeat the de®nition of randomness spaces, randomness test and random elements from Hertling and
Weihrauch [14,15].

De®nition 3.1 (Hertling and Weihrauch [14,15]). A randomness space is a triple �X ;B; l�, where X is a
topological space, B : N! 2X is a total numbering of a subbase of the topology of X, and l is a measure
de®ned on the r-algebra generated by the topology of X (notation: Bi � B�i�).

Recall that a subbase of a topology is a set b of open sets such that the sets
T

U2E U , for ®nite, nonempty
sets E � b, form a basis of the topology. Random points of a randomness space are de®ned via randomness
tests. Before we de®ne them we introduce the numbering B0 of a base derived from a numbering B of a
subbase, and de®ne computable sequences of open sets. In the following de®nition we use the bijection
D : N! fE j E � N is finiteg de®ned by Dÿ1�E� �Pi2E 2i.

De®nition 3.2 (Hertling and Weihrauch [14,15]). Let X be a topological space and �Un�n be a sequence of
open subsets of X

1. A sequence �Vn�n of open subsets of X is called U-computable if there is a computably enumerable set
A � N such that

Vn �
[
i2N;

p�n;i�2A

Ui

for all n 2 N.
2. The sequence �U 0n�n of open sets de®ned by

U 0i � U 0�i� �
\

j2D1�i

Uj

for all i 2 N; is called the sequence derived from U.

Note that if B is a numbering of a subbase of a topology, then B0 � �B0i�i is a numbering of a base of the
same topology. The next de®nition generalizes Martin-L�of's [20] de®nition of random sequences to points
from arbitrary randomness spaces.

De®nition 3.3 (Hertling and Weihrauch [14,15]). Let �X ;B; l� be a randomness space
1. A randomness test on X is a B0-computable sequence �Un�n of open sets with l�Un�6 2ÿn for all n 2 N.
2. An element x 2 X is called nonrandom if x 2 Tn2N Un for some randomness test �Un�n on X. It is called

random if it is not nonrandom.

Examples 3.4.

1. (Hertling and Weihrauch [15]). The simplest examples of randomness spaces are spaces �R;B;l� where
R � fs0; . . . ; skg is a ®nite, nonempty set, the numbering B is given by Bi � fsig for i6 k and Bi � X for
i > k, and the measure l is given by l�fsig� � 1=�k � 1�. Notice that l is a probability measure. Every
element of R is random because the measure of any nonempty open set is at least 1=�k � 1�.

2. (Hertling and Weihrauch [14,15]). The original randomness spaces are the spaces �RN;B; el� of in®nite
sequences over a ®nite alphabet R with at least two elements [20]. The numbering B of a subbase (in fact
a base) of the topology is given by Bi � m�i�RN � fp 2 RN j m�i� is a pre®x of pg, where m : N! R� is the
length-lexicographical bijection between N and the set R� of ®nite words over R. The measure el is the
product measure of the measure in the ®rst example, i.e., el�wRN� � jRjÿjwj for w 2 R�.

3. Let R � fs0; . . . ; skg have k � 1 P 2 elements and d P 1. In order to view the full shift space RZd
as a ran-

domness space �RZd
; eB; el� we have to describe the measure el and the numbering eB of a subbase of the
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topology. The measure el is the product measure of the measure in the ®rst example, i.e., given byel�fc 2 RZd j cz � sg� � 1=�k � 1� for s 2 R and z 2 Zd . The numbering eB is de®ned by

eBj��k�1��hz1;...;zd i � fc 2 RZd j c�z1;...;zd � � sjg

for 06 j6 k and �z1; . . . ; zd� 2 Zd . Here h� � �i is the bijection from Zd to N de®ned above.

