COMPSCI 350: Automata

Cristian S. Calude

Semester 1, 2018

COMPSCI 350: Automata 1/132

R. Hamming

“The purpose of computing is insight, not numbers.”

COMPSCI 350: Automata 2 /132

Bibliography

» M. Sipser. Introduction to the Theory of Computation, PWS
1997. (textbook)

COMPSCI 350: Automata 3/132

Supplementary bibliography

» T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
Introduction to Algorithms MIT Press and McGraw-Hill, 2011.
2nd ed.

> Regex simulator, https://regex101.com.

COMPSCI 350: Automata 4 /132

https://regex101.com

Assignments

Assignment 1 : Friday 23 March 2018 before 11.55pm, submitted
via Canvas; worth 5%.

Midterm Test : 26 March 2018, in class, time: 15:00-16:00 in
OGHLLecTh/102-G36 and Conf. Centre Lecture
Theater/423-342; worth 30%.

COMPSCI 350: Automata 5 /132

Mathematical background
Finite machines

DFA

NFA

Minimisation of DFAs
Beyond regular languages

Pattern matching

COMPSCI 350: Automata

6 /132

Sets

A set is a group of elements represented as a unit. The objects in
a set are called elements or members. The order of elements is
irrelevant; repetition of its members does not matter.

Sets can be finite, like {1,3,5}, or infinite, like
{1,3,5,7,11,13,... }.

The symbols € and ¢ denote set membership and
non-membership, respectively. For example 7 ¢ {1,3,5} and
7€{2,3,5,7,11,13,... }.

Two sets A, B are equal, written A = B, if they have the same
elements; otherwise, A # B. We say that A is a subset of B,

written A C B if every element of A is also in B; A is a proper
subset of B, written AC Bif ACBand A# B

The set of natural numbers is N = {0,1,2,3,... }. The set with
no elements is called the empty set and is denoted by ().

COMPSCI 350: Automata

7 /132

Sets
Sets can be described by a specific property P, {n| P(n)}. For
example, {n € N | nis prime} = {2,3,5,7,11,... }.

Sets can be combine with various operations, including union

(AU B consists of all elements in A or in B), intersection (AN B
consists of all elements in A and in B), complement (A consists of
all elements not in A) and power set (2 consists of all subsets of
elements of A).

{3,4} U0 = {3,4},
(5,1,10} N {2,3,5,7,11,... } = {5},
12,3,5,7,11,... 1 = {1,4,6,8,... },

2101 — {0, {0}, {1},{0, 1}}.
For every set A, ANA = ().
For every set A, 24 =£ ().

COMPSCI 350: Automata 8 /132

Functions

A function (or a mapping) is a rule/process that takes an input
and produces an output. For every function, the same input always
produces the same output.

If £ is a function that produces the output b on input a we write
f(a) = b.

The set of inputs for a function f is called the domain (D) of f; the
sets of outputs is called the range (R) of f. We write f : D — R.

The function f : D — R is

» injective if for every x # y in D, f(x) # f(y);

> surjective, or onto if for every z € R there exists x € D such
that f(x) = z;

» bijective if it is both injective and surjective.

COMPSCI 350: Automata 9 /132

Functions

The function f: {0,1,2,3,4} — {0,1,2,3,4} defined by
» f(n) =0 for all n € {0,1,2,3,4} is not injective and not
surjective;
» f(n)=n+1for ne {0,1,2,3} and f(4) = 0 is bijective;

No function f : {0,1,2,3,4} — {0,1,2,3,4} can be injective but
not surjective (or surjective but not injective).

The function £ : {0,1,2,3,4} — {0,1,2,3,4,... } defined by
f(n) = nfor all n€{0,1,2,3,4} is injective and not surjective.
The function f:{0,1,2,3,... } — {0,1,2} where f(n) is the
reminder of the division of n by 3 for all n € {0,1,2,3,... } is
surjective and not injective.

COMPSCI 350: Automata 10 / 132

Relations

A sequence is a list of elements in some order. We use parentheses
to describe sequences like in (4,1,44). As the order is important,
(4,1,44) + (44,1, 4).

Finite sequences are also called tuples. A tuple with k elements is
called k-tuple; if k =2, we call it a pair.

The cross product of the sets A, B is defined by
Ax B={(a,b)|ac A be B}

For example,
{a,b,c} x {0,1} ={(a,0),(b,0),(c,0),(a,1),(b,1),(c,1)}.
A subset R of a set A x B is called a (binary) relation.

COMPSCI 350: Automata 11 / 132

Relations

An equivalence relation R C A x A (also denoted by =) has the
following three properties:

1. reflexivity: for every x € A, (x,x) € R,

2. symmetry: for every x,y € A, if (x,y) € R, then (y,x) € R,

3. transitivity: for every x,y,z € A, if (x,y) € R and (y,z) € R,
then (x,z) € R.

We now prove that the relation n = m defined on natural numbers
by “n — mis a multiple of 7" is an equivalence relation.

First, we have n = n because 7 divides n — n = 0. Second, if

n = m then (by definition) n — m is a multiple of 7, so

m —n= —(n— m) is also a multiple of 7. Third, if n= m and

m = t, then (by definition) n — m and m — t are multiples of 7, so
m—t=(m—n)+ (n—t)is also a multiple of 7 because the sum
of two multiples of 7 is also a multiple of 7.

COMPSCI 350: Automata 12 /132

Predicates

A predicate or property is a function P : A — {TRUE, FALSE}.
Sometimes we write P : A — {0, 1}, where 0 stands for FALSE
and 1 stands for TRUE.

For example, the predicate PRIME: {1,2,3,...} — {0,1} is
defined by PRIME(n)=0, if n is composite and PRIME(n)=1, if n
is prime.

