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Randomness

Random numbers are used extensively in various applications in
science, economy and security, ranging from cryptography to
numerical simulations.

‘Good’ randomness is the critical resource for all these
applications, but high quality randomness is neither easy to
produce nor to certify.
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Randomness appears and is necessary almost everywhere

Random numbers had been around for more than 4,000 years, but
never have they been in such demand as in our time. The oldest
known dice were discovered in a 24th century B.C. tomb in the
Middle East.

In 1890 statistician Francis Galton wrote that

As an instrument for selecting at random, I have found
nothing superior to dice.

However, the modern world demanded a lot more randomness than
dice could offer.

John von Neumann developed a pseudo-random generator (PRNG)
around 1946: start with an initial random seed value, square it,
and slice out the middle digits. A sequence obtained by repeatedly
using this method exhibits some statistical properties of
randomness.
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Randomness appears and is necessary almost everywhere

RAND Corporation machine generated numbers using a random
pulse generator: its book A Million Random Digits with 100,000
Normal Deviates was published in 1955.

In 1951, Ferranti Mark 1 was the first computer with a built-in
random number instruction—designed by A. Turing—that could
generate 20 random bits at a time using electrical noise.

All modern computers have algorithms that generate pseudo-
random numbers.

From Randomness to Quantum Computing 6 / 186



What is random?

I am convinced that the vast majority of my readers, and
in fact the vast majority of scientists and even
nonscientists, are convinced that they know what
‘random’ is. A toss of a coin is random; so is a mutation,
and so is the emission of an alpha particle.. . . Simple,
isn’t it? said Kac in [34].

Well, no! Kac knew very well that randomness could be called
many things, but not simple, and in fact his essay shows that
randomness is complicated, and it can be described in more than
one way.

Books on probability theory do not even attempt to define it. It’s
like the concept of a point in geometry books.
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Pseudo-random numbers

What’s wrong with these random numbers?

The pitfalls of low quality randomness have been discovered in the
Internet era. An example is the discovery in 2012 of a weakness in
the encryption system used worldwide for online shopping, banking
and email; the flaw was traced to the numbers a PRNG has
produced [37].

Do “better” random numbers exist?
Yes.

Can other methods produce “better” random numbers?
Yes.

Does true or perfect random number exist?
No.
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Symptoms of random

Randomness is best understood through various “symptoms”.
Here are three of the largely accepted ones:

(i) Unpredictability: The impossibility of any agent, acting via
uniform, effective means, to predict correctly and reproducibly
the outcome of an experiment using finite information
extracted from the environment.

(ii) Incompressibility: The impossibility to compress a random
sequence.

(iii) Typicality: Random sequences pass every statistical test of
randomness.
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The paradox of randomness

The French mathematician Émile Borel, a pioneer of probability
theory, argued that there is no way to formalise in an acceptable
way the concept of randomness. His argument is based only one
symptom of randomness, typicality, and is known as the
randomness paradox.

A random bit-string should be “typical”: it should not stand out
from the crowd of other bit-strings.

Here is Borel’s argument. Assume that there is a precise way to
distinguish between “random bit-strings” and bit-strings which are
“non-random”. It does not matter how this criterion was found or
operates.
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The paradox of randomness

Assume we have a precise criterion which can be applied to any
bit-string and once a bit-string is given, we can say whether the
bit-string is random or non-random.

Can the criterion be consistent? The answer is negative.

Indeed, choose the first bit-string which criterion asserts it is
random. This particular bit-string is

the first bit-string satisfying the property of being
random,

a property making it atypical, so non-random!
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Random generators

There are many random number generators:

1. pseudo-random generators, software produced
I PCG, Random123, xoroshilro 128+

2. hardware generators, devices that generate random numbers
from physical processes

I macroscopic, e.g. coin, dice, roulette wheels, lottery machines,
I microscopic, e.g. thermal noise, photoelectric effect, quantum

effects.

In particular, there are many quantum random generators, from lab
experiments to openly accessible on the internet and commercial
(Quantis).
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Why do we need another quantum random generator?

Because no current quantum random generator (QRNG) is
provably better than the other generators, in particular,
pseudo-random generators.

Is this so? Many advantages promised by QRNGs rely on the belief
that the outcomes of quantum measurements are

intrinsically/irreducibly unpredictable.

This belief underlies:

I the use of QRNGs to produce “quantum random” sequences
that are “truly unpredictable”,

I the generation of cryptographic keys unpredictable to any
adversary.

Is this belief reasonable?
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Notation

I Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . ..

I B = {0, 1} and B∗ is the set of all binary strings.

I Strings can be concatenated: from x and y get xy .
I The length of the string x is denoted by |x |

I |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
I |xy | = |x |+ |y |.

I Let bin(n) be the binary representation of the number n + 1
without the leading 1. For example: 1 7→ ε, 2 7→ . . . This is
a bijection between positive integers and binary strings.

I The quasi-lexicographical order: x < y iff bin−1(x)
< bin−1(y).
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Notation

I A partial function ϕ from B∗ to B∗ ∪ {∞} is partially
computable if there is a Turing machine working with the
alphabet B that computes it. By dom(ϕ) we denote the
domain of ϕ.

I A partially computable function from B∗ to B∗ is called
computable.

I A subset S ⊆ B∗ is called computable if its characteristic
function is computable.

I A subset S ⊆ B∗ is called computably enumerable (c.e.) if
there is a computable function f from B∗ to B∗ such that
F (B∗) = S , i.e. f enumerates S .
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More notation

I B∞ is the set of all binary infinite sequences
x = x1x2 · · · xn · · · .

I x(n) = x1x2 · · · xn ∈ B∗ is the prefix of length n > 0 of the
sequence x.

I For w ∈ B∗ and W ⊂ B∗, put
wB∞ = {x ∈ B∞ | w = x(|w |)} and WB∞ =

⋃
w∈W wB∞.

I The family (wB∞,w ∈ B∗) generates a σ-algebra on B∞.

I The Lebesgue measure is now defined by µ(wB∞) = 2−|w |.

I A property P of sequences x ∈ B∞ is true almost everywhere
in the sense of µ in case the set of sequences not having the
property P is a null set, i.e. µ({x | P(x) is false}) = 0.

From Randomness to Quantum Computing 16 / 186



There are no true/perfect random numbers

Borel’s Law of Large Numbers—the proportion of heads in a
“large” number of a fair coin flips “should be” roughly 1/2—can be
expressed by a property true almost everywhere in the sense of µ:

µ

({
x ∈ B∞ | lim

n→∞

x1 + x2 + . . .+ xn
n

6= 1

2

})
= 0.

A sequence satisfying a property false almost everywhere with
respect to µ is very “particular”, “not typical”.

Many results in probability theory are true almost everywhere, so it
is tempting to say that

a sequence x is “random” if it satisfies every property
true almost everywhere with respect to µ.
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There are no true/perfect random numbers

For every sequence x we can define the property Px as follows:

y satisfies Px if for every n ≥ 1 there exists a natural
m ≥ n such that xm 6= ym.

VDWfinite

Every Px is an asymptotic property which is true almost everywhere
with respect to µ and x does not have property Px. Accordingly,

no sequence can verify all properties true almost
everywhere with respect to µ.

The above definition is vacuous, hence there is no true/perfect
lawless sequence.
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There are no true/perfect random numbers

A “universal” non-trivial property shared by all sequences was
discovered by van der Waerden (see for example [30]; for the finite
version see VDWfinite ):

In every binary sequence at least one of the two symbols
must occur in arithmetical progressions of every length.

There is no constructive proof for van der Waerden result: no
algorithm can decide which alternative is true: 0 occurs in
arithmetical progressions of every length or 1 occurs in arithmetical
progressions of every length.
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How to define randomness?

There is a way to overcome the above difficulty in defining
randomness:

Consider only a sequence of asymptotic properties true
almost everywhere.