Example 3.4.2 gives us the usual randomness notion for one-way in®nite sequences over a ®nite al-
phabet. The numbering B used in Example 3.4.2 is already a numbering of a base, and it is easy to see that a
sequence �Ui�i of open subsets Ui � RN is B0-computable if and only if it is B-computable. Thus, a sequence
�Ui�i of open sets is a randomness test if and only if it is B-computable and satis®es l�Ui�6 2ÿi for all i.
Example 3.4.3 gives us a randomness notion for elements of full shift spaces. This is the same randomness
notion as the notion which one obtains by identifying the full shift space RZd

with RN via the bijection h� � �i
and by taking the usual randomness notion on RN.

Proposition 3.5. Let R be a finite set with at least 2 elements and let d P 1 be a positive integer. For a
configuration c 2 RZd

the following conditions are equivalent:
1. The infinite one-way sequence h� � �iÿ1�c� 2 RN is random (or, equivalently, a random element of the ran-

domness space �RN; �m�i�RN�i; el� of Example 3.4.2.
2. The configuration c is a random element of the randomness space �RZd

; eB; el� of Example 3.4.3.

Before we prove this we give another characterization for computable sequences of open sets in RZd
. For

an arbitrary ®nite set A � Zd and v 2 RA we set

�v� � fc 2 RZd j cz � vz for all z 2 Ag:

The set

Cubes�R; d� �
[

r P 0

R�ÿr;r�d

is countable. The sets �v� for elements v 2 Cubes�R; d� form a base of the topology on RZd
. We de®ne the

``length-lexicographical'' bijection Cube : N! Cubes�R; d� in the following way: ®rst, for ®xed r P 0 we
de®ne an ordering between the cells in �ÿr; r�d by z < ez () hzi < hezi for z;ez 2 �ÿr; r�d . With respect to this
ordering on �ÿr; r�d and a ®xed ordering on R we consider the lexicographical ordering on R�ÿr;r�d . Finally we
de®ne Cube in such a way that ®rst Cube lists all elements in R�0;0�

d
according to their lexicographical order,

then all elements in R�ÿ1;1�d according to their lexicographical order, then all elements in R�ÿ2;2�d according to
their lexicographical order, and so on. The following lemma is useful when one considers randomness tests
on RZd

.

Lemma 3.6. For a sequence �Ui�i of open subsets of RZd
the following conditions are equivalent:

1. It is eB0-computable.
2. It is Cube-computable.
3. The sequence �h� � �iÿ1�Ui��i of open subsets of RN is �m�j�RN�j-computable.

Proof of Proposition 3.5. The assertion follows from Lemma 3.6 and from the fact that the homeomorphism
h� � �i : RN ! RZd

is measure preserving. �

De®nition 3.7. Let d P 1 and R be a ®nite set with at least two elements. If a con®guration c 2 RZd
satis®es

one and then all conditions in Proposition 3.5, we call it random.
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First we observe:

Lemma 3.8. Every random configuration is rich.

Proof. Fix an arbitrary cube pattern. By a simple counting argument one can easily prove in an e�ective
way that the set of all con®gurations which do not contain this pattern has measure zero. Therefore all such
con®gurations are nonrandom. Since this is true for all cube patterns, it follows that all random con®g-
urations are rich. �

Remark 3.9. In fact, much more is true. One can de®ne in a natural way normal con®gurations, in which all
patterns occur with the expected frequency. In the same way as one proves that every random real number
has a normal binary expansion, one can also prove that every random con®guration is normal. It is clear
that every normal con®guration is rich.

It is well-known that on RN there exists a universal randomness test, i.e., a randomness test �Ui�i such
that for every other randomness test �Vi�i on RN there exists a nonnegative integer c such that Vn�c � Un

for all n. From the fact that RN and RZd
are essentially the same randomness spaces (as expressed by

Lemma 3.6 and Proposition 3.5) we conclude that also on RZd
there exists a universal randomness test.