PRIME(13)=1, PRIME(277232917 _ 1) = 1 (actually, this is the
largest known prime as of January 2018), PRIME(277:232:917) — 0,

COMPSCI 350: Automata 13 /132

Strings and languages

An alphabet is a finite set. The elements of an alphabet are called

symbols. Alphabets are usually denoted by capital (sometimes
Greek) letters:

Y ={a},B ={0,1},T = the set of 7-bit ASCII characters.

A string over an alphabet is a finite sequence of symbols over the
alphabet. For example, 1000 is a string over the alphabet B. The
length of the string w over the alphabet ¥ — denoted by |w| —is
the number of symbols it contains. The length of 00001 is 5. The
string of length zero is called the empty string and is denoted by ¢.
Strings can be concatenated: from x and y get xy; |xy| = |x| + |y|.

COMPSCI 350: Automata 14 / 132

Strings and languages

The set of all strings over the alphabet ¥ is denoted by X*. A
string x is a substring of y if there exist two strings u, v such that

y = uxv: cad is a substring of abracadabra over the alphabet
{a,b,c,d,r}.

The lexicographical order of strings is defined in two steps: a) a
shorter string precedes a longer string, and b) strings of the same
length are ordered as in the dictionary (this assumes an ordering of
the symbols in the alphabet).

If B=1{0,1} and 0 precedes 1, then we have

e<0<1<00<01<10<11<000<001<...

A language is a set of strings. All set-theoretic operations can be
applied to languages, but there are specific language-theoretic
operations like concatenation:

AB={xy |x€ A,y € B}.

COMPSCI 350: Automata 15 / 132

Boolean logic

The values TRUE and FALSE are called Boolean values and are
denoted by 1 and 0, respectively. The following operations with
Boolean values are important:

>

>

>

Negation (NOT): -x =1 — x,

Disjunction (V): x Vy = max{x,y},

Conjunction (A): x Ay = min{x, y},

Implication (—): x = y = =(x) Vy = max{1 — x, y},
Equivalence (<3): x <>y = (x = y) A (y — x),
Exclusive OR (®): ®&(x,y) = =(x <> y).

COMPSCI 350: Automata 16 / 132

Quantifier logic

The two most common quantifiers are “for all” —V and “there
exists” — 3. If P is a predicate, then
» VxP(x) means “for all x, P(x) is true.

» JxP(x) means “there exists x such that P(x) is true.

Informal Formal
For each natural number n,
n-2=n+n. Vne N (n-2=n+n).

For some natural number n,
n? is equal to 25. 3n € N (n? = 25).

COMPSCI 350: Automata 17 / 132

Quantifier logic

The following important rules relate negation to quantifiers:

=(VxP(x)) = Ix(=P(x)),

—(IxP(x)) = Vx(—P(x)).

Informal.
All horses fly. Negation (All horses fly) = There is a horse that
does not fly.
Formal.
Vx(horse(x) — fly(x)).
—(Vx(horse(x) — fly(x))) = Ix(—(horse(x) — fly(x)))
= Ix(horse(x) A —fly(x))
because =(A — B) = AA —-B.

COMPSCI 350: Automata

18 / 132

Definitions, theorems and proofs

“Theorems and proofs are the heart and soul of mathematics and
definitions are its spirit” says Sipser.

Definitions describe clearly and precisely the objects and notions
we use.

Mathematical statements express properties of defined objects.
They may be true or false, but they always have to be precise.

A proof is a convincing — ideally, in an absolute sense — argument
that a statement is true. It should not only be “beyond reasonable
doubt”, but “beyond any doubt”.

A theorem is a mathematical statement proved to be true. A
lemma is a proved mathematical statement useful in the proof of a
more important mathematical statement. A corollary is a proved
mathematical statement which can easily derived from another
mathematical statement, usually a theorem.

COMPSCI 350: Automata 19 / 132

Definitions, theorems and proofs

The only way to show the truth or falsity of a mathematical
statement is via a mathematical proof. Finding proofs is not easy,
even if we use a proof-assistant (like Isabelle or Coq), i.e. a
sophisticated software designed to assist with the development of
formal proofs by human-machine collaboration.

A proof is typically a formal argument showing the truth of an
implication of the form “P implies Q". A proof of an equivalence
is a proof of both implications “P implies @ and “Q implies P".

In what follows we shall present some typical examples of proofs:
they will appear in a form or another in what follows.

COMPSCI 350: Automata 20 / 132

https://en.wikipedia.org/wiki/Proof_assistant

Definitions, theorems and proofs

Theorem 0.10 For any two sets A and B,

AUB=ANB.

Proof. The theorem states that two sets are equal, hence we need
to prove that every element in AU B is in AN B and, conversely,
every element in AN Bisin AU B.

If x € AU B, then x ¢ AU B (by the definition of the
complement), hence x ¢ A and x ¢ B (by the definition of the
union), so x € A and x € B (by the definition of the complement),
which means that x € AN B (by de definition of the intersection).
This shows that AUB C AN B.

Next we shall prove the converse implication, i.e. ANB C AU B.
Try it!

COMPSCI 350: Automata 21 /132

Types of proofs: proof by construction

A number is rational if it is a ratio of two integers, % where
m # 0.

Theorem. There exist irrational numbers a and b such that a® is
rational.
Non-constructive proof. The number v/2"° is either rational or
irrational. If it is rational, our statement is proved: a = b = V2. If
e D
it is irrational, then take a = \/5\/_ b=+/2 and compute:

% .)
gl — (\/5\/_)‘/5 = 2. The statement was proved. This proof is

) , V2 .)
non-constructive because we don't know whether v/2"“ is rational
or not.

COMPSCI 350: Automata 22 /132

Types of proofs: proof by construction

Theorem. There exist irrational numbers a and b such that a® is
rational.

Constructive proof. The numbers a = /2, b = log, 9 are
irrationals and a? = 3 is rational. The statement was proved.