But, then which sequence of properties should be chosen?

Clearly, the “larger” the chosen sequence of properties is, the
“more random” will be the sequences satisfying that sequence of
properties.

The notion of randomness has to have at least the properties of
unpredictability, incompressibility and typicality.

Martin-Löf [39] proposal was to consider only the constructive
properties constructively true almost everywhere with respect to µ.
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Martin-Löf randomness

Martin-Löf [39] defined random sequences by means of statistical
tests.

A Martin-Löf test is a c.e. set A ⊂ N× B∗ such that
Ai = {w ∈ B∗ | (i ,w) ∈ A} and µ(AiB

∞) ≤ 2−i , for all natural i .

The set
⋂

i≥0(AiB
∞) is the (constructive null) set of all sequences

which do not pass the randomness test A. This definition captures
“typicality”.

A a sequence x is Martin-Löf random if for every Martin-Löf test A,

x /∈
⋂
i≥0

(AiB
∞).

Theorem [Martin-Löf Theorem]

Constructively, with probability µ one, every sequence is
Martin-Löf-random.
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Prefix-freeness

A set S of strings is prefix-free if no string in S is a proper prefix of
a string in S .

I The sets {x ∈ B∗ | |x | = n}, {1n0 | n ≥ 1} are prefix-free.

I The set {x1x1x2x2 . . . xnxn01 | x1x2 . . . xn ∈ L} is prefix-free for
every L ⊆ B∗.

I The set {x10x20 . . . xn1 | x1x2 . . . xn ∈ L} is prefix-free for
every L ⊆ B∗.

I B∗ is not prefix-free.
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Prefix-free Turing machines

A prefix-free (or self-delimiting) TM is a TM whose domain is
prefix-free.

I The identity ψ(x) = x , x ∈ B∗ is not computable by a
prefix-free TM; no total function is computable by a
prefix-free TM.

I The restriction of the identity ψ(x) = x to the set
{1n0 | n ≥ 1} is computable by a prefix-free TM.

I The function θ(1|x |0x) = x , for all x ∈ B∗ is computable by a
prefix-free TM.

I The set of prefix-free TMs is computably enumerable.
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Universality Theorem for prefix-free TMs

UPFTheorem
We can effectively construct a prefix-free TM U such that for every
prefix-free TM C there effectively exists a constant c = cU,C such
that for each input string x there exists an input z with
|z | ≤ |x |+ c such that U(z) = C (x).

Proof
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Program-size complexity

Let M be a prefix-free Turing machine. The program-size
complexity HM(x) is the size in bits of the smallest program for M
to compute x :

HM(x) = inf{|p| | p ∈ B∗,M(p) = x}.

When M = U is universal, then HU is simply denoted by H.

The program-size of the sequence x is given by the sequence

(H(x(n))n>0.
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Examples

I low complexity strings:

H(0n) ≈ log n + c ,H(1n) ≈ log n + c

I intermediate complexity strings (borderline algorithmically
random strings): if x∗ = min{p | U(p) = x}, then

H(x) = |x∗|,H(x∗) ≥ |x∗| − c

I high complexity strings (algorithmically random strings):

max{H(x) | |x | = n} = n + H(bin(n)) + c ≈ n + 2 log n + c

Proof
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Examples

The binary representation of the number 0.40626 is

0.011010000 · · ·
What is the complexity of the sequence

x = 011010000 · · ·?
There exists c > 0 such that for each n,

H(x(n)) ≤ 2 log n + c .
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Examples

Consider the number π written in binary and let

0.π1π2 · · ·πn · · ·
be the infinite binary sequence of the fractional part of π. There is
a constant c ′ > 0 such that for each n,

H(Π(n)) ≤ 2 log n + c ′,

where

Π = π1π2 · · ·πn · · ·
What is the difference between 0.40626 and π?
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The halting problem and Omega

The halting problem requires to construct an algorithm which
decides whether an arbitrary Turing machine eventually stops or
not.

Theorem [Undecidability of the halting problem]

The halting problem is undecidable.

Proof. Assume by absurdity the existence of a halting program
deciding the halting problem.
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The halting problem and Omega

Construct the Turing machine given by the program Trouble(N):

1. read a natural N;

2. generate all programs up to N bits in size;

3. use the halting program to check for each

generated program whether it halts;

4. simulate the running of the above generated

programs, and

5. compute the biggest value output by these

programs, say o, and output 2o + 1.
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The halting problem and Omega

The program Trouble(N) halts for every natural N.

How long is Trouble(N)? It is about log2 N bits.

Reason: to know N we need log2 N bits (in binary); the rest is a
constant, so Trouble(N) is logN + O(1) bits.

There is a big difference between the size—in bits—of Trouble(N)
and the size of the output produced by Trouble(N).

Indeed, for large enough N, Trouble(N) belongs to the set of
programs having less than N bits (because logN + O(1) < N).
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The halting problem and Omega

Accordingly, Trouble(N) generates itself at some stage of the
computation.

We have got a contradiction since, on one hand, Trouble(N)
outputs a natural number no larger than o, but, on the other hand,
it outputs 2o + 1!
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Omega numbers

As the halting problem is undecidable, we can approach the
problem probabilistically. Chaitin’s Omega is the “halting
probability” of a prefix-free universal TM U, that is:

ΩU =
∑

p∈dom(U)

2−|p|.

The Kraft inequality states that for a prefix-free set S ,∑
p∈S

2−|p| ≤ 1,

which implies that ΩU ≤ 1; in fact, ΩU ∈ (0, 1).
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Omega and the halting problem

Theorem [Omega solves the halting problem]

With the first n bits of Omega we solve the halting problem for
every program of length less than or equal to n.

Proof

From Randomness to Quantum Computing 34 / 186



Omega: Incomputability

Corollary [Incomputability of Omega]

The sequence ω1ω2 · · ·ωn · · · is not computable.

Some of these bits have actually been determined. For a natural
choice of the Turing machine U, the first 40 bits of Ω = ΩU are

0001000000010000101001110111000011111010.

If we knew the first 5,000 bits, we would know if the Riemann
hypothesis is correct. For the Four colour theorem we need even
less bits. OmegaMedia
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Omega: transcendence

Corollary [Transcendence of Omega]

The number Ω is transcendental and Ω ∈ (0, 1).
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Omega bi-immunity

Theorem [Bi-immunity of Omega]

The sequence ω1ω2 · · ·ωn · · · is bi-immune, that is, no algorithm
can compute exactly more than finitely many bits of ωi .

See more in [15, 20].
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Omega: complexity

Theorem [Omega has almost maximum complexity]

If
ΩU = 0.ω1ω2 · · ·ωn · · ·

then there exits a constant c > 0 such that for all n ≥ 1,

H(ω1ω2 · · ·ωn) ≥ n − c .

Reals whose binary expansions are sequences with maximum
complexity are called algorithmically random, shortly random.

Proof
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Omega: weak computability

Theorem [Omega is c.e.]

The number Omega is c.e., that is, the limit of an increasing
computable sequence of rationals in (0, 1).

Proof

So, Omega is a c.e. algorithmically random real. In fact, the
converse is also true:

Theorem [Omega = c.e. and random]

The set of Omega numbers coincides with the set of c.e. random
numbers.

See more in [15, 26].
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Martin-Löf randomness revisited

Theorem
A sequence x is Martin-Löf random iff there exits a constant c > 0
such that for all n ≥ 1,

H(x(n)) ≥ n − c .

See more in [15, 26].

Corollary

Every pseudo-random sequence is not Martin-Löf random.
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Is Martin-Löf randomness a good model of randomness?

Martin-Löf randomness

I is provably better than pseudo-randomness,

I satisfies the typicality requirement,

I satisfies the incompressibility requirement,

I it is believed to satisfy the requirement of unpredictability, but
no convincing model was yet developed to test it,

I no known device for producing it has been yet designed and
certified.