In fact, if �Ui�i is a universal randomness test on RN, then �h� � �i�Ui��i is a universal randomness test on
RZd

.
In the case of dimension d � 1 the ®rst of the conditions in Proposition 3.5 says that a two-way in®nite

sequence c � � � � cÿ3cÿ2cÿ1c0c1c2c3 � � � 2 RZ is random if and only if the one-way in®nite sequence c0cÿ1c1

cÿ2c2cÿ3c3 . . . 2 RN is random. It is instructive to notice that this is also equivalent to the following condition:

3. The pair ��c0; c1; c2; . . .�; �cÿ1; cÿ2; cÿ3; . . .�� of infinite one-way sequences is random, i.e., it is a random
element of the product randomness space ��RN�2;B2; l2�
(compare [14,15]). This last condition is often expressed by saying that the two sequences �c0; c1; c2; . . .� and
�cÿ1; cÿ2; cÿ3; . . .� are ``independently random''.

We would like to add one ``caveat'' with respect to randomness tests and two-way in®nite sequences: one
must distinguish between randomness tests for two-way in®nite sequences and for one-way in®nite se-
quences. Let �Ui�i be a universal randomness test on the space �RN;B; el� of one-way in®nite sequences, and
let A � N be a computably enumerable set such that Un �

S
i2N;p�n;i�2A m�i�RN for all n (where m : N! R� is

the standard bijection between natural numbers and ®nite words over R used in Example 3.4.2). Let
An � fm�i� j p�n; i� 2 Ag, for all n. We assume without loss of generality that all sets An are su�x-closed,
i.e., if a pre®x of a word w is contained in An then also w itself is in An. Then a two-way in®nite sequence
c � � � � cÿ3cÿ2cÿ1c0c1c2c3 � � � 2 RZ is nonrandom if and only if for each n 2 N there is an m 2 N with
c0cÿ1c1cÿ2c2 � � � cÿmcm 2 An. But notice that we cannot replace c0cÿ1c1cÿ2c2 � � � cÿmcm by cÿm � � � cÿ1c0c1 � � � cm

in this condition:

Proposition 3.10. Every random two-way infinite sequence c � � � � cÿ2cÿ1c0c1c2 � � � 2 RZ has the property that
for every n 2 N there is an m 2 N with cÿm � � � cÿ1c0c1 � � � cm 2 An.

Proof. Let us ®x a number n and an arbitrary word w � w1 � � �wl 2 An. For every random sequence
c � � � � cÿ2cÿ1c0c1c2 � � � 2 RZ there exists an m > l such that cÿm � � � cÿm�lÿ1 � w, hence such that the word w
is a pre®x of cÿm � � � cÿ1c0c1 � � � cm. Because An is assumed to be su�x-closed we conclude that
cÿm � � � cÿ1c0c1 � � � cm 2 An. �

We end this section with a remark on randomness on the space obtained by dividing the full shift space
RZd

by the equivalence relation induced by shift mappings. First we observe that the shift mappings pre-
serve randomness.

Proposition 3.11. Let d P 1, R a finite set with at least two elements, and a 2 Zd an integer vector. If c 2 RZd

is random, then also ra�c� is random.
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Proof. If �Ui�i is a randomness test on RZd
, then also ��ra�ÿ1�Ui��i is a randomness test on RZd

for arbitrary
a 2 Zd . Assume that ra�c� is nonrandom. Then there is a randomness test �Ui�i on RZd

with ra�c� 2
T

i2N Ui.
Then also c 2 Ti2N �ra�ÿ1�Ui�. We conclude that c is nonrandom as well. �

Let us call two con®gurations c�1�; c�2� 2 RZd
equivalent (written: c�1� �Shift c�2�) if one of them can be

obtained by shifting the other one appropriately, i.e., if there exists an integer vector a 2 Zd with
c�2� � r�d�a �c�1��. This de®nes an equivalence relation on the space RZd

