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R. Hamming

“The purpose of computing is insight, not numbers.”
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Assignments

Assignment 1 : Friday 23 March 2018 before 11.55pm, submitted
via Canvas; worth 5%.

Midterm Test : 26 March 2018, in class, time: 15:00-16:00 in
OGHLLecTh/102-G36 and Conf. Centre Lecture
Theater/423-342; worth 30%.
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Sets

A set is a group of elements represented as a unit. The objects in
a set are called elements or members. The order of elements is
irrelevant; repetition of its members does not matter.

Sets can be finite, like {1, 3, 5}, or infinite, like
{1, 3, 5, 7, 11, 13, . . . }.
The symbols ∈ and 6∈ denote set membership and
non-membership, respectively. For example 7 6∈ {1, 3, 5} and
7 ∈ {2, 3, 5, 7, 11, 13, . . . }.
Two sets A,B are equal, written A = B , if they have the same
elements; otherwise, A 6= B . We say that A is a subset of B ,
written A ⊆ B if every element of A is also in B ; A is a proper
subset of B , written A ⊂ B if A ⊆ B and A 6= B

The set of natural numbers is N = {0, 1, 2, 3, . . . }. The set with
no elements is called the empty set and is denoted by ∅.
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Sets

Sets can be described by a specific property P , {n | P(n)}. For
example, {n ∈ N | n is prime} = {2, 3, 5, 7, 11, . . . }.
Sets can be combine with various operations, including union
(A ∪ B consists of all elements in A or in B), intersection (A ∩ B
consists of all elements in A and in B), complement (A consists of
all elements not in A) and power set (2A consists of all subsets of
elements of A).

{3, 4} ∪ ∅ = {3, 4},
{5, 1, 10} ∩ {2, 3, 5, 7, 11, . . . } = {5},
{2, 3, 5, 7, 11, . . . } = {1, 4, 6, 8, . . . },

2{0,1} = {∅, {0}, {1}, {0, 1}}.
For every set A,A ∩ A = ∅.
For every set A, 2A 6= ∅.
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Functions

A function (or a mapping) is a rule/process that takes an input
and produces an output. For every function, the same input always
produces the same output.

If f is a function that produces the output b on input a we write
f (a) = b.

The set of inputs for a function f is called the domain (D) of f ; the
sets of outputs is called the range (R) of f . We write f : D → R .

The function f : D → R is

◮ injective if for every x 6= y in D, f (x) 6= f (y);

◮ surjective, or onto if for every z ∈ R there exists x ∈ D such
that f (x) = z ;

◮ bijective if it is both injective and surjective.
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Functions

The function f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} defined by

◮ f (n) = 0 for all n ∈ {0, 1, 2, 3, 4} is not injective and not
surjective;

◮ f (n) = n + 1 for n ∈ {0, 1, 2, 3} and f (4) = 0 is bijective;

No function f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} can be injective but
not surjective (or surjective but not injective).

The function f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4, . . . } defined by
f (n) = n for all n ∈ {0, 1, 2, 3, 4} is injective and not surjective.

The function f : {0, 1, 2, 3, . . . } → {0, 1, 2} where f (n) is the
reminder of the division of n by 3 for all n ∈ {0, 1, 2, 3, . . . } is
surjective and not injective.
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Relations

A sequence is a list of elements in some order. We use parentheses
to describe sequences like in (4, 1, 44). As the order is important,
(4, 1, 44) 6= (44, 1, 4).

Finite sequences are also called tuples. A tuple with k elements is
called k-tuple; if k = 2, we call it a pair.

The cross product of the sets A,B is defined by

A× B = {(a, b) | a ∈ A, b ∈ B}.

For example,

{a, b, c} × {0, 1} = {(a, 0), (b, 0), (c , 0), (a, 1), (b, 1), (c , 1)}.

A subset R of a set A× B is called a (binary) relation.
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Relations

An equivalence relation R ⊆ A× A (also denoted by ≡) has the
following three properties:

1. reflexivity: for every x ∈ A, (x , x) ∈ R ,

2. symmetry: for every x , y ∈ A, if (x , y) ∈ R , then (y , x) ∈ R ,

3. transitivity: for every x , y , z ∈ A, if (x , y) ∈ R and (y , z) ∈ R ,
then (x , z) ∈ R .

We now prove that the relation n ≡ m defined on natural numbers
by “n −m is a multiple of 7” is an equivalence relation.

First, we have n ≡ n because 7 divides n − n = 0. Second, if
n ≡ m then (by definition) n −m is a multiple of 7, so
m − n = −(n −m) is also a multiple of 7. Third, if n ≡ m and
m ≡ t, then (by definition) n −m and m − t are multiples of 7, so
m − t = (m − n) + (n − t) is also a multiple of 7 because the sum
of two multiples of 7 is also a multiple of 7.
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Predicates

A predicate or property is a function P : A → {TRUE,FALSE}.
Sometimes we write P : A → {0, 1}, where 0 stands for FALSE
and 1 stands for TRUE.

For example, the predicate PRIME: {1, 2, 3, . . . } → {0, 1} is
defined by PRIME(n)=0, if n is composite and PRIME(n)=1, if n
is prime.

PRIME(13)=1, PRIME(277,232,917 − 1) = 1 (actually, this is the
largest known prime as of January 2018), PRIME(277,232,917) = 0.
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Strings and languages

An alphabet is a finite set. The elements of an alphabet are called
symbols. Alphabets are usually denoted by capital (sometimes
Greek) letters:

Σ = {a},B = {0, 1}, Γ = the set of 7-bit ASCII characters.