See more in [15, 26].
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Digression: Spurious correlations

According to Oxford Dictionary, spurious means

Not being what it purports to be; false or fake. False,
although seeming to be genuine. Based on false ideas or
ways of thinking.

The above (dictionary) definition is semantic, hence it depends on
an assumed theory: one correlation can be spurious according to
one theory, but meaningful with respect to another one.

Can we give a definition of “spurious” which is independent of any
theory (using formal deductions, mathematical calculations,
computer algorithms, etc.)?
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Digression: Spurious correlations

We define a spurious correlation in a very restrictive way:

a correlation is spurious if it appears in a “randomly”
generated database,

so it satisfies the above broad informal description.

In fact, a spurious correlation in the above sense is “meaningless”
according to any reasonable definition because, by construction, its
values are chosen at “random”, as all data in the database.

As a consequence, such a correlation cannot provide reliable
information on future developments of any type of behaviour.

Of course, there are other reasons making a correlation spurious,
even within a “non-random” database.
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Digression: Spurious correlations

Van der Waerden theorem
[Equidistant correlations everywhere] For any positive integers k
there is a positive integer γ such that every bit string of length
more than γ contains an arithmetic progression with k occurrences
of the same digit or colour, i.e. a monochromatic arithmetic
progression of length k.
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Digression: Spurious correlations

How “large” is the set of spurious correlations, in the above sense?

Fix a real number α in the open interval (0, 1). A string x of
length n can be compressed by αn bits if co

H(x) ≤ n − αn.

The number of strings x of length n which are compressible by αn
bits is smaller than

2(1−α)n − 1,

hence the probability that a string x of length n has
H(x) < n − αn is smaller than

2−αn → 0 (n→∞).

See more in [21].
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From bits to qubits
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Bits and qubits

Classical computers use bits which are physically represented by
two-state classical systems (two positions of an electrical switch,
two distinct voltage or current levels allowed by a circuit).

Quantum computers operate with qubits (quantum bits) which are
described as quantum states (i.e. abstract, in Hilbert space) that
are physically implemented by quantum systems (e.g. an atom)
which are in one of two definite states.

For example, the state of a spin- 1
2 particle, when measured, is

always found to be in one of two possible states, represented –
using Dirac bra-ket notation – as

|+ 1

2
〉 (spin-up) or | − 1

2
〉 (spin-down).

Formally, a qubit is denoted as

|0〉 or |1〉.
From Randomness to Quantum Computing 47 / 186



Superposition

Unlike the intermediate states of a classical bit (e.g. any voltages
between the “standard” representations of 0 and 1) which can be
distinguished from 0 and 1, but do not exist from an informational
point of view, quantum intermediate states cannot be reliably
distinguished, even in principle, from the basis states, but do have
an informational “existence”.

A superposition state |ϕ〉 (pronounced “ket phi”) is a qubit state
vector represented by a linear combination of basis states
conventionally denoted by 0〉 and |1〉, that is

|ϕ〉 = α|0〉+ β|1〉,

where α, β are complex numbers with α2 + β2 = 1.
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The math of qubits

A qubit is a unit vector in the space C2, so for each qubit |x〉,
there are two (complex) numbers a, b ∈ C such that

|x〉 = a|0〉+ b|1〉 =

(
a
b

)
, (1)

where

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
,

and |a|2 + |b|2 = 1.
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Measurement

We can perform a measurement that projects the qubit onto the
basis {|0〉, |1〉}. Then we will obtain the outcome |1〉 with
probability |b|2, and the outcome |0〉 with probability |a|2.

With the exception of limit cases a = 0 and b = 0, the
measurement irrevocably disturbs the state:

If the value of the qubit is initially unknown, then there is
no way to determine a and b with any conceivable
measurement.

However, after performing the measurement, the qubit is in a
known state (either |0〉 or |1〉); this state is typically different from
the previous state.
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Bits vs. qubits

The above facts point out an important difference between qubits
and classical bits. There is no problem in measuring a classical bit
without disturbing it, so we can decode all of the information that
it encodes. If we have a classical bit with a fixed, but unknown
value (0 or 1), then we can only say that there is a probability that
the bit has the value 0, and a probability that the bit has the value
1, and these two probabilities add up to 1. When we measure the
bit, we acquire additional information; after measurement, we will
know completely the value of the bit.
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More about superposition

The ability of quantum systems to exist in a “blend” of all their
allowed states simultaneously is known as the Principle of
Superposition.

Even though a qubit can be put in a superposition (1), it contains
no more information than a classical bit, in spite of its having
infinitely many states. The reason is that information can be
extracted only by measurement. But, as we have argued, for any
measurement of a qubit with respect to a given orthonormal basis,
there are only two possible results, corresponding to the two
vectors of the basis.
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Non cloning

It is not possible to capture more information measuring in two
different bases because the measurement changes the state. Even
worse, quantum states cannot be cloned, hence it’s impossible to
measure a qubit in two different ways (even, indirectly, by using a
copy trick, that is copying and measuring the copy).
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Quantum randomness
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Questions

With the understanding acquired on randomness we will look at
the best candidate of randomness, quantum randomness.

I How can we produce quantum randomness?

I What is the physical “reason” of quantum randomness?

I What is the quality of quantum randomness?

I Is quantum randomness better than pseudo-randomness?
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Quantum randomness is not true randomness

Nature, doi:10.1038/news.2010.181, 14 April 2010.
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Quantum randomness is not true randomness
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Indeterminism and quantum randomness

I Quantum randomness is
I postulated and
I generally reduced to the indeterminism of quantum

measurements: because the outcome is indeterministic there is
no way to predict it, hence it is random.

I However, indeterminism does not imply randomness and
randomness does not imply indeterminism:

I pseudo-randomness,
I coin-tossing (chaoticity),
I Omega number,
I Schrödinger equation.
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Value indefiniteness

Value indefiniteness is a central notion to this discussion.
Informally, for a given quantum system in a particular state, we say
that an observable is value definite if the measurement of that
observable is predetermined to take a (potentially hidden) value.

In defining it we are guided by Einstein, Podolsky and Rosen
famous analysis in [27] which can be encapsulated in the following

EPR principle: If, without in any way disturbing a
system, we can predict with certainty the value of a
physical quantity, then there exists a definite value prior
to observation corresponding to this physical quantity.

See more in [7, 8, 9].
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Value indefiniteness

EPR principle justifies also

Eigenstate principle: If a quantum system is prepared in a
state |ψ〉, then the projection observable Pψ = |ψ〉〈ψ| is
value definite.
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Main assumptions

I Admissibility: Definite values must not contradict the
statistical quantum predictions for compatible observables on
a single quantum.

I Noncontextuality of definite values: The outcome obtained by
measuring a value definite observable (a preexisting physical
property) is noncontextual, i.e. it does not depend on other
compatible observables which may be measured alongside the
value definite observable.

I Eigenstate principle: If a quantum system is prepared in the
state |ψ〉, then the projection observable Pψ = |ψ〉 〈ψ| is value
definite.
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Locating value indefiniteness

Assume the above three hypotheses.

Theorem
Assume a quantum system prepared in the state |ψ〉 in dimension
n ≥ 3 Hilbert space Cn, and let |φ〉 be any state neither orthogonal
nor parallel to |ψ〉, i.e. 0 < |〈ψ|φ〉| < 1. Then the projection
observable Pψ = |φ〉 〈φ| is value indefinite.

Theorem
The set of value indefinite observables has constructive measure 1,
that is, almost all observables are value indefinite.
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Value indefiniteness and unpredictability

EPR principle: If, without in any way disturbing a
system, we can predict with certainty the value of a
physical quantity, then there exists a definite value prior
to observation corresponding to this physical quantity.