, and often instead of the space RZd
one

considers the quotient space RZd
= �Shift obtained by identifying equivalent con®gurations. Proposition 3.11

tells us that the randomness notion on RZd
induces a natural randomness notion on this quotient space. Is it

also possible to obtain this randomness notion directly by applying the de®nition of a randomness space to
the quotient space? It is interesting that this is not the case, at least not by using the quotient topology on
the quotient space. We give the reason for the one-dimensional case. A base of the quotient topology on
RZ= �Shift is given by the sets

f�c��Shift
j c 2 RZd

and c contains the word wg

for arbitrary w 2 R�. But any of these basic open sets contains the �Shift-equivalence classes of all rich
sequences! Hence, any open set in the quotient space contains the �Shift-equivalence classes of all rich
sequences. Especially, for any sequence �Ui�i of open subsets Ui of the quotient space, the �Shift-
equivalence classes of all rich sequences lie in the intersection

T
i2N Ui. Therefore, any randomness test on

the quotient space would show that these classes are nonrandom. Hence, the direct approach via ran-
domness tests cannot give the seemingly most natural randomness notion on the quotient space
RZd

= �Shift.

4. Cellular automata and random con®gurations

In this section we investigate what happens when a cellular automaton is started on a random or on a
nonrandom con®guration. We observe the following three facts: (1) every nonsurjective cellular automaton
destroys randomness, (2) every surjective cellular automaton preserves randomness, (3) every one-dimen-
sional cellular automaton preserves nonrandomness. The above statements remain true if we replace
randomness by richness, the last assertion even for an arbitrary dimension.

First we give a precise de®nition of cellular automata. Cellular automata are continuous functions which
operate on a full shift space RZd

and commute with the shift mappings ra, for a 2 Zd .

De®nition 4.1. A cellular automaton (short: CA) is a triple �R; d; F � consisting of a ®nite set R containing at
least two elements, called the set of states, a positive integer d, called the dimension, and a continuous
function F : RZd ! RZd

which commutes with the shift mappings ri for i � 1; . . . ; d. The function F is called
the global map of the CA.

This de®nition does not re¯ect the usual characterization via a so-called local function. Since the space
RZd

is a compact metric space any continuous function F : RZd ! RZd
is uniformly continuous. Hence, if F

is continuous and commutes with the shift mappings, then there exist a ®nite set A � Zd and a function

f : RA ! R such that F �c�b � f �cb�A�, for all c 2 RZd
and b 2 Zd , where cb�A 2 RA is de®ned in the obvious

way: �cb�A�a � cb�a for all a 2 A. The function f is called a local function for F and we say that F is induced
by f. Obviously, one could choose A to be the d-dimensional cube �ÿr; r�d for some su�ciently large r. On
the other hand it is clear that any function F induced by a local function f is the global map of a cellular
automaton. Whenever we consider a local function for some cellular automaton we will assume that there is
a natural number r such that f maps R�ÿr;r�d to R. The number r will be called the radius of f.

Let f : R�ÿr;r�d ! R be a local function with radius r. It induces a function f � mapping any v 2 R�ÿk;k�d for
arbitrary k P 2r � 1 to an element f ��v� 2 R�ÿk�r;kÿr�d in the obvious way. This function induces a mapping
f pattern which maps any cube pattern (introduced in Section 2) of side length k for any k P 2r � 1 to a cube
pattern of side length k ÿ 2r in the obvious way.
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Our ®rst observation is that a cellular automaton preserves randomness if and only if it is surjective. This is
interesting as in the past, starting with Moore's Garden of Eden Theorem [23], the characterization of
surjective cellular automata and the distinction between surjective and injective (which are automatically
surjective) cellular automata has received great attention, see e.g. Myhill [24], Richardson [25], Maruoka
and Kimura [21,22], and others. Thus, a new characterization of the class of surjective cellular automata is
obtained in terms of randomness. Richness can be equally used for this purpose. Thus, surprisingly, in this
situation randomness and richness can be used for the same purpose. In the following theorem we sum-
marize a list of characterizations of surjective cellular automata. The equivalence of the ®rst ®ve of them are
classical results or straightforward strengthenings of classical results. We shall give the proofs nevertheless
for completeness sake.