Really? A simple analysis of the proof shows that in fact we have
an implication:

If the numbers a = \/2, b = log, 9 are irrationals,
then a® = 3 is rational.

To prove the theorem we need to prove that the implication is true.
As the conclusion is true, we need to show that the hypothesis is
true, that is two facts: a) v/2 is irrational and b) log, 9 is irrational!

COMPSCI 350: Automata 23 /132

Types of proofs: proof by contradiction

Theorem 0.14 /2 is irrational.

Proof. Assume by absurdity that V2 is rational, that is,
N
D
V2 Y

where M #£ 0. If both N, M are divisible by the same integer t,
then divide them by t; the value of the fraction will not change.
Continue this (finite!) process till no such integer exists, so

N n
2:—:—-
V2 M m

Both n, m cannot be even. As m # 0, we can write my/2 = n and
by squaring both members we get

2m? = n?. (1)

COMPSCI 350: Automata 24 /132

Types of proofs: proof by contradiction

Continuation of the proof. From (1) we deduce that n? is even,
so n is also even as the square of an odd number is odd. So, there
exists an integer k such that n = 2k. Substituting in the equation
(1) we get:

2m? = (2k)? = 4k

This mean that m? = 2k2, that is, m is even, a contradiction!
Theorem. log, 9 is irrational.

Proof. Assume by absurdity that log, 9 is rational, that is

log, 9 = - where n, m are integers and m # 0. By the properties
of logarithms, 9™ would be equal to 27, a contradiction because
the former is odd, and the latter is even.

COMPSCI 350: Automata 25 /132

Types of proofs: proof by induction

Proof by induction is a method to show that all elements of an
infinite countable set have a certain property.

Consider a property P(i) of natural numbers; the goal it to show
that P(i) is true for every natural number i. As there are infinitely
many i's, we cannot verify individually each of them, so the proof
by induction comes handy.

The proof by induction consists in two steps:

1. Basis: Prove that P(k) is true for a fixed natural number k.

2. Induction step: For each i > k assume that P(/) is true — the
induction hypothesis —, and prove that P(i + 1) is also true.

COMPSCI 350: Automata 26 / 132

Types of proofs: proof by induction

Theorem. 1+2+3+---+n:w-

Proof. For the basis we take k =1: 1 = % checks. Then, we
assume that for every i > k =1 we have
. (i +1)

142434 +i=—"— ()

and we need to prove that

1+2+3+,,,+(i+1):(i+1)2ﬂ_

Indeed, using the induction hypothesis (2) we get:
142434 4i+(+1)=14+2+3+--+i)+(i+1)

(1) . i+ +2)
i +(I+1)—f-

COMPSCI 350: Automata 27 /132

Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0's)?

Using “states’ to remember the ‘property’ seems a good idea, but
don't we have to keep adding newer and newer ‘states’ as the
input gets longer and longer?

Re-phrased: Is a finite memory enough? In general the answer
seems to be negative, but ...

COMPSCI 350: Automata 28 /132

A simple example

Probably the simplest finite machine operates a switch as follows:

So, if the switch is down, then the light goes on and if the switch
is up, then the light goes off.

To this device, the switch position is an input and the light on/off
is the output. The machine works with finitely many “states” for
any sequence of modifications of the switch.

COMPSCI 350: Automata 29 /132

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M=(Q,X,d,s, F) where

1. @ is the finite set of machine states

2. X is the finite input alphabet

3. 4 is a transition function from Q X ¥ to @

4. s € @ is the start state

5. F C Q is the accepting (final/membership) states.

COMPSCI 350: Automata 30 /132

DFA: example 1

M= (Q,%,4,s,F):

Q = {q0> a1, q2, q3}

Y ={a, b}
1) >
Q| a b
do | 91 Q2
q1 | 9o g3
g2 | 43 Qo
3142 a1
S =4qo
F={q}

COMPSCI 350: Automata

31 /132

DFA: accepted strings and language

Let M =(Q,%,d,s,F) be a DFA and w = wyws - - - w,, be a string
over X

» The trace (path) of the computation of w on M is the
(unique) sequence of states

51,52, ,5n, 5n+1
such that

S1 =5, 6(517 Wl) =52,... 76(SI7—17 Wn—l) = Sn, 5(5n7 Wn) = Sn-l—l-

» The string w is accepted (or recognised) by M if s,11 € F;
otherwise, w is rejected by M.

» The language accepted by M, denoted by L(M), is the set of
all accepted strings by M; if A= L(M), for some DFA M,
then A is called regular.

COMPSCI 350: Automata 32 /132

Questions

» Given a DFA M, check which strings M accepts.

» Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states)
DFA recognising the language?

» Which properties of DFAs can be checked algorithmically?

COMPSCI 350: Automata 33 /132

DFA: example 2

The language accepted by
this DFA is empty, i.e. the
DFA accepts no string.

COMPSCI 350: Automata

34 /132

DFA: example 3

The language accepted by this
DFA consists of all strings over
Y = {a, b}, i.e. the language
Y ={a, b}".

COMPSCI 350: Automata

35 /132

DFA: example 1 continued

The language ac-
cepted by this DFA
consists of all strings
over ¥ = {a,b}
which contain an
even number of a's
and an odd number
of b's.

COMPSCI 350: Automata 36 /132

DFA: example 4

The language ac-
cepted by this DFA
consists of all strings

over ¥ = {a,b}
which contain the
substring aba, i.e.

all the strings of
the form wabav with
u,v € {a,b}*.

COMPSCI 350: Automata 37 /132

DFA: example 5

The language ac-
cepted by this DFA
consists of all strings
over ¥ = {ab}
which start with a,
i.e. all the strings
of the form av, with
veX*={a, b}*.