A string over an alphabet is a finite sequence of symbols over the
alphabet. For example, 1000 is a string over the alphabet B . The
length of the string w over the alphabet Σ – denoted by |w | – is
the number of symbols it contains. The length of 00001 is 5. The
string of length zero is called the empty string and is denoted by ε.
Strings can be concatenated: from x and y get xy ; |xy | = |x |+ |y |.
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Strings and languages

The set of all strings over the alphabet Σ is denoted by Σ∗. A
string x is a substring of y if there exist two strings u, v such that
y = uxv : cad is a substring of abracadabra over the alphabet
{a, b, c , d , r}.
The lexicographical order of strings is defined in two steps: a) a
shorter string precedes a longer string, and b) strings of the same
length are ordered as in the dictionary (this assumes an ordering of
the symbols in the alphabet).
If B = {0, 1} and 0 precedes 1, then we have

ε < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < . . .

A language is a set of strings. All set-theoretic operations can be
applied to languages, but there are specific language-theoretic
operations like concatenation:

AB = {xy | x ∈ A, y ∈ B}.
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Boolean logic

The values TRUE and FALSE are called Boolean values and are
denoted by 1 and 0, respectively. The following operations with
Boolean values are important:

◮ Negation (NOT): ¬x = 1− x ,

◮ Disjunction (∨): x ∨ y = max{x , y},
◮ Conjunction (∧): x ∧ y = min{x , y},
◮ Implication (→): x → y = ¬(x) ∨ y = max{1− x , y},
◮ Equivalence (↔): x ↔ y = (x → y) ∧ (y → x),

◮ Exclusive OR (⊕): ⊕(x , y) = ¬(x ↔ y).

COMPSCI 350: Automata 16 / 132



Quantifier logic

The two most common quantifiers are “for all” – ∀ and “there
exists” – ∃. If P is a predicate, then

◮ ∀xP(x) means “for all x , P(x) is true.

◮ ∃xP(x) means “there exists x such that P(x) is true.

Informal Formal

For each natural number n,
n · 2 = n + n. ∀n ∈ N (n · 2 = n + n).

For some natural number n,
n2 is equal to 25. ∃n ∈ N (n2 = 25).
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Quantifier logic

The following important rules relate negation to quantifiers:

¬(∀xP(x)) = ∃x(¬P(x)),

¬(∃xP(x)) = ∀x(¬P(x)).

Informal.
All horses fly. Negation (All horses fly) = There is a horse that
does not fly.
Formal.

∀x(horse(x) → fly(x)).

¬(∀x(horse(x) → fly(x))) = ∃x(¬(horse(x) → fly(x)))

= ∃x(horse(x) ∧ ¬fly(x))
because ¬(A → B) = A ∧ ¬B .
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Definitions, theorems and proofs

“Theorems and proofs are the heart and soul of mathematics and
definitions are its spirit” says Sipser.

Definitions describe clearly and precisely the objects and notions
we use.

Mathematical statements express properties of defined objects.
They may be true or false, but they always have to be precise.

A proof is a convincing – ideally, in an absolute sense – argument
that a statement is true. It should not only be “beyond reasonable
doubt”, but “beyond any doubt”.

A theorem is a mathematical statement proved to be true. A
lemma is a proved mathematical statement useful in the proof of a
more important mathematical statement. A corollary is a proved
mathematical statement which can easily derived from another
mathematical statement, usually a theorem.
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Definitions, theorems and proofs

The only way to show the truth or falsity of a mathematical
statement is via a mathematical proof. Finding proofs is not easy,
even if we use a proof-assistant (like Isabelle or Coq), i.e. a
sophisticated software designed to assist with the development of
formal proofs by human-machine collaboration.

A proof is typically a formal argument showing the truth of an
implication of the form “P implies Q”. A proof of an equivalence
is a proof of both implications “P implies Q” and “Q implies P”.

In what follows we shall present some typical examples of proofs:
they will appear in a form or another in what follows.
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Definitions, theorems and proofs

Theorem 0.10 For any two sets A and B,

A ∪ B = A ∩ B .

Proof. The theorem states that two sets are equal, hence we need
to prove that every element in A ∪ B is in A ∩ B and, conversely,
every element in A ∩ B is in A ∪ B.

If x ∈ A ∪ B, then x 6∈ A ∪ B (by the definition of the
complement), hence x 6∈ A and x 6∈ B (by the definition of the
union), so x ∈ A and x ∈ B (by the definition of the complement),
which means that x ∈ A ∩ B (by de definition of the intersection).
This shows that A ∪ B ⊆ A ∩ B.

Next we shall prove the converse implication, i.e. A ∩ B ⊆ A ∪ B.
Try it!
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Types of proofs: proof by construction

A number is rational if it is a ratio of two integers, n
m
, where

m 6= 0.

Theorem. There exist irrational numbers a and b such that ab is
rational.

Non-constructive proof. The number
√
2
√
2
is either rational or

irrational. If it is rational, our statement is proved: a = b =
√
2. If

it is irrational, then take a =
√
2
√
2
, b =

√
2 and compute:

ab = (
√
2
√
2
)
√
2 = 2. The statement was proved. This proof is

non-constructive because we don’t know whether
√
2
√
2
is rational

or not.
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Types of proofs: proof by construction

Theorem. There exist irrational numbers a and b such that ab is
rational.