A cellular automaton �R; d; F � is called finitely injective if for all con®gurations c�1�; c�2� 2 RZd
with

c�1� 6� c�2� and c�1�a � c�2�a , for almost all a 2 Zd we have F �c�1�� 6� F �c�2��. We call a continuous function
F : RZd ! RZd

measure preserving if el�F ÿ1�U�� � el�U� for all open U � RZd
.

Theorem 4.2. Let �R; d; F � be a cellular automaton, and f : R�ÿr;r�d ! R be a local function inducing F. The
following conditions are equivalent:
1. F is surjective.
2. For every finite pattern w there exists a configuration c such that w occurs in F �c�.
3. F is finitely injective.
4. For every n P 2r � 1 and every cube pattern w of side length n we have

j�f pattern�ÿ1fwgj � jRj�n�2r�dÿnd

: �1�
5. F is measure preserving.
6. For all configurations c, if c is rich, then also F �c� is a rich configuration.
7. For all configurations c, if c is random, then also F �c� is a random configuration.

Proof. 1) 2: Trivial.
2) 1: Let c 2 RZd

be an arbitrary con®guration. By 2, for each n there exists a con®guration c�n� such
that F �c�n��j�ÿn;n�d � cj�ÿn;n�d . The sequence �c�n��n has an accumulation point ec in the compact space RZd

. By
continuity of F we conclude that F �ec� � c.

4) 2: It is su�cient to deduce from 4 that for every cube pattern w there exists a con®guration c such
that w occurs in F �c�. For a cube pattern w this is the case if and only if j�f pattern�ÿ1fwgjP 1. Therefore, 2
follows immediately from 4.

2) 3: This implication is a straightforward strengthening of Moore's Garden of Eden Theorem [23]. We
follow Moore's proof. We assume that 3 is not true and derive that then also 2 is not true. Let c�1�; c�2� 2 RZd

be two di�erent con®gurations with c�1�a � c�2�a for almost all a 2 Zd , and with F �c�1�� � F �c�2��.
Let l � maxfjaj j a 2 Zd & c�1�a 6� c�2�a g and k � 4r � 2l� 1, where jaj � maxfja1j; . . . ; jad jg for a �
�a1; . . . ; ad� 2 Zd .

We introduce an equivalence relation between cube patterns of side length k by calling two cube
patterns v and w of side length k interchangeable if they are equal to each other or if each of them is
equal to the pattern represented by c�1��ÿ2rÿl;2r�l�d or to the pattern represented by c�2��ÿ2rÿl;2r�l�d . Obviously, if

v and w are interchangeable, then f pattern�v� and f pattern�w� are equivalent. For a moment let us ®x a
positive integer i. We can extend this relation to cube patterns of side length ik in the following way.
Each cube pattern of side length ik can be viewed as consisting out of id nonoverlapping cube patterns
of side length k. Two cube patterns v and w of side length ik are called interchangeable if each of these id

cube sub-patterns of v of side length k is interchangeable with the cube sub-pattern of w of side length k
at the corresponding position. Since the outer 2r layers of any two interchangeable cube patterns of side
length k are identical (this is especially true for the the two cube patterns represented by c�1��ÿ2rÿl;2r�l�d and

by c�2��ÿ2rÿl;2r�l�d ), we conclude that f pattern�v� � f pattern�w� for any two interchangeable cube patterns of

side length ik. With respect to the equivalence relation called ``interchangeable'' the set of all cube
patterns of side length ik splits into exactly �jRjkd ÿ 1�id equivalence classes. Hence, the set f pattern�cube
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patterns of side length ik� contains at most �jRjkd ÿ 1�id cube patterns. They have side length ik ÿ 2r, of
course. But there are altogether jRj�ikÿ2r�d

cube patterns of side length ik ÿ 2r. We claim that for su�-
ciently large i

�jRjkd ÿ 1�id < jRj�ikÿ2r�d : �2�
Before we prove this claim, we ®nish the argument. According to the claim, for su�ciently large i there
exists a cube pattern of side length ik ÿ 2r which is not in the set f pattern�cube patterns of side length ik�. This
cube pattern cannot occur in F �c�, for any con®guration c.