COMPSCI 350: Automata 38 /132

DFA: example 6

The language
accepted by
this DFA con-
sists of only
one string over
Y = {ab},
namely abbab.

COMPSCI 350: Automata 39 /132

DFA: example 7

The language accepted
by this DFA is

{a™b" | m,n > 0},
where a™ means
aa---a(m times).

COMPSCI 350: Automata 40 / 132

Not all languages are accepted by DFAs

The language
L={a"b" | n> 0}

is not accepted by any DFA.
Why?

Informally, because a DFA can ‘count’ only up to the number of its
states.

More formally, because, if n is greater than the number of states of
a DFA supposed to accept L, then any trace (path) labelled by a”
passes twice through some state. That is, there are strings a’ and
& for i < j < n that fall into the same state. Thus both a'b’ and
2/b' are accepted/rejected which contradicts the definition of L.

COMPSCI 350: Automata 41 / 132

Simple properties of DFAs 1

» The complement of a regular language is also regular.
Proof: if A= L(M), where M = (Q,X,d,s, F), then its
complement, A = L(M'), where M’ = (Q, %, 6,s, F).

» It is algorithmically decidable whether a DFA M accepts the
empty string.

Proof: If M = (Q,%,d,s, F), then £ € L(M) if and only if
seF.

» It is algorithmically decidable whether a DFA M accepts a
string w.

Proof: Construct the trace of the computation of w on M
and check whether its last state is final.

COMPSCI 350: Automata 42 /132

Simple properties of DFAs 2

» It is algorithmically decidable whether a DFA M accepts no
string.
Proof: Given the DFA M check whether there is a path from
the initial state s (has a trace of a computation) to a final
state in F. We have: L(M) = () if and only if there is no path
from the initial state to a final state.

COMPSCI 350: Automata 43 /132

Simple properties of DFAs 3

» It is algorithmically decidable whether a DFA M accepts
infinitely strings.
Proof: Given the DFA M, L(M) is infinite if and only if there
is a path from the initial state (has a trace of a computation)
s to a final state in F having the following additional
property: some state g in the path possesses a loop, i.e. there
is a path from g to q.

COMPSCI 350: Automata 44 /132

The reverse operation

The reverse of a string
W = C1C2C3 - Cp

is the string
R(w) = cpcp—1 -+ @2c1.

For example, R(abaaa) = aaaba, R(abba) = abba, R(bac) = cab.

The reverse of a language A is the language

R(A) = {R(w) | w € A}.

Problem: Is R(A) regular whenever A is regular?

COMPSCI 350: Automata 45 / 132

DFA: example 7 revisited

The language accepted by
the DFA M is

A={a"b" | m,n> 0}.

Is

R(A) = {b"a™ | m,n > 0}
regular?

COMPSCI 350: Automata 46 / 132

A possible solution?

Is

R(A) = {b™a" | m,n > 0}
accepted by this

machine, M’?

COMPSCI 350: Automata 47 / 132

The solution ‘under microscope’: M vs M’ 1

COMPSCI 350: Automata 48 / 132

The solution ‘under microscope’: M vs M’ 2

What did we do, in more general terms?

1. The initial state of M becomes the accept state of M.
2. Every accept state of M becomes an initial state of M’.

3. If (q1,¢) = g2 is in M then 6(qz2,c) = g1 is in M'. That is,
all transitions are reversed.

COMPSCI 350: Automata 49 /132

The solution ‘under microscope’: M vs. M’ 3

Do we have a problem with M'?
Answer: yes: M’ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let's examine another example.

COMPSCI 350: Automata 50 / 132

The solution ‘under microscope’ 4

Transforming this DFA M
into M’ produces:

a) two initial states: gz, g3
b) multiple transitions
with the same label (e.g.

(5((]4, 0) = {q17 a2, qs, q4})

COMPSCI 350: Automata 51 /132

Nondeterministic finite automata

Should we abandon the transformation M — M'?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N=(Q,%,0,S,F) where

Q@ is the finite set of machine states

2 is the finite input alphabet

d is a function from Q x ¥ to 29 the set of subsets of Q

S C Q is a set of start (initial) states

F C Q is the accepting (final/membership) states.

O O

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function §
on input w from an initial state to an accept state.

COMPSCI 350: Automata 52 /132

NFA: accepted strings and language

Let N=(Q,X%,0,S,F) be a NFA and w = wyws - - - w,, be a string

over 2.

> A trace (path) of a computation of w on N is a sequence of

states
51,52, " y5n,Sn+1
such that
S € 5(517 Wl)a <., 5n € (5(5n—17 Wn—l)a Sn+1 € 5(5n7 Wn)-

» The string w is accepted (or recognised) by N if there is a
trace si,Sp, - ,Sp, Sp+1 labelled by w such that s; € S and
sn+1 € F; otherwise, w is rejected by N.

» The language accepted by N, denoted by L(N), is the set of
all accepted strings by N.

COMPSCI 350: Automata

53 / 132

NFA: comments

» The state transition function ¢ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have §(q, c) empty (undefined) for some
g € Q and ¢ € ¥. This means that that we can design
automata such that no state moves are possible for when in
some state g and the next character read is ¢ (that is, the
human designer does not have to worry about all cases).

» Every DFA can be viewed as a special case of an NFA.

COMPSCI 350: Automata 54 /132

NFA: example 1

Y = {a, b}

0 b
States a b

do {qo} {quql}
a | {e} {e}

[¢p] 0 0
S={qo}
F={a}

COMPSCI 350: Automata

55 / 132

NFA: example 1 2

» The string aba is accepted: there are two traces,
a b a
Go—qo—qo—qo,
a b a
qo—qo—q1—q2
» The string baa is not accepted: there are two traces,
b a a
Go—qo—qo—qo,
b a a -
o—q1—q2—!
» The language accepted by this NFA is

{uba,ubb | u € {a,b}*}.