Constructive proof. The numbers a =
√
2, b = log2 9 are

irrationals and ab = 3 is rational. The statement was proved.

Really? A simple analysis of the proof shows that in fact we have
an implication:

If the numbers a =
√
2, b = log2 9 are irrationals,

then ab = 3 is rational.

To prove the theorem we need to prove that the implication is true.
As the conclusion is true, we need to show that the hypothesis is
true, that is two facts: a)

√
2 is irrational and b) log2 9 is irrational!
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Types of proofs: proof by contradiction

Theorem 0.14
√
2 is irrational.

Proof. Assume by absurdity that
√
2 is rational, that is,

√
2 =

N

M
,

where M 6= 0. If both N,M are divisible by the same integer t,
then divide them by t; the value of the fraction will not change.
Continue this (finite!) process till no such integer exists, so

√
2 =

N

M
=

n

m
.

Both n,m cannot be even. As m 6= 0, we can write m
√
2 = n and

by squaring both members we get

2m2 = n2. (1)
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Types of proofs: proof by contradiction

Continuation of the proof. From (1) we deduce that n2 is even,
so n is also even as the square of an odd number is odd. So, there
exists an integer k such that n = 2k . Substituting in the equation
(1) we get:

2m2 = (2k)2 = 4k2.

This mean that m2 = 2k2, that is, m is even, a contradiction!

Theorem. log2 9 is irrational.

Proof. Assume by absurdity that log2 9 is rational, that is
log2 9 = n

m
, where n,m are integers and m 6= 0. By the properties

of logarithms, 9m would be equal to 2n, a contradiction because
the former is odd, and the latter is even.

COMPSCI 350: Automata 25 / 132



Types of proofs: proof by induction

Proof by induction is a method to show that all elements of an
infinite countable set have a certain property.

Consider a property P(i) of natural numbers; the goal it to show
that P(i) is true for every natural number i . As there are infinitely
many i ’s, we cannot verify individually each of them, so the proof
by induction comes handy.

The proof by induction consists in two steps:

1. Basis: Prove that P(k) is true for a fixed natural number k .

2. Induction step: For each i ≥ k assume that P(i) is true – the
induction hypothesis –, and prove that P(i + 1) is also true.
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Types of proofs: proof by induction

Theorem. 1 + 2 + 3 + · · ·+ n = n(n+1)
2

.

Proof. For the basis we take k = 1: 1 = 1·2
2 checks. Then, we

assume that for every i ≥ k = 1 we have

1 + 2 + 3 + · · · + i =
i(i + 1)

2
, (2)

and we need to prove that

1 + 2 + 3 + · · ·+ (i + 1) =
(i + 1)(i + 2)

2
.

Indeed, using the induction hypothesis (2) we get:

1 + 2 + 3 + · · ·+ i + (i + 1) = (1 + 2 + 3 + · · ·+ i) + (i + 1)

=
i(i + 1)

2
+ (i + 1) =

(i + 1)(i + 2)

2
.

COMPSCI 350: Automata 27 / 132



Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0’s)?

Using “states” to remember the ‘property’ seems a good idea, but
don’t we have to keep adding newer and newer ‘states’ as the
input gets longer and longer?

Re-phrased: Is a finite memory enough? In general the answer
seems to be negative, but . . .
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A simple example

Probably the simplest finite machine operates a switch as follows:

So, if the switch is down, then the light goes on and if the switch
is up, then the light goes off.

To this device, the switch position is an input and the light on/off
is the output. The machine works with finitely many “states” for
any sequence of modifications of the switch.
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Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s,F ) where

1. Q is the finite set of machine states

2. Σ is the finite input alphabet

3. δ is a transition function from Q × Σ to Q

4. s ∈ Q is the start state

5. F ⊆ Q is the accepting (final/membership) states.
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DFA: example 1

M = (Q,Σ, δ, s,F ):

Q = {q0, q1, q2, q3}
Σ = {a, b}
δ Σ
Q a b

q0 q1 q2
q1 q0 q3
q2 q3 q0
q3 q2 q1

s = q0
F = {q2}

q0

q1

q2

q3

a

a

b

b

b

b

a

a
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DFA: accepted strings and language

Let M = (Q,Σ, δ, s,F ) be a DFA and w = w1w2 · · ·wn be a string
over Σ.

◮ The trace (path) of the computation of w on M is the
(unique) sequence of states

s1, s2, · · · , sn, sn+1

such that

s1 = s, δ(s1,w1) = s2, . . . , δ(sn−1,wn−1) = sn, δ(sn,wn) = sn+1.

◮ The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

◮ The language accepted by M, denoted by L(M), is the set of
all accepted strings by M; if A = L(M), for some DFA M,
then A is called regular.
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Questions

◮ Given a DFA M, check which strings M accepts.

◮ Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states)
DFA recognising the language?