Conversely, if no unique element of physical reality corresponding
to a particular physical quantity exists, this is reflected by the
physical quantity being value indefinite.

If a physical property is value indefinite we cannot predict with
certainty the outcome of any experiment measuring this property.
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Philosophical digression: Popper’s unpredictability

If we assert of an observable event that it is
unpredictable we do not mean, of course, that it is
logically or physically impossible for anybody to give a
correct description of the event in question before it has
occurred; for it is clearly not impossible that somebody
may hit upon such a description accidentally. What is
asserted is that certain rational methods of prediction
break down in certain cases—the methods of prediction
which are practised in physical science.
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Unpredictability revisited

We present a non-probabilistic model of prediction based on the
ability of a computable operating agent to correctly predict using
finite information extracted from the system of the specified
experiment, [10].

Predictions should remain correct in any arbitrarily long
(but finite) set of repetitions of the experiment.
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A model of prediction

Consider a physical experiment E producing a single bit.
We consider an experiment E producing a single bit x ∈ {0, 1}.

An example of such an experiment is the measurement of a
photon’s polarisation after it has passed through a 50-50 beam
splitter.

With a particular trial of E we associate the parameter λ (the
state of the universe) which fully describes the trial. While λ is not
in its entirety an obtainable quantity, we can view it as a resource
that one can extract finite information from in order to predict the
outcome of the experiment E .
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A model of prediction (cont.)

An extractor is a (deterministic) function λ 7→ 〈λ〉 mapping reals
to rationals.

For example, 〈λ〉 may be an encoding of the result of the previous
trial of E , or the time of day the experiment is performed.

A predictor for E is an algorithm (computable function) PE which
halts on every input and outputs 0 or 1 or prediction withheld.

PE can utilise as input the information 〈λ〉, but, as required by
EPR, must be passive, i.e. must not disturb or interact with E in
any way.

From Randomness to Quantum Computing 67 / 186



A model of prediction (cont.)

A predictor PE provides a correct prediction using the extractor 〈 〉
for a trial of E with parameter λ if, when taking as input 〈λ〉, it
outputs 0 or 1 and this output is equal to the result of the
experiment.

The predictor PE is k , 〈 〉-correct if there exists an n ≥ k such that
when E is repeated n times with associated parameters λ1, . . . , λn
producing the outputs x1, x2, . . . , xn, PE outputs the sequence
PE (〈λ1〉),PE (〈λ2〉), . . . ,PE (〈λn〉) with the following two
properties:

(i) no prediction in the sequence is incorrect, and

(ii) in the sequence there are k correct predictions.
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A model of prediction (cont.)

The outcome x of a single trial of the experiment E performed
with parameter λ is predictable (with certainty) if there exist an
extractor 〈 〉 and a predictor PE which is

1. k, 〈 〉-correct for all k , and

2. PE (〈λ〉) = x .
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Unpredictability of individual measurements

Theorem 3
If E is an experiment measuring a quantum value indefinite
observable, then every predictor PE using any extractor 〈 〉 is not
k , 〈 〉-correct, for all k .

Theorem 4
In an infinite repetition of E as considered above, no single bit xi
of the generating infinite sequence x1x2 . . . can be predicted.
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Incomputability of quantum randomness

epr principle: If a repetition of measurements of an
observable generates a computable sequence, then this
implies these observables were value definite.

Theorem [7]

Assume the epr and Eigenstate principles. An infinite repetition of
the experiment E measuring a quantum value indefinite observable
generates an incomputable (even bi-immune) infinite sequence
x1x2 . . . .
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Generalised beam QRNG producing maximum unpredictable, incomputable

sequences

Figure: Generalised beam QRNG
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Realisation of the generalised beam QRNG with qutrits

Figure: Realisation of a QRNG with superconducting circuits on a chip
(gray). A qutrit (yellow) is coupled to a read out (red) and control
circuitries. Near quantum limited Josephson parametric amplifier (JPA)
can be used to discriminate all possible outcomes of the protocol with
certainty including false runs. Fast programmable gate array (FPGA) can
be used to provide the correction pulses to reinitialise the qutrit in its
ground state right after the end of the protocol run. [36]
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The quantum gate model
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Quantum computing

Quantum computing was first introduced by Yuri I. Manin in 1980
and Richard Feynman in 1982 and intensively researched
afterwards.

Quantum algorithms are probabilistic and give the correct answer
with high probability; the probability of failure can be decreased by
repeating the algorithm.
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Quantum computing

I In 1985 Deutsch constructed the first model of quantum
computer by quantisation of the universal Turing machine.

I In 1994 Shor designed a quantum algorithm for factoring
integers in polynomial (quantum) time in the size of the
input; the problem whether there is a classical polynomial
algorithm for factoring is still open.

I Two years later Grover discovered a quantum algorithm for
searching an unsorted N-entry database in O(

√
N) time and

O(logN) space: this algorithm is optimal within the quantum
computing model for black box oracles.
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Quantum computing

The most popular model of quantum computing is probably the
circuit (gate) model in which quantum algorithms are built from a
small set of quantum gates.

Adiabatic quantum computing, proposed in 2000, relies on the
adiabatic theorem to do calculations.
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Quantum computing

A quantum computer is a computation system that
makes direct use of quantum-mechanical phenomena,
such as superposition and entanglement, to perform
operations on data.

Classical computers encode data into binary digits (bits) using
classical physical systems – e.g. the position of gear teeth in
Babbage’s differential engine, a memory element or wire carrying a
binary signal, in contemporary machines – which are always in one
of two definite states (0 or 1).
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Quantum computing

Typically, the system is described by one or more continuous
parameters, for example, voltage. Such a parameter is used to
separate the space into two well-defined regions chosen to
represent 0 and 1. Manufacturing imperfections, local
perturbations may affect, so signals are periodically restored toward
these regions to prevent them from drifting away.

References: [22, 31, 42].
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Quantum computing

The quantum evolution of a qubit is described by a “unitary
operator”, that is an operator induced by a unitary matrix.1

Any unitary operator U : C2 → C2 can be viewed as a single qubit
gate. Considering the basis {|0〉, |1〉}, the transformation is fully
specified by its effect on the basis vectors. In order to obtain the
associated matrix of an operator U, we put the coordinates of U|0〉
in the first column and the coordinates of U|1〉 in the second one.

1A quadratic matrix A of order n over C is unitary if AA† = I (the identity
n × n matrix); A† is the transposed conjugate matrix of A.
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Quantum gate model

So, the general form of a transformation that acts on a single qubit
is a 2× 2 matrix

A =

(
a b
c d

)
,

which transforms the qubit state α|0〉+ β|1〉 into the state
(αa + βb)|0〉+ (cα + dβ)|1〉:(

a b
c d

)(
α
β

)
=

(
αa + βb
cα + dβ

)
.
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Quantum gate model

We may think of logic gates as transformations. For example, the
NOT transformation which interchanges the vectors |0〉 and |1〉, is
the matrix

NOT =

(
0 1
1 0

)
.

It flips that state of its input,

NOT |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉,

and

NOT |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉.
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Quantum gate model

The square-root of NOT (introduced by Deutsch) is the
transformation

√
NOT :

|0〉 → 1
2 (1 + i)|0〉+ 1

2 (1− i)|1〉,

|1〉 → 1
2 (1− i)|0〉+ 1

2 (1 + i)|1〉,

√
NOT =

1

2

(
1 + i 1− i
1− i 1 + i

)
.

√
NOT ·

√
NOT = NOT , (2)

and √
NOT ·

√
NOT

†

=
1

4

(
1 + i 1− i
1− i 1 + i

)(
1− i 1 + i
1 + i 1− i

)
= I .
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Quantum gate model

The square-root of NOT is a typical “quantum” gate in the sense
that it is impossible to have a single-input/single-output classical
binary logic gate that satisfies (2). Indeed, any classical binary

√
NOT classical

gate is going to output a 0 or a 1 for each possible input 0/1.
Assume that we have such a classical square-root of NOT gate
acting as a pair of transformations

√
NOT classical(0) = 1,

√
NOT classical(1) = 0.