COMPSCI 350: Automata 56 / 132

NFA: example 2

¥ ={1,2,3}

0 pa
States 1 2 3

do {90,q1} {90,92} {as3}

a | {q1 g3} 0 Aa}
% {Cé)z} {Cé)z} {a2}

a3 {g2}
S ={qo}
F = {q2}

COMPSCI 350: Automata 57 /132

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of
N. In the worst case, if N has n states, then M has 2" states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA
equivalent with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 350: Automata 58 / 132

NFA=DFA 2

Input: NFA N = (Q,%,4,S,F)
Output: DFA M = (Qm, X, dm, sm, Fum)
» The set of states of M is the set of all subsets of Q, Qu = 2€9.

» The transition from a set of states A on an element x € ¥ is
the set of all states produces by N on each pair (g, x) with
g€ A du(A x)={(q,x) [g€ A}

» The initial state sp; of M is the set of all initial states of N,
Spm = S.

> The accepting states Fy of M is the set of states that have
an accepting state of N, Fyy ={AC Q| AN F # 0}.

COMPSCI 350: Automata 59 /132

NFAtoDFA: an example 1

The NFA N

COMPSCI 350: Automata 60 / 132

NFAtoDFA: an example 2

Equivalent DFA M

COMPSCI 350: Automata 61 /132

Closure properties of regular languages 1

» The union of two regular languages is also regular.
Proof: Given two NFAs N4, Ng with no common states such
that A= L(Na), B = L(Ng), the NFA N consisting of the
union of all components of N4, Ng recognises AU B.

More precisely, if Na = (Qa,X,04,Sa, Fa) and
Ng = (QB,%,05,Sp, Fg) with Qa N Qg =0, then AU B is
recognised by the NFA

N=(QaUQp,X,04Udp,SaUSp, FaU Fg).

» The intersection of two regular languages is also regular.
Proof: ANB=AUB.

COMPSCI 350: Automata 62 /132

Closure under union: an example 1

COMPSCI 350: Automata 63 / 132

Closure under union: an example 2

COMPSCI 350: Automata 64 /132

Closure under intersection: an example 1

b

NFA Ny NFA N

COMPSCI 350: Automata 65 / 132

Closure under intersection: an example 2

NFA accepting the complement of N;?

COMPSCI 350: Automata 66 / 132

Closure under intersection: an example 3

DFA M; equivalent to N

COMPSCI 350: Automata 67 / 132

Closure under intersection: an example 4

DFA M recognising the complement of M;

COMPSCI 350: Automata 68 / 132

Closure under intersection: an example 5

DFA M, equivalent to N,

COMPSCI 350: Automata 69 / 132

Closure under intersection: an example 6

DFA M, recognising the complement of M,

COMPSCI 350: Automata 70 / 132

Closure under intersection: an example 7

NFA Nj recognising L(M3) U L(M,)

COMPSCI 350: Automata 71 /132

Closure under intersection: an example 8

Last two steps:

» Construct a DFA M3 equivalent to the NFA N

» Construct the complement of
L(M3) = L(Ny) N L(Np) = {bK | k > 1}

Recap:
» L(N)={a"b" | n>0,m>1}
» L(Ny) ={b™| m2>0}
> L(Mg) = {bK| k>1}

COMPSCI 350: Automata

72 /132

Closure properties of regular languages 2

The closure (or Kleene star) of a language A, denoted by A*, is the
set of all strings that can be formed by concatenating together any
finite number of strings of A.

Examples:

» {a}* ={e,a,aa,aaa,...,a",...}
» {a,ab}* = {e,a, ab, aa, abab, aab, aba, ...}

» The Kleene star of a regular language is also regular.
Proof: Given an NFA Ny that recognizes a language A we can
build an NFA Nja- that recognises the closure of A by making
a start state accept state and, adding transitions, with
corresponding labels, from all accept state(s) to the
neighbours of the initial state(s).

Is the proof correct?

COMPSCI 350: Automata 73 /132

Closure operation: an example

COMPSCI 350: Automata 74 /132

Closure properties of regular languages 3

The concatenation of two languages A, B is defined to be the set
of strings that can be formed by concatenating all strings of A with
all strings of B, i.e.

AB={xy|x €Ay € B}.
Example: If A={a" | n>0} and B= {bw | w € {a,b}*}, then

AB ={a"bw |w € {a,b}*,n >0} = {ubv | u,v € {a,b}"}.

COMPSCI 350: Automata 75 / 132

Closure under concatenation: an example 1.1

COMPSCI 350: Automata 76 / 132

Closure under concatenation: an example 1.2

COMPSCI 350: Automata 77 /132

Closure under concatenation: an example 1.3

COMPSCI 350: Automata 78 / 132

Closure under concatenation: an example 1.3

COMPSCI 350: Automata 79 /132

Closure under concatenation: an example 2.1

COMPSCI 350: Automata 80 / 132

Closure under concatenation: an example 2.2

COMPSCI 350: Automata 81 /132

Closure under concatenation: an example 2.3

a,b

COMPSCI 350: Automata 82 /132

Closure under concatenation: an example 2.4

a,b

COMPSCI 350: Automata 83 /132

Closure under concatenation: an example 2.4’

a,b

COMPSCI 350: Automata 84 /132

Closure properties of regular languages 3

» The concatenation of two regular languages is also regular.
Proof: Given two NFAs Na = (Qa,X,04,Sa, Fa) and
Ng = (QB,%,d8,58, Fg), QaN Qs = 0, recognising the
languages A, B, respectively, we can build an NFA
N=(Q,%,4,S, F) that recognises the concatenation of A
and B as follows:

» Q=QaUQB
» S =5,U Sg if one state of S4 is a final state; otherwise,
S=35,
» F= FB
|
5A(qa C)7 lfq S QA\FAa
6(qa C) = 5B(qa C)7 if qc QB \ SBv
da(gq,c)U{de(q’,c)| g € Sg}, if g€ Fa.