◮ Which properties of DFAs can be checked algorithmically?
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DFA: example 2

The language accepted by
this DFA is empty, i.e. the
DFA accepts no string.

q0

a, b
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DFA: example 3

The language accepted by this
DFA consists of all strings over
Σ = {a, b}, i.e. the language
Σ∗ = {a, b}∗.

q0

a, b
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DFA: example 1 continued

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which contain an
even number of a’s
and an odd number
of b’s.

q0

q1

q2

q3

a

a

b

b

b

b

a

a
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DFA: example 4

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which contain the
substring aba, i.e.
all the strings of
the form uabav with
u, v ∈ {a, b}∗.

q0

b

q1

a

q2

q3

a, ba

b

b

a
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DFA: example 5

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which start with a,
i.e. all the strings
of the form av , with
v ∈ Σ∗ = {a, b}∗.

q0

q1

a, b

q2

a, b

a

b
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DFA: example 6

The language
accepted by
this DFA con-
sists of only
one string over
Σ = {a, b},
namely abbab. q0 q1 q2 q3 q4 q5

q6

a b b a b

b
a

a b
a a, b

a, b
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DFA: example 7

The language accepted
by this DFA is
{ambn | m, n > 0},
where am means
aa · · · a (m times).

q0 q1 q2

q3

a b

a
b

a b

a, b
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Not all languages are accepted by DFAs

The language
L = {anbn | n > 0}

is not accepted by any DFA.

Why?

Informally, because a DFA can ‘count’ only up to the number of its
states.

More formally, because, if n is greater than the number of states of
a DFA supposed to accept L, then any trace (path) labelled by an

passes twice through some state. That is, there are strings ai and
aj for i < j ≤ n that fall into the same state. Thus both aibi and
ajbi are accepted/rejected which contradicts the definition of L.
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Simple properties of DFAs 1

◮ The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s,F ), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s,F ).

◮ It is algorithmically decidable whether a DFA M accepts the
empty string.
Proof: If M = (Q,Σ, δ, s,F ), then ε ∈ L(M) if and only if
s ∈ F .

◮ It is algorithmically decidable whether a DFA M accepts a
string w .
Proof: Construct the trace of the computation of w on M
and check whether its last state is final.
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Simple properties of DFAs 2

◮ It is algorithmically decidable whether a DFA M accepts no
string.
Proof: Given the DFA M check whether there is a path from
the initial state s (has a trace of a computation) to a final
state in F . We have: L(M) = ∅ if and only if there is no path
from the initial state to a final state.
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Simple properties of DFAs 3

◮ It is algorithmically decidable whether a DFA M accepts
infinitely strings.
Proof: Given the DFA M, L(M) is infinite if and only if there
is a path from the initial state (has a trace of a computation)
s to a final state in F having the following additional
property: some state q in the path possesses a loop, i.e. there
is a path from q to q.
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The reverse operation

The reverse of a string

w = c1c2c3 · · · cn

is the string
R(w) = cncn−1 · · · c2c1.

For example, R(abaaa) = aaaba, R(abba) = abba, R(bac) = cab.

The reverse of a language A is the language

R(A) = {R(w) | w ∈ A}.

Problem: Is R(A) regular whenever A is regular?
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DFA: example 7 revisited

The language accepted by
the DFA M is
A = {ambn | m, n > 0}.
Is
R(A) = {bnam | m, n > 0}
regular?

q0 q1 q2

q3

a b

a
b

a b

a, b
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A possible solution?

Is
R(A) = {bman | m, n > 0}
accepted by this
machine, M ′?

q0 q1 q2

q3

a b
a

b

a b

a, b
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The solution ‘under microscope’: M vs M ′ 1

q0 q1 q2

q3

a b

a
b

a b

a, b

q0 q1 q2

q3

a b
a

b

a b

a, b
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The solution ‘under microscope’: M vs M ′ 2

What did we do, in more general terms?

1. The initial state of M becomes the accept state of M ′.

2. Every accept state of M becomes an initial state of M ′.

3. If δ(q1, c) = q2 is in M then δ(q2, c) = q1 is in M ′. That is,
all transitions are reversed.
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The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.
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The solution ‘under microscope’ 4

Transforming this DFA M
into M ′ produces:
a) two initial states: q2, q3
b) multiple transitions
with the same label (e.g.
δ(q4, 0) = {q1, q2, q3, q4})

q0 q1 q2

q3 q4

0

1 0

1

0, 1
0, 1

0, 1
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Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ,S ,F ) where

1. Q is the finite set of machine states

2. Σ is the finite input alphabet

3. δ is a function from Q × Σ to 2Q , the set of subsets of Q

4. S ⊆ Q is a set of start (initial) states

5. F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ

on input w from an initial state to an accept state.
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NFA: accepted strings and language

Let N = (Q,Σ, δ,S ,F ) be a NFA and w = w1w2 · · ·wn be a string
over Σ.

◮ A trace (path) of a computation of w on N is a sequence of
states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1,w1), . . . , sn ∈ δ(sn−1,wn−1), sn+1 ∈ δ(sn,wn).

◮ The string w is accepted (or recognised) by N if there is a
trace s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and
sn+1 ∈ F ; otherwise, w is rejected by N.

◮ The language accepted by N, denoted by L(N), is the set of
all accepted strings by N.
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NFA: comments

◮ The state transition function δ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have δ(q, c) empty (undefined) for some
q ∈ Q and c ∈ Σ. This means that that we can design
automata such that no state moves are possible for when in
some state q and the next character read is c (that is, the
human designer does not have to worry about all cases).

◮ Every DFA can be viewed as a special case of an NFA.
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NFA: example 1 1

Σ = {a, b}

δ Σ
States a b

q0 {q0} {q0, q1}
q1 {q2} {q2}
q2 ∅ ∅

S = {q0}
F = {q2}

q0

a, b

q1

q2

a, b

b
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NFA: example 1 2

◮ The string aba is accepted: there are two traces,

q0
a→q0

b→q0
a→q0,

q0
a→q0

b→q1
a→q2

◮ The string baa is not accepted: there are two traces,

q0
b→q0

a→q0
a→q0,

q0
b→q1

a→q2
a→?