Then, two consecutive applications of it will not flip the input!
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Quantum gate model

Finally we consider the Hadamard transformation H is defined by

H :

|0〉 → 1√
2

(|0〉+ |1〉)

|1〉 → 1√
2

(|0〉 − |1〉)
,

H =
1√
2

(
1 1
1 −1

)
.

This transformation has a number of important applications.
When applied to |0〉, H creates a superposition state

1√
2

(|0〉+ |1〉).
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Deutsch’s problem

The simplest way to illustrate the power of quantum computing is
to solve the so-called Deutsch’s problem. Consider a Boolean
function f : {0, 1} → {0, 1} and suppose that we have a black box
to compute it. We would like to know whether f is constant (that
is, f (0) = f (1)) or balanced (f (0) 6= f (1)). To make this test
classically, we need two computations of f , f (0) and f (1) and one
comparison. Is it possible to do it better? The answer is
affirmative, and here is a quantum solution.

Suppose that we have a quantum black box to compute f .
Consider the transformation Uf which applies to two qubits, |x〉
and |y〉 and produces |x〉|y ⊕ f (x)〉.2 This transformation flips the
second qubit if f acting on the first qubit is 1, and does nothing if
f acting on the first qubit is 0.

2By ⊕ we denote, as usual, the sum modulo 2.
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Deutsch’s problem

The black box is “quantum”, so we can chose the input state to be
a superposition of |0〉 and |1〉. Assume first that the second qubit
is initially prepared in the state 1√

2
(|0〉 − |1〉). Then,

Uf

(
|x〉 1√

2
(|0〉 − |1〉)

)
= |x〉 1√

2
(|0⊕ f (x)〉 − |1⊕ f (x)〉)

= (−1)f (x)|x〉 1√
2

(|0〉 − |1〉).
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Deutsch’s problem

Next take the first qubit to be 1√
2

(|0〉+ |1〉). The black box

produces

Uf

(
1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉)
)

=
1√
2

((−1)f (0)|0〉+ (−1)f (1)|1〉) 1√
2

(|0〉 − |1〉)

=
1

2
(−1)f (0)(|0〉+ (−1)f (0)⊕f (1)|1〉)(|0〉 − |1〉).
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Deutsch’s problem

Next perform a measurement that projects the first qubit onto the
basis

1√
2

(|0〉+ |1〉), 1√
2

(|0〉 − |1〉).

Neglecting the sign and normalisation, we obtain

I (|0〉 − |1〉) if the function f is balanced and

I (|0〉+ |1〉) in the opposite case.
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Deutsch’s problem

The quantum algorithm solving Deutsch’s problem is:

1. Start with a closed physical system prepared

in the quantum state |01〉.
2. Evolve the system according to H.

3. Evolve the system according to Uf .

4. Evolve the system according to H.

5. Measure the system. If the result is the second

possible output, the f is constant; if the result is

the fourth possible output, then f is balanced.
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Deutsch’s problem

To prove the correctness of the quantum algorithm, we shall show
that the first and third possible outputs can be obtained with
probability zero, while one (and only one) of the second and the
fourth outcomes will be obtained with probability one, and the
result solves correctly Deutsch’s problem.

To this aim we follow step-by-step the quantum evolution
described by the above algorithm.

In Step 1 we start with a closed physical system prepared in the
quantum state |01〉:

V =


0
1
0
0

 .
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Deutsch’s problem

After Step 2 the system has evolved in the state (which is
independent of f ):

HV =


1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

×


0
1
0
0

 =


1
2

−1
2
1
2

−1
2

 .

From Randomness to Quantum Computing 92 / 186



Deutsch’s problem

After Step 3 the quantum system is in the state (which depends
upon f ):

UfHV =


1− f (0) f (0) 0 0
f (0) 1− f (0) 0 0

0 0 1− f (1) f (1)
0 0 f (1) 1− f (1)

×


1
2

−1
2
1
2

−1
2



=


1
2 − f (0)

−1
2 + f (0)
1
2 − f (1)

−1
2 + f (1)

 .
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Deutsch’s problem

After Step 4, the quantum state of the system has become:

HUfHV =


1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2

×


1
2 − f (0)

−1
2 + f (0)
1
2 − f (1)

−1
2 + f (1)



=


0

1− f (0)− f (1)
0

f (1)− f (0)

 .
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Deutsch’s problem

Finally, in Step 5 we measure the current state of the system, that
is, the state HUfHV , and we get:

1. output 1 with probability p1 = 0,

2. output 2 with probability p2 = (1− fQ(|0〉)− fQ(|1〉))2,

3. output 3 with probability p3 = 0,

4. output 4 with probability p4 = (fQ(|1〉)− fQ(|0〉))2.
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Deutsch’s problem

To conclude:

I if fQ(|0〉) = fQ(|1〉), then f (0) + f (1) = 0 (mod 2),
f (1)− f (0) = 0; consequently, p2 = 1, p4 = 0.

I if fQ(|0〉) 6= fQ(|1〉), then f (0) + f (1) = 1, f (1)− f (0) = −1
or f (1)− f (0) = 1; consequently, p2 = 0, p4 = 1.

I the outputs 1 and 3 have each probability zero.

So, Deutsch’s problem was solved with only one computation of f .
The explanation consists in the ability of a quantum computer to
be in a blend of states: we can compute f (0) and f (1), but also,
and more importantly, we can extract some information about f
which tells us whether f (0) is equal or not to f (1).
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Deutsch’s problem

Can we match classically this complexity?

The claim made more than 30 years ago in [24] and still
maintained in 2018 is negative. This claim false appears in many
books on quantum computing with the notable exception of [42].
See more in [17, 5, 6, 33].
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Deutsch’s problem re-visited

Deutsch’s problem was solved with only one use of Uf . The
solution is probabilistic, and the result is obtained with probability
one. Its success relies on the following three facts:

I the “embedding” of f into fQ (see also the discussion in
Mermin [41], end of section C, p. 11),

I the ability of the quantum computer to be in a superposition
of states: we can check whether fQ(|0〉) is equal or not to
fQ(|1〉) not by computing fQ on |0〉) and |1〉, but on a
superposition of |0〉) and |1〉, and

I the possibility to extract the required information with just
one measurement.
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De-quantising Deutsch’s algorithm

We de-quantise Deutsch’s algorithm, see [17, 33], in the following
way. We consider Q the set of rationals, and the space
Q[i ] = {a + bi | a, b ∈ Q}, (i =

√
−1). We embed the original

function f in Q[i ] and we define the classical analogue Cf of the
quantum evolution Uf acting from Q[i ] to itself as follows:

Cf (a + bi) = (−1)0⊕f (0)a + (−1)1⊕f (1)bi . (3)
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De-quantising Deutsch’s algorithm

The four different possible bit-functions f induce the following four
functions Cf from Q[i ] to Q[i ] (x̄ is the conjugate of x):

C00(x) = x̄ , if f (0) = 0, f (1) = 0,

C01(x) = x , if f (0) = 0, f (1) = 1,

C10(x) = −x , if f (0) = 1, f (1) = 0,

C11(x) = −x̄ , if f (0) = 1, f (1) = 1.

Deutsch’s problem becomes the following:

A function f is chosen from the set {C00,C01,C10,C11}
and the problem is to determine, with a single query,
which type of function it is, balanced or constant.
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The following deterministic classical algorithm solves the problem:

Given f , calculate (i−1)×f (1+i). If the result is real, then the function

is balanced; otherwise, the function is constant.