COMPSCI 350: Automata 85 /132

Closure under repeated concatenation

Let A be a language and n > 1. We define:

A" = {x1xa - Xn | X1,%2,...,xn € A}.

» If Ais a regular language, then for each n > 1, A" is also
regular.
Proof: Al = A, A> = AA,...,A" = AA--- A, so the result
—_—

n times
follows from the closure under concatenation.

COMPSCI 350: Automata

86 / 132

More decidable properties of regular languages 1

» It is algorithmically decidable whether two DFAs accept the
same language.
Proof: If A, B are two languages recognised by the DFAs
Ma, Mg, respectively, then (using the closure properties of
regular languages) we can construct a DFA M such that:

L(M)=AAB=(ANB)U(BNA),

and then use the equivalence:

A=B<s AAB=0.

COMPSCI 350: Automata 87 /132

More decidable properties of regular languages: an example

a,b
DFA M; DFA M,
{a"bu | n>0,uc {a b}*} {a, b}*

COMPSCI 350: Automata

1.1

88 / 132

More decidable properties of regular languages: an example 1.2

a a,b a, b

DFA M, DFA M,

COMPSCI 350: Automata

89 / 132

More decidable properties of regular languages: an example 1.3

a a, b a a,b
b b
DFA My N M, DFA M; N M,
0 {a" | n> 0}

COMPSCI 350: Automata 90 / 132

More decidable properties of regular languages: an example 14

DFA MyAMs: {a" | n > 0} #) implies L(My) # L(Ms)

COMPSCI 350: Automata 91 /132

More decidable properties of regular languages 2

» It is algorithmically decidable whether a DFA M accepts only
one a string w.
Proof: Take A= L(M) and B = {w}.

» It is algorithmically decidable whether the language accepted
by a DFA M includes the language accepted by a DFA M'.
Proof: We use the equivalence

L(M) C L(M') & L(M) N L(M') = L(M).

COMPSCI 350: Automata 92 /132

Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a
DFA M produce a new DFA M’ such that:

» L(M)=L(M),
» M’ has less states than M.

COMPSCI 350: Automata 93 /132

Minimisation of DFAs 2

a,b

The state g3 can be removed without modifying the accepted language

COMPSCI 350: Automata 94 /132

Minimisation of DFAs 3

From a DFA
M= (Q,%,d,s,F)

and any state g € Q we define the new DFA
Mq = (Qazaéach,:)

by simply replacing the initial state s with q.

We say two states p and g of M are distinguishable
(k-distinguishable) if there exists a string w € L* (of length k)
such that exactly one of M, or M accepts w.

If there is no such string w then we say p and g are equivalent.

COMPSCI 350: Automata 95 / 132

Minimisation of DFAs 4

Questions:
» Does there exist an algorithm deciding whether two states p
and g are distinguishable?
> Does there exist an algorithm deciding whether two states p
and g are k-distinguishable?
» Does there exist an algorithm deciding whether two states p
and g are equivalent?

COMPSCI 350: Automata 96 / 132

Minimisation of DFAs: elimination lemma 5

If a DFA M has two equivalent states p and g, then one of these
states can be eliminated without modifying the accepted language,
hence we can construct a smaller DFA M’ such that L(M) =
L(M").

Proof: Assume M = (Q,%,d,s, F) and p #s. We create an
equivalent DFA

MI = (Q \ {P}, 2’5/?5? F \ {p})a

where ¢’ is § with all instances of d(g;, c) = p replaced with
d'(qi, ¢) = g, and all instances of d(p, ¢) = q; deleted.

The resulting automaton M’ is deterministic and accepts L(M).

COMPSCI 350: Automata 97 / 132

Minimisation of DFAs: distinguish lemma 6

Two states p and g are k-distinguishable if and only if for some
c € ¥, the states d(p, ¢) and (g, ¢) are (k — 1)-distinguishable.

Proof: Consider all strings w = cw’ of length k. If §(p, c) and
d(q, c) are (k — 1)-distinguishable by some string w’, then p and ¢
must be k-distinguishable by w.

Likewise, if p and g are k-distinguishable by w, then there exist
two states d(p, ¢) and d(q, c¢) that are (k — 1)-distinguishable by
the shorter string w'.

COMPSCI 350: Automata 98 / 132

Minimisation of DFAs: the algorithm 7

The algorithm minimizeDFA finds the equivalent states of a DFA
M= (Q,X%,d,s, F). It defines a series of equivalence relations =y,
=1, ... on the states of Q:

pP=o04q if both p and g are in F or both not in F.
p=k+1q if p=kqand, for each c € ¥, §(p, c) =« (g, ¢).

It stops generating these equivalence classes when =, and =41
are identical.

COMPSCI 350: Automata 99 /132

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent
states, the number of equivalence relations =, generated cannot
be larger than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and g such that p =, gq.

Is the algorithm minimizeDFA optimal?