◮ The language accepted by this NFA is

{uba, ubb | u ∈ {a, b}∗}.
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NFA: example 2

Σ = {1, 2, 3}

δ Σ
States 1 2 3

q0 {q0, q1} {q0, q2} {q3}
q1 {q1, q3} ∅ {q1}
q2 {q2} {q2} {q2}
q3 ∅ ∅ {q2}

S = {q0}
F = {q2}

q0

1, 2

q1

1, 3

q2

q3

1, 2, 3

1

2

1

3

3
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NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of
N. In the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA
equivalent with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.
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NFA=DFA 2

Input: NFA N = (Q,Σ, δ,S ,F )
Output: DFA M = (QM ,Σ, δM , sM ,FM)

◮ The set of states of M is the set of all subsets of Q, QM = 2Q .

◮ The transition from a set of states A on an element x ∈ Σ is
the set of all states produces by N on each pair (q, x) with
q ∈ A, δM(A, x) = {δ(q, x) | q ∈ A}.

◮ The initial state sM of M is the set of all initial states of N,
sM = S .

◮ The accepting states FM of M is the set of states that have
an accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.
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NFAtoDFA: an example 1

q0

q1

q2

2

1

1, 2

1
1

The NFA N
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NFAtoDFA: an example 2

q′0 = {q0} q′1 = {q1, q2} q′2 = {q0, q2}

q′3 = {q2} q′4 = {q0, q1, q2}

2 1

1

2

1

2

1

2 2
1

Equivalent DFA M
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Closure properties of regular languages 1

◮ The union of two regular languages is also regular.
Proof: Given two NFAs NA,NB with no common states such
that A = L(NA),B = L(NB), the NFA N consisting of the
union of all components of NA,NB recognises A ∪ B .

More precisely, if NA = (QA,Σ, δA,SA,FA) and
NB = (QB ,Σ, δB ,SB ,FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB ,Σ, δA ∪ δB ,SA ∪ SB ,FA ∪ FB).

◮ The intersection of two regular languages is also regular.

Proof: A ∩ B = A ∪ B.
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Closure under union: an example 1

q2 q0 q1

a, b

a
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Closure under union: an example 2

q2

q0 q1

a, b

a
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Closure under intersection: an example 1

q0 q1

a

b

b

NFA N1

q3

b

NFA N2
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Closure under intersection: an example 2

q0 q1

a

b

b

NFA accepting the complement of N1?
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Closure under intersection: an example 3

q0 q1 q3

a

b a

b a, b

DFA M1 equivalent to N1
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Closure under intersection: an example 4

q0 q1 q3

a

b a

b a, b

DFA M1 recognising the complement of M1
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Closure under intersection: an example 5

q3 q4

b

a

a, b

DFA M2 equivalent to N2
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Closure under intersection: an example 6

q3 q4

b

a

a, b

DFA M2 recognising the complement of M2
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Closure under intersection: an example 7

q0 q1 q2

q3 q4

a

b a

b a, b

b

a

a, b

NFA N3 recognising L(M2) ∪ L(M2)
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Closure under intersection: an example 8

Last two steps:

◮ Construct a DFA M3 equivalent to the NFA N3

◮ Construct the complement of
L(M3) = L(N1) ∩ L(N2) = {bk | k ≥ 1}

Recap:

◮ L(N1) = {anbm | n ≥ 0,m ≥ 1}
◮ L(N2) = {bm | m ≥ 0}
◮ L(M3) = {bk | k ≥ 1}
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Closure properties of regular languages 2

The closure (or Kleene star) of a language A, denoted by A∗, is the
set of all strings that can be formed by concatenating together any
finite number of strings of A.

Examples:

◮ {a}∗ = {ε, a, aa, aaa, . . . , an, . . .}
◮ {a, ab}∗ = {ε, a, ab, aa, abab, aab, aba, . . .}

◮ The Kleene star of a regular language is also regular.
Proof: Given an NFA NA that recognizes a language A we can
build an NFA NA∗ that recognises the closure of A by making
a start state accept state and, adding transitions, with
corresponding labels, from all accept state(s) to the
neighbours of the initial state(s).

Is the proof correct?
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Closure operation: an example

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

1
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Closure properties of regular languages 3

The concatenation of two languages A,B is defined to be the set
of strings that can be formed by concatenating all strings of A with
all strings of B , i.e.

AB = {xy | x ∈ A, y ∈ B}.

Example: If A = {an | n ≥ 0} and B = {bw | w ∈ {a, b}∗}, then

AB = {anbw | w ∈ {a, b}∗, n ≥ 0} = {ubv | u, v ∈ {a, b}∗}.
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Closure under concatenation: an example 1.1

q0

a

q1 q2

a, b

b
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Closure under concatenation: an example 1.2

q0 q1 q2

a a, b

b?
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Closure under concatenation: an example 1.3

q0 q1 q2

a a, b

b

b
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Closure under concatenation: an example 1.3’

q0 = q1 q2

a a, b

b
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Closure under concatenation: an example 2.1

q0 q1

b
q2 q3

a, b

a
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Closure under concatenation: an example 2.2

q0 q1 q2 q3
b ?