In order to prove the claim we choose i so large that

kd ÿ k ÿ 2r
i

� �d

< logjRj
jRjkd

�jRjkd ÿ 1�
:

Raising jRj to these powers and rearranging gives

�jRjkd ÿ 1� < jRjÿkd��kÿ2r
i �d � jRjkd � jRj�kÿ2r

i �d

and raising both sides to the power id ®nally gives Eq. (2).
3) 4: This implication is a straightforward strengthening of a result by Maruoka and Kimura [21]. We

follow their proof. We assume that 4 is not true and derive that then also 3 is not true. If there exists a cube
pattern w of side length n such that Eq. (1) is not true then there must be a pattern v of side length n such that

j�f pattern�ÿ1fvgj > jRj�n�2r�dÿnd

: �3�
We set M � j�f pattern�ÿ1fvgj and k � n� 2r. Let us ®x a state s 2 R and let r � �r; r; . . . ; r� 2 Zd be the
integer vector with constant value r. For a moment we ®x a positive integer i. We consider the set S of all
con®gurations c 2 RZd

such that each of the id cube patterns represented by cr�ka�f1;...;kgd for some
a 2 f0; . . . ; iÿ 1gd

is one of the patterns in �f pattern�ÿ1fvg, and such that cb � s for all
b 2 Zd n fr � 1; . . . ; r � ikgd

. There are exactly Mid such con®gurations, i.e., jSj � Mid . The images F �c�1��
and F �c�2�� of any two con®gurations c�1� 2S and c�2� 2S are identical outside the cube f1; . . . ; 2r � ikgd

,
i.e., F �c�1��a � F �c�2��a for all a 2 Zd n f1; . . . ; 2r � ikgd

. Furthermore the id cube subpatterns
F �c�1��2r�ka�f1;...ngd for a 2 f0; . . . ; iÿ 1gd

are all equal to v. Hence, the set F �S� contains at most

jRj�2r�ik�dÿid nd

con®gurations. We claim that for su�ciently large i

Mid > jRj�2r�ik�dÿid nd

: �4�
Before we prove this claim, we ®nish the argument. According to the claim, for su�ciently large i there exist
two di�erent con®gurations c�1� and c�2� with c�1�a � s � c�2�a for all a 2 Zd n fr � 1; . . . ; r � ikgd

and with
F �c�1�� � F �c�2��. This shows that F is not ®nitely injective.

In order to prove the claim we choose i so large that

k � 2r
i

� �d

ÿkd < logjRj
M

jRjkdÿnd

(remember M > jRjkdÿnd

). Raising jRj to these powers and rearranging gives

jRjkdÿnd jRj�k�2r
i �dÿkd � jRj�k�2r

i �dÿnd

< M

and raising both sides to the power id ®nally gives (4).
4() 5: For a vector a 2 Zd , a positive number n, and a cube pattern w of side length n, the set

Ca;w � fc 2 RZd j ca�f1;...;ngd is a representative for wg
has measure 1=jRjnd

, and its pre-image

F ÿ1�Ca;w� � fc 2 RZd j f ��cÿr�a�f1;...;n�rgd � is a representative for wg
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has measure j�f pattern�ÿ1�v�j=jRj�n�2r�d
. Therefore, if F is measure preserving, also 4 is true. On the other

hand, if 4 is true then each set Ca;w has the same measure as its pre-image F ÿ1�Ca;w�. Since every open set can
be written as the disjoint union of sets Ca;w we conclude that 4 implies 5.