77

COMPSCI 350: Automata 100 / 132

Minimisation of DFAs: example 1 9

The DFA M is not minimal as:
=o= {{q0}, {q1, 92}},

a1 =1 g2,

=1= {{q0}, {q1, 92} },

=0==1

because

6(q1,a) = g2 =0 6(q2,a) = q1,
5(q1, b) = g0 =0 6(q2, b) = qo

COMPSCI 350: Automata 101 / 132

Minimisation of DFAs: example 1 10

The following DFA is minimal and equivalent to M:

COMPSCI 350: Automata 102 / 132

Minimisation of DFAs: example 2 11

The DFA M is not minimal as:
=o= {{q0, 91,93}, {92, g2} },

=1= {{q0}7 {q17 q3}7 {q27 q4}}'
=2==1,
because
(g2,0) = g2 =0 6(qa,
6(g2,1) = g4 =0 6(qa,

(94,0) = ga,
((1) = Q4.
5(q0,0) = q1 #0 6(q1,0) = g,
(90,0) = g1 #o 0(g3,0) = qo,
5(g1,0) = g2 =0 6(q3,0) = g2,
o((93,1)

q1,1) = g2 =0 6(q3,1) = qa4

COMPSCI 350: Automata 103 / 132

Minimisation of DFAs: example 2 12

The following DFA is minimal and equivalent to M:

COMPSCI 350: Automata 104 / 132

Non-regular languages

Consider the languages:

A={0"1"| n,m > 0},

B ={0m1™ | m > 0},

C ={w € {0,1}* | w has an equal number of Os and 1s},
D ={w € {0,1}* | w has an equal number of occurrences
of 01 and 10 as substrings}.

Which languages are regular? Why?

COMPSCI 350: Automata 105 / 132

Pumping lemma

Theorem 1.70. If A is a regular language, then there is a number p
(the pumping length) such that every string s € A of length at
least p can be written in the form

S = xyz
such that the following three conditions are satisfied:
1. for each i > 0, xyiz cA,

2. ly| >0,
3. |xy| < p.

COMPSCI 350: Automata 106 / 132

Pumping lemma: proof

Let M = (Q, %, 9, q1, F) be a DFA recognising A and p be the
number of states of M.
Let s =s15...5, € A with n > p and consider the sequence of
states
n = 5((]1, 51), = 5(I’1, 52), ey lipl = 5(I’,‘, S,'+1), coog
'n+1 = (5(rn75n+1)'
As M has p states, p+1<n+1,sothereexist 1 <j </ <p+1
such that r; = r;. Split s as follows:
s=515...5p=(s1...5-1)(Sj..-5-1)(S/---5n),

and put
X=5...5-1,Yy=5...5-1,Z=5/...5n-

COMPSCI 350: Automata 107 / 132

Pumping lemma: end of proof

Because s is in A, rp+1 isin F. For every i > 0, the trace of xy’z
takes x from ry to rj, continues with y taking r; to rj = r; i times,
and finally taking z from r; to r,41 € F, so M accepts xy'z.
(What happens when i = 07)

From j < | we deduce that |y| > 0.

As | < p+1, |xy| < p.

COMPSCI 350: Automata 108 / 132

First application of the pumping lemma

Example 1.74. The language
C ={w € {0,1}* | w has an equal number of Os and 1s} is not
regular.

Assume by contradiction that C is regular and let p be the
pumping length. Choose the string s = 0P1P in C; as |s| = 2p, it
can be split as s = xyz and the three conditions in the Pumping
lemma are satisfied.

From the third condition we have |xy| < p, so y contains only Os,
so xyyz cannot be in C.

COMPSCI 350: Automata 109 / 132

Second application of the pumping lemma

Example 1.77. The language E = {0'1/ | i > j} is not regular.

Assume by contradiction that E is regular and let p be the
pumping length. Choose the string s = 0PT11P in E; as

|s| =2p+ 1, it can be split as s = xyz and the three conditions in
the Pumping lemma are satisfied.

From the third condition we have |xy| < p, so y contains only Os.
So, xy'z are all in E for i > 0. For i = 0 we get: xz € E, removing
at least one 0 from the original string s = 0PT11P, a contradiction.

COMPSCI 350: Automata 110 / 132

Third application of the pumping lemma

Example 173. The language B = {0™1™ | m > 0} is not regular.

Assume by contradiction that B is regular and let p be the
pumping length. Choose the string s = 0P1P in B; as |s| = 2p, it
can be split as s = xyz and the three conditions in the Pumping
lemma are satisfied.

We consider three cases:

1. y contains only Os: the string xyyz ¢ B because the number
of Os is not equal with the number of 1s.

2. y contains only 1s: the string xyyz ¢ B because the number
of Os is not equal with the number of 1s.

3. y contains both Os and 1s: the string xyyz ¢ B because some
0 follows a 1.

COMPSCI 350: Automata 111 / 132

Fourth application of the pumping lemma

Problem 1.48. The language D = {w € {0,1}* | w has an equal
number of occurrences of 01 and 10 as substrings} is regular.

Observe that any binary string beginning and ending with the same
digit has an equal number of occurrences of the substrings 01 and

10. Thus, D = {¢} U{0,1} U0{0,1}*0 U 1{0, 1}*1.

COMPSCI 350: Automata 112 / 132

Searching with GREP

A grep pattern, also known as a regular expression, describes the
text that we are looking for.

For instance, a pattern can describe words that begin with C and
end in |. A pattern like this would match “Call”, “Cornwall”, and
as well as many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in
your favourite editor) match themselves. For instance, if you are
looking for the letter “s”, Grep stops and reports a match when it

w_n

encounters an “s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A

period . is a wild card symbol used to denote any character except
a newline.

COMPSCI 350: Automata 113 / 132

Regular expressions

The Kleene regular expressions over the alphabet > and the sets
they designate are:

1. Any c € X is a regular expression denoting the set {c}.

2. If Eq, E> are regular expressions and E; denotes the set S1, E
denotes the set S,, then so are:
» E; + E; (or E;1|E>) which denotes the union S; U S,
» FE1E> which denotes the concatenation 5155,
» E; which denotes the Kleene closure S;.

COMPSCI 350: Automata 114 / 132

Examples of regular expressions

Sample regular expressions over ¥ = {a, b, c} and their
corresponding sets (languages):

regular expression

denoted set (language)

a
ab

a-+ bb
(a+b)c

C*

(a+ b+ c)cba
a*+b"+c*
(a+ b*)c(c*)

{a}

{ab}

{a, bb}

{ac, bc}
{e,c,cc,ccc, ...}
{acba, bcba, ccba}

{€,a, b, c,aa, bb, cc, aaa, bbb, ccc, . .