?
a

a, b
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Closure under concatenation: an example 2.3

q0

q1 = q2

q3

a, b
b

?

a
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Closure under concatenation: an example 2.4

q0

q1 = q2

q3

a, b
b a
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Closure under concatenation: an example 2.4’

q0

q1 = q2

q3

a, b
b a

a
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Closure properties of regular languages 3

◮ The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA,SA,FA) and
NB = (QB ,Σ, δB ,SB ,FB), QA ∩ QB = ∅, recognising the
languages A,B , respectively, we can build an NFA
N = (Q,Σ, δ,S ,F ) that recognises the concatenation of A
and B as follows:

◮ Q = QA ∪ QB

◮ S = SA ∪ SB if one state of SA is a final state; otherwise,
S = SA

◮ F = FB

◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,
δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.
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Closure under repeated concatenation

Let A be a language and n ≥ 1. We define:

An = {x1x2 · · · xn | x1, x2, . . . , xn ∈ A}.

◮ If A is a regular language, then for each n ≥ 1, An is also
regular.
Proof: A1 = A,A2 = AA, . . . ,An = AA · · ·A

︸ ︷︷ ︸

n times

, so the result

follows from the closure under concatenation.
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More decidable properties of regular languages 1

◮ It is algorithmically decidable whether two DFAs accept the
same language.
Proof: If A,B are two languages recognised by the DFAs
MA,MB , respectively, then (using the closure properties of
regular languages) we can construct a DFA M such that:

L(M) = A∆B = (A ∩ B) ∪ (B ∩ A),

and then use the equivalence:

A = B ⇔ A∆B = ∅.
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More decidable properties of regular languages: an example 1.1

q0 q1

a

b

a, b

DFA M1

{anbu | n ≥ 0, u ∈ {a, b}∗}

q3

a, b

DFA M2

{a, b}∗
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More decidable properties of regular languages: an example 1.2

q0 q1

a

b

a, b

DFA M1

{an | n ≥ 0}

q3

a, b

DFA M2

∅
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More decidable properties of regular languages: an example 1.3

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩M2

∅

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩M2

{an | n ≥ 0}
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More decidable properties of regular languages: an example 1.4

{(q0, q3), (q0, q3)} {(q0, q3), (q1, q3)}

{(q1, q3), (q0, q3)} {(q1, q3), (q1, q3)}

a a

a a, b

b

b

b

DFA M1∆M2: {an | n ≥ 0} 6= ∅ implies L(M1) 6= L(M2)
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More decidable properties of regular languages 2

◮ It is algorithmically decidable whether a DFA M accepts only
one a string w .
Proof: Take A = L(M) and B = {w}.

◮ It is algorithmically decidable whether the language accepted
by a DFA M includes the language accepted by a DFA M ′.
Proof: We use the equivalence

L(M) ⊆ L(M ′) ⇔ L(M) ∩ L(M ′) = L(M).
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Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a
DFA M produce a new DFA M ′ such that:

◮ L(M) = L(M ′),

◮ M ′ has less states than M.
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Minimisation of DFAs 2

q0

q1

q2

q3

a, b

a, b

a, b
a

b

The state q3 can be removed without modifying the accepted language
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Minimisation of DFAs 3

From a DFA
M = (Q,Σ, δ, s,F )

and any state q ∈ Q we define the new DFA

Mq = (Q,Σ, δ, q,F )

by simply replacing the initial state s with q.

We say two states p and q of M are distinguishable
(k-distinguishable) if there exists a string w ∈ Σ∗ (of length k)
such that exactly one of Mp or Mq accepts w .

If there is no such string w then we say p and q are equivalent.
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Minimisation of DFAs 4

Questions:

◮ Does there exist an algorithm deciding whether two states p
and q are distinguishable?

◮ Does there exist an algorithm deciding whether two states p
and q are k-distinguishable?

◮ Does there exist an algorithm deciding whether two states p
and q are equivalent?
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Minimisation of DFAs: elimination lemma 5

If a DFA M has two equivalent states p and q, then one of these
states can be eliminated without modifying the accepted language,
hence we can construct a smaller DFA M′ such that L(M) =
L(M ′).

Proof: Assume M = (Q,Σ, δ, s,F ) and p 6= s. We create an
equivalent DFA

M ′ = (Q \ {p},Σ, δ′, s,F \ {p}),

where δ′ is δ with all instances of δ(qi , c) = p replaced with
δ′(qi , c) = q, and all instances of δ(p, c) = qi deleted.

The resulting automaton M ′ is deterministic and accepts L(M).
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Minimisation of DFAs: distinguish lemma 6

Two states p and q are k-distinguishable if and only if for some
c ∈ Σ, the states δ(p, c) and δ(q, c) are (k − 1)-distinguishable.

Proof: Consider all strings w = cw ′ of length k . If δ(p, c) and
δ(q, c) are (k − 1)-distinguishable by some string w ′, then p and q
must be k-distinguishable by w .

Likewise, if p and q are k-distinguishable by w , then there exist
two states δ(p, c) and δ(q, c) that are (k − 1)-distinguishable by
the shorter string w ′.
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Minimisation of DFAs: the algorithm 7

The algorithm minimizeDFA finds the equivalent states of a DFA
M = (Q,Σ, δ, s,F ). It defines a series of equivalence relations ≡0,
≡1, . . . on the states of Q:

p ≡0 q if both p and q are in F or both not in F .
p ≡k+1 q if p ≡k q and, for each c ∈ Σ, δ(p, c) ≡k δ(q, c).