Indeed, the algorithm is correct because if we calculate
(i − 1)× f (1 + i) we get:

(i − 1)× C00(1 + i) = (i − 1)(1− i) = 2i ,

(i − 1)× C01(1 + i) = (i − 1)(1 + i) = −2,

(i − 1)× C10(1 + i) = (i − 1)(−1− i) = 2,

(i − 1)× C11(1 + i) = (i − 1)(i − 1) = −2i .

If the answer is real, then the function is balanced, and if the
answer is imaginary, then the function is constant.
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De-quantising Deutsch’s algorithm

Two-dimensionality can be obtained in various other simpler ways.

For example, we can choose as space the set

Z[
√

2] = {a + b
√

2 | a, b ∈ Z}, where a + b
√

2 = a− b
√

2.

Using a similar embedding function as (3),

Cf (a + b
√

2) = (−1)0⊕f (0)a + (−1)1⊕f (1)b
√

2,

now acting on Z[
√

2], we get the solution:3

Given f , calculate (
√

2− 1)× f (1 +
√

2).
If the result is rational, then the function is balanced;

otherwise, the function is constant.

3In fact we don’t need the whole set Z[
√

2], but its finite subset
{a + b

√
2 | a, b ∈ Z, |a|, |b| ≤ 3}.
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Is the quantum gate model Turing complete?

Can the quantum gate model simulate any Turing machine?

No.

The reason is that all function computable by the quantum gate
model are total. The halting problem for the quantum gate model
is trivial. See more in [12].
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Quantum annealing
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Adiabatic quantum computing

Adiabatic quantum computing (AQC) is an alternative to the
quantum gate model. Results by [28, 11] “suggest” that the two
models of quantum computing are polynomially equivalent.

More general references about AQC and D-Wave machine:
[40, 18, 3].
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Adiabatic quantum computing (cont.)

One distinction between the two models is their discrete versus
analog natures: the quantum gate mode is discrete while AQC is
continuum.

Adiabatic in AQC refers to a process in which there is no transfer
of energy between the system and its environment. This a thermal
(not quantum) property; its name is used here metaphorically.

AQC uses the propensity of physical systems – classical or
quantum – to minimise their free energy. Quantum annealing is
free energy minimisation in a quantum system.
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Adiabatic quantum computing (cont.)

An AQC algorithm that computes an exact or approximate solution
of an optimisation problem encoded in the ground state – its
lowest-energy state – of a Hamiltonian (the operator corresponding
to the total energy of the system).

j!2i H H ✲

j!1i H

Uf
✲

j˚0i j˚1i j˚2i j˚3i

✻ ✻ ✻ ✻

HI

j˚I i j˚F i

HF

H.t/

j!1i

j!2i

✲

✲

✲

✲

HI

Figure: AQC example

The algorithm starts at an initial state HI that is easily obtained,
then evolves adiabatically by changing to the Hamiltonian HF . The
qubit states are read at the end of the transition.
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Adiabatic quantum computing (cont.)

An example of evolution is H = (1− t)HI + tHF as the time t
increases monotonically from 0 to 1. During the entire
computation, the system must stay in a valid ground state.

If the system can reach its ground state we get an exact solution;
if it can only reach a local minimum, then we get an approximate
solution.

The slower the evolution process the better the approximate
(possibly exact) solution is obtained.
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Adiabatic quantum computing (cont.)

AQC is based on the 1928 Born-Fock adiabatic theorem which
accounts for the adiabatic evolution of quantum states when the
change in the time-dependent Hamiltonian is sufficiently slow:

A physical system remains in its instantaneous eigenstate
if a given perturbation is acting on it slowly enough and
if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.
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Quantum Annealing

I Quantum Annealing (QA) is a heuristic approach originally
designed for solving hard combinatorial optimisation problems.

I QA is not as powerful as AQC in (i.e. it can not simulate any
quantum gate).

I It is debatable whether QA can provide any actual speedup
over classical algorithms.

I QA is relatively easy to engineer.
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D-Wave

The D-Wave computers are produced by the Canadian company
D-Wave Systems.

D-Wave One (2011) operates on a 128 qubit chipset.

D-Wave Two (2013) works with 512 qubits.

D-Wave 2X (2015) is a 1024 qubit quantum computer.

D-Wave 2000Q (2017) operates with 2048 qubits.

D-Wave Systems describes their machines as using quantum
annealing to improve convergence of the system’s energy towards
the ground state energy of an QUBO problem.
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Moore-like growth in hardware (number of qubits)
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D-Wave 2000Q

From Randomness to Quantum Computing 113 / 186



QUBO specification

The Quadratic Unconstrained Binary Optimisation (QUBO) is an
NP-hard mathematical problem consisting in the minimisation of a
quadratic objective function

z = xTQx,

where x is a n-vector of binary variables and Q is a symmetric
n × n matrix:

x∗ = min
x

∑
i≥j

xiQ(i ,j)xj , where xi ∈ {0, 1}.

D-Wave solves only one problem: QUBO. Really?
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D-Wave architecture

The computer architecture consists of qubits arranged with a host
configuration as a subgraph of a Chimera graph which consists of
an M × N two-dimensional lattice of blocks, with each block
consisting of 2L vertices (a complete bipartite graph KL,L), in total
2MNL variables.

The D-Wave One has M = N = L = 4 for a maximum of 128
qubits.

D-Wave qubits are loops of superconducting wire, the coupling
between qubits is magnetic wiring and the machine itself is
supercooled.
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D-Wave architecture

To index a qubit we use four numbers (i , j , u, k), where

I (i , j) indexes the (row, column) of the block,

I u ∈ {0, 1} is the left/right bipartite half of KL,L and

I 0 < k < L is the offset within the bipartite half.

Qubits indexed by (i , j , u, k) and (i ′, j ′, u′, k ′) are neighbours if and
only if

1. i = i ′ and j = j ′ and [(u, u′) = (0, 1) or (u, u′) = (1, 0)] or
2. i = i ′ ± 1 and j = j ′ and u = u′ and u = 0 and k = k ′ or
3. i = i ′ and j = j ′ ± 1 and u = u′ and u = 1 and k = k ′.
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D-Wave Chimera graph
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Figure: D-Wave architecture: a subgraph of a Chimera graph with
L = N = 4.
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D-Wave Chimera graph

In the Figure above shows for L = N = 4 (and M > 2) the
structure of an initial part of a Chimera graph where the two half
partitions of the bipartite graphs KL,L (blocks) are drawn
horizontally and vertically, respectively.

The linear index (qubit id of the vertices) from the four tuple
(i , j , u, k) is the value 2NLi + 2Lj + Lu + k .
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Problem solving workflow

1. State the problem. (Example: maximum-independent-set
problem.)

2. Reformulate the problem as a QUBO. (Example: reformulate
the integer programming optimisation problem as an
equivalent QUBO.)

3. Decompose a large problem. (Example: use branch-and-bound
methods to divide a large problem into smaller subproblems.)

4. Minor embedding problem. (Example: minor embed the
QUBO graph into a Chimera graph.)

5. Submitting the problem to the D-Wave machine.
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Weighted Maximum Independent Set

Recall that an independent set in a graph is a set S of vertices such
that for every two vertices in S , there is no edge connecting them.

Maximum Weighted Independent Set (MWIS) Problem:

Input: A graph G = (V ,E ) with positive vertex weights
w : V → R+.

Task: Find an independent set V ′ ⊆ V such that∑
v∈V ′ w(v) is as large as possible.
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An useful fact

Fact
For every graph G = (V ,E ) with positive vertex weights
w : V → R+, the largest weighted independent set of G is equal to∑

v∈V w(v) minus the smallest weighted vertex cover of G .

Proof: The set V ′ ⊆ V is an independent set of weight
W1 =

∑
v∈V ′ w(v) if and only if V ′′ = V \ V ′ is a vertex cover of

weight W2 =
∑

v 6∈V ′ w(v).