2() 6: trivial.
7) 2: by Lemma 3.8.
5) 7: Assume that c is a con®guration such that F �c� is nonrandom. Then there is a randomness test

�Ui�i such that F �c� 2 Ti2N Ui. The sequence of open sets �F ÿ1�Ui��i is also a randomness test: we haveel�F ÿ1�Ui�� � el�Ui�6 2ÿi by condition 5; and the facts that F is induced by a local function f and that the
sequence �Ui�i of open sets is eB0-computable, imply that also the sequence �F ÿ1�Ui��i of open sets iseB 0-computable. We have c 2 Ti2N F ÿ1�Ui�. Hence, also c is nonrandom. �

From condition 2 in Theorem 4.2 we conclude that if F is not surjective, then there does not exist a
con®guration c such that F �c� is rich or random. Hence, a nonsurjective cellular automaton ``destroys''
both richness and randomness.

Secondly we ask what happens when one applies a cellular automaton to a nonrandom con®guration or
to a nonrich con®guration. Note that there are very simple e�ective functions on the space of one-way
in®nite sequences which transform some nonrandom sequences into random ones.

Example 4.3. The function F : RZ ! RZ with

F �� � � cÿ4cÿ3cÿ2cÿ1c0c1c2c3c4 � � �� � � � � cÿ4cÿ2c0c2c4 � � �
is computable and measure preserving. If all odd entries c2i�1 are equal to one ®xed element s 2 R, then the
sequence . . . cÿ4cÿ3cÿ2cÿ1c0c1c2c3c4 . . . is certainly nonrandom. But its image under F, the sequence
� � � cÿ4cÿ2c0c2c4 � � � can still be random.

It is not clear a priori whether the same phenomenon can occur when one considers cellular automata.
We could prove that one dimensional cellular preserve nonrandomness, i.e., they transform nonrandom
two-way in®nite sequences into nonrandom two-way in®nite sequences. But at present it is not clear
whether the same holds true also for higher-dimensional cellular automata. That arbitrary cellular auto-
mata preserve nonrichness can be proved by using the idea behind the proof of Moore's Garden of Eden
Theorem [23], which we have implicitly formulated in the previous Theorem 4.2.

Theorem 4.4. Let �R; d; F � be a cellular automaton.
1. If a configuration c 2 RZd

is not rich, then also F �c� is not rich.
2. If d � 1 and a configuration c 2 RZd

is nonrandom, then also F �c� is nonrandom.

Proof. Let f : R�ÿr;r�d ! R be a local function inducing F.
1. The ®rst assertion is proved by using the idea behind the proof of Moore's [23] Garden of Eden The-

orem. Let us ®x a nonrich con®guration c and a cube pattern of side length, say, k which does not
occur in c. Hence, at most jRjkd ÿ 1 cube patterns of side length k can occur in c. Let us consider
cube patterns of side length ik, for an arbitrary positive integer i. Since cube pattern of side length
ik can be viewed as consisting out of id nonoverlapping cube patterns of side length k, we conclude
that at most �jRjkd ÿ 1�id di�erent cube patterns of side length ik can occur in c. Let Pik denote the
set of all cube patterns of side length ik which occur in c. We have just proved jPikj6 �jRjk

d ÿ 1�id .
Hence, also the set f pattern�Pik� contains at most �jRjkd ÿ 1�id di�erent cube patterns. These cube pat-
terns have side length ik ÿ 2r, of course. But there are altogether jRj�ikÿ2r�d

cube patterns of side
length ik ÿ 2r. By exactly the same counting argument as in the proof of the implication 2) 3 of
Theorem 4.2 we conclude that for su�ciently large i there exists a cube pattern of side length
ik ÿ 2r which is not in the set f pattern�Pik�. This cube pattern cannot occur in F �c�. Hence, F �c� is
not rich.