{ac, acc, accc, . .. , ¢, cc, cec, . . .
bc, bee, bbece, . . . }

3

COMPSCI 350: Automata

115 / 132

Kleene's Theorem 1

A regular set over an alphabet ¥ is either the empty set, the set
{€}, or the set of strings denoted by some regular expression.

Kleene's Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L
there is an NFA N such that L(N) = L.

» NFAs for L = () and L = {&} are easy to construct: an NFA
with no final states works in the first case and an NFA with
one initial and final state and no transitions works in the
second case.

» Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E. We
proceed by induction.

COMPSCI 350: Automata 116 / 132

Kleene's Theorem 2

» Verification: If E = {c} for some ¢ € ¥, then we can take
N=(Q,X,0,S,F) where Q={qo0,q1},S ={qo0}, F ={q1}
and there is one transition 6(qo, ¢) = q1.

» Induction:

» If Ny, Ny are NFAs accepting the languages denoted by E; and
E>, respectively, then in view of the closure under union the
NFA Nynion accepts the language denoted by E; + Ej:

L(Nunion) = L(N1) U L(Ny).

COMPSCI 350: Automata 117 / 132

Kleene's Theorem 3

» Induction (continued):
» If Ny, Ny are NFAs accepting the languages denoted by E; and
E,, respectively, then in view of the closure under
concatenation the NFA Neopcatenation accepts the language
denoted by E; E»:

L(Nconcatenation) = L(NI)L(N2)
» If Ny is a NFA accepting the language denoted by Ej, then in

view of the closure under Kleene closure the NFA N, accepts
the language denoted by Ef:

L(N,) = L(Ny)*,

COMPSCI 350: Automata 118 / 132

Kleene's Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)* + 1.
We use the closure properties of regular languages:

» construct NFAs Ny and N, accepting the languages {0} and
{1}, respectively

» construct an NFA Njs for the concatenation of L(N;) and
L(Ny) obtaining the language {01}

» construct an NFA Nj for the Kleene closure of L(N3) so
obtaining {01}*

» construct an NFA Ns for the union of L(Ns) and L(Ny)
obtaining the language {01}* U {1}

» we may want to transform Ns into an equivalent DFA (also
minimise it)

COMPSCI 350: Automata 119 / 132

Kleene's Theorem: other examples 2

» Construct a regular expression denoting the language:
A={0"1"| n,m > 0}.
The language L is regular and

A

{0"1™ | n,m > 0}
{07 [n>0}{1" | m > 0}

so A is denoted by 0*1*.

» There is no a regular expression denoting the language:
B={0"1"|n> 0}

because B is not regular.

COMPSCI 350: Automata 120 / 132

Kleene's Theorem: other examples 3

There is no a regular expression denoting the language:
C={uuww | u,w € {a,b}"}

because C is not regular. Prove this fact!

COMPSCI 350: Automata 121 / 132

The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T, (over an
alphabet ¥) determine whether P appears somewhere in
T.

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.

COMPSCI 350: Automata 122 /132

Naive string matching 1

Try each possible position the pattern P[1..m| could appear in the
text T[l..n]:

for (i=0; T[i] !'= °\0’; i++)

{
for (j=0; T[i+j] != *\0’ && P[j] !'= °\0’
&% T[i+jl==P[jl; j++) ;
if (P[j] == °\0’) found a match
}

There are two nested loops; the inner one takes O(m) iterations
and the outer one takes O(n) iterations so the total time is the
product, O(mn). This is slow!

COMPSCI 350: Automata 123 / 132

Naive string matching 2

An example: if T[1..n] is a", and P[1..m] is b™, then it takes m
comparisons each time to discover that we don't have a match, so
mn overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next

position without going through all m steps.

Can we do it better?

COMPSCI 350: Automata 124 / 132

Pattern matching and regular languages 1

Solution: Consider the language
A(P) = {x | x contains the pattern P}.

Assume that A(P) is regular! Let M be a DFA for A(P). When
processing an input M must enter an accepting state when it has
just finished ‘seeing’ the first occurrence of P, and thereafter it
must remain in some accepting state or other.

COMPSCI 350: Automata 125 / 132

Pattern matching and regular languages 2

Is A(P) regular?
Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then
A(P) = {x € {a,b}* | x = uPv, for some u,v € {a, b}*},
or

A(P) = {uabav | u,v € {a,b}"}.

COMPSCI 350: Automata 126 / 132

Pattern matching and regular languages 3

A DFA for AP(aba)

COMPSCI 350: Automata 127 / 132

Pattern matching and regular languages 4

An NFA for A(aba)

COMPSCI 350: Automata 128 / 132

Pattern matching and regular languages 5

For every string P, the language

A(P) ={uPv | u,v € {a b}"}
is regular.

Proof: Let M be a DFA recognising exactly {P}. An NFA
recognising A(P) can be obtained from a DFA M by adding loops
labelled with a and b to the initial and final states of M.

COMPSCI 350: Automata 129 / 132

Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem
for A(P) which is the same as testing whether P appears in the
input text T.

How complex is this algorithm?

COMPSCI 350: Automata 130 / 132

Regexes 1

In the practice of computing regular expressions (abbreviated as
regex or regexp, with plural forms regexes) differ from the Kleene
definition discussed before.

Regexes are written in a formal language that can be interpreted
by a regular expression processor, a program that either serves as a
parser generator or examines text and identifies parts that match
the provided specification.

COMPSCI 350: Automata 131 / 132

Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match
in the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(NN,

where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.

More examples and testers at http://regexlib.com.

COMPSCI 350: Automata 132 / 132

http://regexlib.com

	Mathematical background
	Finite machines
	DFA
	NFA
	Minimisation of DFAs
	Beyond regular languages
	Pattern matching