Since W1 + W2 =
∑

v∈V w(v) the statement was proved.
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WMIS QUBO formulation

Fix an input graph G = (V ,E ) with positive vertex weights
w : V → R+. Let W = max{w(v) | v ∈ V }. We build a QUBO
matrix of dimension n = |V | such that:

Q(i ,j) =


−w(vi ), if i = j ,
>W , if i < j and ij ∈ E .

0, otherwise.
(4)
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WMIS illustration

A vertex-weighted graph and its MWIS QUBO matrix.

2

3

3 18

v0

v1

v3 v4v2

v0 v1 v2 v3 v4

v0 -2 0 12 0 0
v1 0 -3 12 0 0
v2 0 0 -8 12 0
v3 0 0 0 -3 12
v4 0 0 0 0 -1
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Correctness of the formulation

Theorem
The QUBO formulation given in (4) solves the MWIS Problem.

Proof: Let x be a Boolean vector corresponding to an optimal
solution to the QUBO formulation (4).

Let D(x) = {vi | xi = 1} be the vertices selected by x.

I If D(x) is an independent set then −xTQx is its weighted
sum.
For two different solutions x1 and x2, which correspond to
independent sets, the smallest value of xT1 Qx1 and xT2 Qx2 is
better.
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Correctness of the formulation

I Next assume D(x) is not an independent set and prove that
the objective function corresponding to D(x) can be improved.

Indeed, there must be two vertices vi and vj in D(x) such that
vivj is an edge in the graph.

Let x1 = x but set xi = 0, i.e. D(x1) = D(x) \ {i}. We then
have

xT1 Qx1 < xTQx−W + w(vi ) ≤ xTQx.

We repeat the process of improving x until we get an
independent set, hence the optimal value of the QUBO holds
for some independent set. By the second paragraph of this
proof, we know that a maximum weighted independent set
corresponds to x∗. See more in [25].
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D-Wave and QUBO

D-Wave architecture is designed to do quantum annealing to solve
QUBOs but it is not a complete graph.

In order to “solve” a QUBO problem with the D-Wave machine
the logical qubits – the variables in the QUBO formulation – have
to be “mapped” onto the physical qubits of the Chimera graph –
the graph architecture of the machine –, a process known as
“embedding”.

Each logical qubit corresponds (via the embedding) to one or more
connected physical qubits, called chain. The number of physical
qubits is severely limited.

The efficiency of an embedding is measured by the number of
physical qubits, the maximum chain and the density of the QUBO
matrix.
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Minor embeddings

A minor embedding of a graph G1 = (V1,E1) onto a graph
G2 = (V2,E2) is a function f : V1 → 2V2 that satisfies the
following three conditions:

1. The sets of vertices f (u) and f (v) are disjoint for u 6= v .

2. For all v ∈ V1, there is a subset of edges E ′ ⊆ E2 such that
G ′ = (f (v),E ′) is connected.

3. If {u, v} ∈ E1, then there exist u′, v ′ ∈ V2 such that
u′ ∈ f (u), v ′ ∈ f (v) and {u′, v ′} is an edge in E2.

For the minor embedding f defined above, G1 is referred to as the
guest graph while G2 is called the host graph.

We view a QUBO matrix Q as a weighted adjacency matrix (guest
graph) to be embedded onto the D-Wave’s Chimera graph (host
graph).
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Quantum supremacy
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What is quantum supremacy?

The quantum computational advantage for simulating quantum
systems was first stated by Feynman in 1981. What is the
justification of Feynman’s insight? According to the data
processing inequality [23], (classical) post-processing cannot
increase information. This suggests that to run an accurate
classical simulation of a quantum system one must know a lot
about the system before the simulation is started. Manin [38] and
Feynman [29] have argued that a quantum computer might not
need to have so much knowledge.

This line of reasoning seemingly inspired Deutsch [24] to state

The postulate of quantum computation:
Computational devices based on quantum mechanics will
be computationally superior compared to digital
computers.
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What is quantum supremacy?

A spectacular support for this postulate came from Shor’s 1994
polynomial factoring quantum algorithm [48] in spite of the fact
that the problem whether factoring is in P was, and still is, open.

In 2011 the syntagm “quantum supremacy” was coined and
discussed by J. Preskill in his Rapporteur talk “Quantum
Entanglement and Quantum Computing” [46] at the 25th Solvay
Conference on Physics (Brussels, Belgium, 19–22 October 2011):

We therefore hope to hasten the onset of the era of
quantum supremacy, when we will be able to perform
tasks with controlled quantum systems going beyond
what can be achieved with ordinary digital computers.
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What is quantum supremacy?

Recently, quantum supremacy was described in [13] as follows:

Quantum supremacy is achieved when a formal
computational task is performed with an existing
quantum device which cannot be performed using any
known algorithm running on an existing classical
supercomputer in a reasonable amount of time.
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Brief critique of the concept of quantum supremacy

Note the imprecision in the above formulation: the comparison is
made with “any known algorithm running on an existing classical
supercomputer” and the classical computation takes “a reasonable
amount of time”. Can this imprecision be decreased or, even
better, eliminated?

Quantum supremacy suggests a misleading comparison between
classical and quantum computing: if a quantum computer can
outdo any classical computer on one problem we have quantum
supremacy, even if classical computers could be at least as good as
quantum ones in solving many (most) other problems. Put it
bluntly, quantum supremacy, if achieved, won’t make classical
computing obsolete.
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Quantum supremacy under the microscope

A quantum computational supremacy experiment has to prove
both a lower bound and an upper bound.

In Google’s proposed experiment [43] the upper bound is given by
a quantum algorithm (running on a quantum computer with 49
qubits) sampling from the output distribution of pseudo-random
quantum circuits built from a universal gate set—a mathematical
fact and an engineering artefact (the construction of the quantum
machine)

The lower bound is necessary for proving that no classical
computer can simulate the sampling in reasonable time.

Proving lower bounds is notoriously more difficult than
demonstrating upper bounds.
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Criteria for quantum computational supremacy

Harrow and Montanaro [32] have proposed a reasonable list of
criteria for a quantum supremacy experiment:

1. a well-defined computational problem,

2. a quantum algorithm solving the problem which can run on a
near-term hardware capable of dealing with noise and
imperfections,

3. an amount of computational resources (time/space) allowed
to any classical competitor,

4. a small number of well-justified complexity-theoretic
assumptions,

5. a verification method that can efficiently distinguish between
the performances of the quantum algorithm from any classical
competitor using the allowed resources.
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Is the quest for quantum computational supremacy worthwhile?

Apart publicity and marketing, is the effort of demonstrating the
quantum computational supremacy justified? What are the
(possible) benefits? Can the claim of quantum computational
supremacy be falsified?

The main benefit could be foundational and philosophical: a better
understanding of the nature of quantum mechanics through its
computational capabilities. A successful quantum supremacy
experiment could be a complement to Bell experiment: the later
refuted local hidden models of quantum mechanics, while the
former seems to invalidate the Extended Church-Turing, a
foundational principle of classical complexity theory which ensures
that the polynomial time class P is well defined.
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Is the quest for quantum computational supremacy worthwhile?

The Thesis places strong constraints, one of them being that the
model of computation is digital. For example, analog computers
are excluded because they assume infinite arithmetic precision.
Furthermore, it is known that an infinite precision calculator with
operations +, x, =0?, can factor integers in polynomial time
(see [47, 49]).

But, are quantum computers a “reasonable” model of
computation? Are quantum systems digital? At first glance
quantum computers (and, more generally, quantum systems)
appear to be analog devices, since a quantum gate is described by
a unitary transformation, specified by complex numbers; a more
in-depth analysis is still required.
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Is the quest for quantum computational supremacy worthwhile?

What does it take to refute the claim of quantum computational
supremacy? This amounts to prove that any computation
performed by any quantum computer can be simulated by a
classical machine in polynomial time, a weaker form of the
Extended Church-Turing Thesis. This statement cannot be proved
for the same reasons the Church-Turing Thesis cannot be proved:
obviously, they may be disproved.