2. For the second assertion we assume that the dimension d of the cellular automaton is 1. We ®x a non-
random con®guration c and a randomness test �Ui�i on RZd

such that c 2 Ti2N Ui. We show that there is

C.S. Calude et al. / Chaos, Solitons and Fractals 12 (2001) 491±503 501



a randomness test �Vi�i on RZd
such that F �c� 2 Ti2N Vi . By Lemma 3.6 and by a compactness argument

one deduces from the fact that the sequence �Ui�i of open sets is eB0-computable, that the set

fp�i; j� 2 N j �Cube�j�� � Uig �5�

is computably enumerable. We set l � dlog2�jRj2r�e, and de®ne

Vi �
[
f�f ��v�� j v 2 Cubes�R; 1� and side length�v�P 2r � 1 & �v� � Ul�ig :

We claim that the sequence �Vi�i is a randomness test with F �c� 2 Ti2N Vi . It is clear that it is a sequence
of open sets and that it is eB0-computable (use the fact that the set in Eq. (5) is computably enumerable
and Lemma 3.6). For arbitrary i we have c 2 Ul�i. Hence, there is an element v 2 Cubes�R; 1� of side
length P2r � 1 with c 2 �v� and �v� � Ul�i. This shows F �c� 2 Vi . Finally we have to show thatel�Vi�6 2ÿi for all i. We ®x an i. There exists a set

W � fv 2 Cubes�R; d� j side length�v�P 2r � 1 & �v� � Ul�ig

such that
S

v2W �v� � Ul�i and for any two v;w 2 W , the sets
�v� and �w� are disjoint. If v;w 2 Cubes�R; d� and �v� � �w�, then also �f ��v�� � �f ��w��. Hence,
Vi �

S
v2W �f ��v��. Since for arbitrary v 2 Cubes�R; 1� with side length �v�P 2r � 1 we haveel��f ��v��� � jRj2rel��v��, we obtain

el�Vi� � el [
v2W

�f ��v��
 !

6
X
v2W

el��f ��v��� �X
v2W

jRj2rel��v�� � jRj2rel�Ul�i�6 jRj2r
2ÿlÿi6 2ÿi:

This ends the proof for the assertion that �Vi�i is a randomness test with F �c� 2 Ti2N Vi . Hence, F �c� is
nonrandom. �

5. Conclusion

We have given various characterizations, based on randomness tests, for algorithmically random con-
®gurations in full shift spaces. We have also compared this randomness notion with the richness notion for
con®gurations.

Furthermore we have shown that (a) surjective cellular automata preserve richness and randomness,
(b) nonsurjective cellular automata destroy both properties, (c) all cellular automata preserve nonrichness,
and (d) one dimensional cellular automata also preserve nonrandomness. It is open whether arbitrary cel-
lular automata of higher dimension preserve nonrandomness.

There are at least two areas of further questions in this context. In this paper we have de®ned and
analyzed only randomness and nonrandomness of con®gurations as opposing notions, and we have used
randomness tests in order to de®ne these notions. They can also be de®ned via program-size complexity
of ®nite patterns, see [9]. It might be interesting to analyze the behavior of cellular automata with
respect to complexity of ®nite patterns in this sense. The other area concerns ergodic theory and al-
gorithmic information theory. The randomness notion of algorithmic information theory depends on the
considered measure. In this paper, we have considered only the product measure induced by the uniform
measure on the ®nite set of states. We have seen that surjective cellular automata are measure preserving
with respect to this measure, hence they are dynamical systems in the sense of ergodic theory and can be
analyzed by the means of this theory. For nonsurjective automata, one has to consider other measures
in order to apply results from ergodic theory. For an application of ergodic theory to cellular automata
see Lind [19]. It seems to be interesting to combine algorithmic information theory and ergodic theory
in the study of cellular automata and also in the study of other dynamical systems; see, for example,
[1,3,30].
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