It stops generating these equivalence classes when ≡n and ≡n+1

are identical.
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Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent
states, the number of equivalence relations ≡k generated cannot
be larger than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 350: Automata 100 / 132



Minimisation of DFAs: example 1 9

The DFA M is not minimal as:
≡0= {{q0}, {q1, q2}},
q1 ≡1 q2,
≡1= {{q0}, {q1, q2}},
≡0=≡1

because
δ(q1, a) = q2 ≡0 δ(q2, a) = q1,
δ(q1, b) = q0 ≡0 δ(q2, b) = q0

q0 q1

q2

b

a

b

a

a

b
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Minimisation of DFAs: example 1 10

The following DFA is minimal and equivalent to M:

q0 q1

ab

a

b
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Minimisation of DFAs: example 2 11

The DFA M is not minimal as:
≡0= {{q0, q1, q3}, {q2, q4}},

≡1= {{q0}, {q1, q3}, {q2, q4}},
≡2=≡1,
because
δ(q2, 0) = q2 ≡0 δ(q4, 0) = q4,
δ(q2, 1) = q4 ≡0 δ(q4, 1) = q4,
δ(q0, 0) = q1 6≡0 δ(q1, 0) = q2,
δ(q0, 0) = q1 6≡0 δ(q3, 0) = q2,
δ(q1, 0) = q2 ≡0 δ(q3, 0) = q2,
δ(q1, 1) = q2 ≡0 δ(q3, 1) = q4

q0 q1 q2

q3 q4

0

0, 1

0

1

0, 1

1

0

1
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Minimisation of DFAs: example 2 12

The following DFA is minimal and equivalent to M:

q0 q1

q2

0, 1

0, 1

0, 1
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Non-regular languages

Consider the languages:

A = {0m1n | n,m ≥ 0},
B = {0m1m | m ≥ 0},
C = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s},
D = {w ∈ {0, 1}∗ | w has an equal number of occurrences
of 01 and 10 as substrings}.

Which languages are regular? Why?
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Pumping lemma

Theorem 1.70. If A is a regular language, then there is a number p
(the pumping length) such that every string s ∈ A of length at
least p can be written in the form

s = xyz

such that the following three conditions are satisfied:

1. for each i ≥ 0, xy iz ∈ A,

2. |y | > 0,

3. |xy | ≤ p.
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Pumping lemma: proof

Let M = (Q,Σ, δ, q1,F ) be a DFA recognising A and p be the
number of states of M.
Let s = s1s2 . . . sn ∈ A with n ≥ p and consider the sequence of
states

r1 = δ(q1, s1), r2 = δ(r1, s2), . . . , , ri+1 = δ(ri , si+1), . . . ,

rn+1 = δ(rn, sn+1).

As M has p states, p + 1 ≤ n + 1, so there exist 1 ≤ j < l ≤ p + 1
such that rj = rl . Split s as follows:

s = s1s2 . . . sn = (s1 . . . sj−1)(sj . . . sl−1)(sl . . . sn),

and put

x = s1 . . . sj−1, y = sj . . . sl−1, z = sl . . . sn.
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Pumping lemma: end of proof

Because s is in A, rn+1 is in F . For every i ≥ 0, the trace of xy iz
takes x from r1 to rj , continues with y taking rj to rl = rj i times,
and finally taking z from rj to rn+1 ∈ F , so M accepts xy iz .
(What happens when i = 0?)

From j < l we deduce that |y | > 0.

As l ≤ p + 1, |xy | ≤ p.
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First application of the pumping lemma

Example 1.74. The language
C = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Assume by contradiction that C is regular and let p be the
pumping length. Choose the string s = 0p1p in C ; as |s| = 2p, it
can be split as s = xyz and the three conditions in the Pumping
lemma are satisfied.

From the third condition we have |xy | ≤ p, so y contains only 0s,
so xyyz cannot be in C .
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Second application of the pumping lemma

Example 1.77. The language E = {0i1j | i > j} is not regular.

Assume by contradiction that E is regular and let p be the
pumping length. Choose the string s = 0p+11p in E ; as
|s| = 2p + 1, it can be split as s = xyz and the three conditions in
the Pumping lemma are satisfied.

From the third condition we have |xy | ≤ p, so y contains only 0s.
So, xy iz are all in E for i ≥ 0. For i = 0 we get: xz ∈ E , removing
at least one 0 from the original string s = 0p+11p , a contradiction.
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Third application of the pumping lemma

Example 173. The language B = {0m1m | m ≥ 0} is not regular.

Assume by contradiction that B is regular and let p be the
pumping length. Choose the string s = 0p1p in B ; as |s| = 2p, it
can be split as s = xyz and the three conditions in the Pumping
lemma are satisfied.
We consider three cases:

1. y contains only 0s: the string xyyz 6∈ B because the number
of 0s is not equal with the number of 1s.

2. y contains only 1s: the string xyyz 6∈ B because the number
of 0s is not equal with the number of 1s.

3. y contains both 0s and 1s: the string xyyz 6∈ B because some
0 follows a 1.
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Fourth application of the pumping lemma

Problem 1.48. The language D = {w ∈ {0, 1}∗ | w has an equal
number of occurrences of 01 and 10 as substrings} is regular.

Observe that any binary string beginning and ending with the same
digit has an equal number of occurrences of the substrings 01 and
10. Thus, D = {ε} ∪ {0, 1} ∪ 0{0, 1}∗0 ∪ 1{0, 1}∗1.
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Searching with GREP

A grep pattern, also known as a regular expression, describes the
text that we are looking for.

For instance, a pattern can describe words that begin with C and
end in l. A pattern like this would match “Call”, “Cornwall”, and
as well as many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in
your favourite editor) match themselves. For instance, if you are
looking for the letter “s”, Grep stops and reports a match when it
encounters an “s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except
a newline.
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Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets
they designate are:

1. Any c ∈ Σ is a regular expression denoting the set {c}.
2. If E1,E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E ∗

1 which denotes the Kleene closure S∗

1 .
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Examples of regular expressions

Sample regular expressions over Σ = {a, b, c} and their
corresponding sets (languages):

regular expression denoted set (language)

a {a}
ab {ab}
a + bb {a, bb}
(a + b)c {ac , bc}
c∗ {ε, c , cc , ccc , . . .}
(a + b + c)cba {acba, bcba, ccba}
a∗ + b∗ + c∗ {ε, a, b, c , aa, bb, cc , aaa, bbb, ccc , . . .}
(a + b∗)c(c∗) {ac , acc , accc , . . . , c , cc , ccc , . . . ,

bc , bcc , bbccc , . . .}
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Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set
{ε}, or the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L
there is an NFA N such that L(N) = L.

◮ NFAs for L = ∅ and L = {ε} are easy to construct: an NFA
with no final states works in the first case and an NFA with
one initial and final state and no transitions works in the
second case.

◮ Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We
proceed by induction.
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Kleene’s Theorem 2

◮ Verification: If E = {c} for some c ∈ Σ, then we can take
N = (Q,Σ, δ,S ,F ) where Q = {q0, q1},S = {q0},F = {q1}
and there is one transition δ(q0, c) = q1.

◮ Induction:
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and

E2, respectively, then in view of the closure under union the
NFA Nunion accepts the language denoted by E1 + E2:

L(Nunion) = L(N1) ∪ L(N2).
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Kleene’s Theorem 3

◮ Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and

E2, respectively, then in view of the closure under
concatenation the NFA Nconcatenation accepts the language
denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in
view of the closure under Kleene closure the NFA N∗ accepts
the language denoted by E ∗

1 :

L(N∗) = L(N1)
∗.
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Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

◮ construct NFAs N1 and N2 accepting the languages {0} and
{1}, respectively

◮ construct an NFA N3 for the concatenation of L(N1) and
L(N2) obtaining the language {01}

◮ construct an NFA N4 for the Kleene closure of L(N3) so
obtaining {01}∗

◮ construct an NFA N5 for the union of L(N4) and L(N2)
obtaining the language {01}∗ ∪ {1}

◮ we may want to transform N5 into an equivalent DFA (also
minimise it)
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Kleene’s Theorem: other examples 2

◮ Construct a regular expression denoting the language:

A = {0n1m | n,m ≥ 0}.

The language L is regular and

A = {0n1m | n,m ≥ 0}
= {0n | n ≥ 0}{1m | m ≥ 0}

so A is denoted by 0∗1∗.

◮ There is no a regular expression denoting the language:

B = {0n1n | n ≥ 0}

because B is not regular.
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Kleene’s Theorem: other examples 3

There is no a regular expression denoting the language:

C = {uuww | u,w ∈ {a, b}∗}

because C is not regular. Prove this fact!
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The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T , (over an
alphabet Σ) determine whether P appears somewhere in
T .

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.
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Naive string matching 1

Try each possible position the pattern P [1..m] could appear in the
text T [1..n]:

for (i=0; T[i] != ’\0’; i++)

{

for (j=0; T[i+j] != ’\0’ && P[j] != ’\0’

&& T[i+j]==P[j]; j++) ;

if (P[j] == ’\0’) found a match

}

There are two nested loops; the inner one takes O(m) iterations
and the outer one takes O(n) iterations so the total time is the
product, O(mn). This is slow!
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Naive string matching 2

An example: if T [1..n] is an, and P [1..m] is bm, then it takes m
comparisons each time to discover that we don’t have a match, so
mn overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next
position without going through all m steps.

Can we do it better?
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Pattern matching and regular languages 1

Solution: Consider the language

A(P) = {x | x contains the pattern P}.

Assume that A(P) is regular! Let M be a DFA for A(P). When
processing an input M must enter an accepting state when it has
just finished ‘seeing’ the first occurrence of P , and thereafter it
must remain in some accepting state or other.
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Pattern matching and regular languages 2

Is A(P) regular?

Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then

A(P) = {x ∈ {a, b}∗ | x = uPv , for some u, v ∈ {a, b}∗},

or

A(P) = {uabav | u, v ∈ {a, b}∗}.
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Pattern matching and regular languages 3

q0

b

q1

a

q2

q3

a, ba

b

b

a

A DFA for AP(aba)
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Pattern matching and regular languages 4

q0

q1

q3

q2

a, b

a, b

a

a

b

An NFA for A(aba)
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Pattern matching and regular languages 5

For every string P , the language

A(P) = {uPv | u, v ∈ {a, b}∗}
is regular.

Proof: Let M be a DFA recognising exactly {P}. An NFA
recognising A(P) can be obtained from a DFA M by adding loops
labelled with a and b to the initial and final states of M.
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Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem
for A(P) which is the same as testing whether P appears in the
input text T .

How complex is this algorithm?
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Regexes 1

In the practice of computing regular expressions (abbreviated as
regex or regexp, with plural forms regexes) differ from the Kleene
definition discussed before.

Regexes are written in a formal language that can be interpreted
by a regular expression processor, a program that either serves as a
parser generator or examines text and identifies parts that match
the provided specification.
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Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match
in the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(.∗)\1(.∗)\2,
where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.

More examples and testers at http://regexlib.com.
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