The paper [44] presents efficient classical boson sampling
algorithms and a theoretical analysis of the possibility of scaling
boson sampling experiments; it concludes that “near-term
quantum supremacy via boson sampling is unlikely”.
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Google quantum computational supremacy

The proposed experiment is not about solving a problem: it is the
computational task of sampling from the output distribution of
pseudo-random quantum circuits built from a universal gate set.

This computational task is difficult because as the grid size
increases, the memory needed to store everything increases
classically exponentially. But, do we really need to store
everything?

The required memory for a 6× 4 = 24–qubit grid is just 268
megabytes, less than the average smartphone, but for a
6× 7 = 42–qubit grid it jumps to 70 terabytes, roughly 10,000
times that of a high-end PC. Google has used Edison, a
supercomputer housed by the US National Energy Research
Scientific Computing Center and ranked 72 in the Top500 List [1],
to simulate the behaviour of the grid of 42 qubits.
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Google quantum computational supremacy

The classical simulation stopped at this stage because going to the
next size up was thought to be currently impossible: a 48-qubit
grid would require 2,252 petabytes of memory, almost double that
of the top supercomputer in the world. The path to quantum
computational supremacy was obvious: if Google could solve the
problem with a 50–qubit quantum computer, it would have beaten
every other computer in existence.

Simple and clear!
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Google quantum computational supremacy

Google was on track to deliver before the end of 2017!

Let us note that many, if not most, discussions about quantum
computational supremacy focus on the most exciting possibilities
of quantum computers, namely the upper bound.

What about the lower bound? Google’s main article on this
topic [13] refers cautiously to the lower bound in the abstract:

We extend previous results in computational complexity
to argue more formally that this sampling task must take
exponential time in a classical computer.

They do not claim to have a proof for the lower bound, just a
“better formal argument”.
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Proving the lower bound. . .

Memory assumption. Sampling this distribution
classically requires a direct numerical simulation of the
circuit, with computational cost exponential in the
number of qubits.

The assumption was corroborated by the statement:

Storing the state of a 46–qubit system takes nearly a
petabyte of memory and is at the limit of the most
powerful computers. [43]
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Proving the lower bound. . .

The Memory assumption is crucial for the proposed lower bound,
and, indeed, this was confirmed very soon. The paper [45] proved
that a supercomputer can simulate sampling from random circuits
with low depth (layers of gates) of up to 56 qubits.

Better results have been quickly announced, see for example [14].
The limits of classical simulation are not only known, but hard to
predict.

In spite of this, IBM has announced a prototype of a 50–qubit
quantum computer, stating that it “aims to demonstrate
capabilities beyond today’s classical systems” with quantum
systems of this size [2].
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Digression: again about the importance of lower bounds

Ewin Tang (an 18-year-old undergraduate student at UT Austin)
has recently proved [50] that classical computers can solve the
“recommendation problem” – given incomplete data on user
preferences for products, can one quickly and correctly predict
which other products a user will prefer? – with performance
comparable to that of a quantum computer.

Is this significant? Yes, because quantum computer scientists had
considered this problem to be one of the best examples of a
problem that quantum computers can solve exponentially faster
than their classical ones.

The quantum solution in [35] was hailed as one of the first
examples in quantum machine learning and big data that would be
unlikely to be done classically. . .
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Current state of the art

According to [4]

The successful classical simulation does not undercut the
rationale for quantum supremacy experiments. The truth,
ironically, is almost the opposite: it being possible to
simulate 49–qubit circuits using a classical computer is a
precondition for Google’s planned quantum supremacy
experiment, because it’s the only way we know to check
such an experiment’s results!

The goal is to get via quantum computing as far as you can up the
mountain of exponentiality provided people still see you from the
base. Why? Because it’s there. “It is not the mountain we
conquer but ourselves”, as Edmund Hillary aptly said.
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Three lessons

I Do not to underestimate the importance of mathematical
modelling and proving (lower bounds, in particular).

I A trend in quantum computing is emerging: when a problem
is solved efficiently in quantum computing, it draws more
attention and often produces better classical alternatives than
existed before. Some of the new efficient classical solutions,
see for example [17, 5, 6, 33, 50], have been directly inspired
by the quantum work.

I The conversation on quantum computing, quantum
cryptography and their applications needs an infusion of
modesty (if not humility), more technical understanding and
clarity as well as less hype. Raising false expectations could be
harmful for the field.
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The race continues! See more in [16].
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Supplementary material
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van der Waerden finite theorem

Let s1 · · · sn be a binary string. A monochromatic arithmetic
progression of length k is a substring

si si+tsi+2t · · · si+(k−1)t ,

1 ≤ i ≤ i + (k − 1)t ≤ n with all characters equal (0 or 1) for
some t > 0.

Van der Waerden finite theorem
For every natural k there is a natural n > k such that every string
of length n contains a monochromatic arithmetic progression of
length k .

VDW
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Proof

Let Ci be a computably enumeration of all prefix-free TMs and
construct the prefix-free TM U by

U(1i0x) = Ci (x).

USTheorem
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Proof

To prove that H(x∗) ≥ |x∗| − c we construct the prefix-free TM

D(p) = U(U(p))

and pick the constant c coming from the universality theorem
(applied to U and D). Take x = y∗, z = x∗. One has:

D(z) = U(U(z)) = U(U(x∗)) = U(x) = U(y∗) = y ,

so
HD(y) ≤ |z | = |x∗| = H(x),

|x | = |y∗| = H(y) ≤ HD(y) + c ≤ H(x) + c .

StringComplexity
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Proof

Given ω1ω2 · · ·ωn we run in parallel U(p) on various programs till
we get enough programs p1, . . . , pN such that

N∑
i=1

2−|pi | ≥ 0.ω1ω2 · · ·ωn.

Every program q with |q| ≤ n, different from all pi ’s above,
doesn’t stop as otherwise

Ω < 0.ω1ω2 · · ·ωn + 2−n ≤
N∑
i=1

2−pi + 2−|q| ≤ Ω,

a contradiction. OmegaHaltTheorem
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Proof

Define M as follows: on input x compute y = U(x) and the
smallest number of programs p1, . . . , pt ∈ dom(U) (if they exist)
with

t∑
i=1

2−|pi | ≥ 0.y .

Let M(x) be the first (in quasi-lexicographical order) string not
belonging to the set {U(p1),U(p2), . . . ,U(pt)} if both y and t
exist, and M(x) =∞ if U(x) =∞ or t does not exist.
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Proof continued

If M(x) <∞ and x ′ is a string with U(x) = U(x ′), then
M(x) = M(x ′).

Applying this to an arbitrary x with M(x) <∞ and the program
x ′ = (U(x))∗ yields

HM(M(x)) ≤ |x ′| = HU(U(x)). (5)

Furthermore, by the universality of U there is a constant c > 0
with

HU(M(x)) ≤ HM(M(x)) + c , (6)

for all x with M(x) <∞.
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Proof continued

Take U(x) = ω1 · · ·ωn. From the construction of M (and the fact
that Omega solves the halting problem) we conclude that
HU(M(x)) ≥ n. Using (6) and (5) we obtain

n ≤ HU(M(x))

≤ HM(M(x)) + c

≤ HU(U(x)) + c

= HU(ω1ω2 · · ·ωn) + c .

OmegaMaxComplTheorem
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Proof

The sequence of rationals rN =
∑N

i=1 2−|f (i)|, where f is a
computable enumeration of the domain of U, is computable,
increasing and converges to Ω.

CEOmegaTheorem
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Equidistant correlations everywhere

Van der Waerden theorem
For any positive integers k there is a positive integer γ such that
every bit string of length more than γ contains an arithmetic
progression with k occurrences of the same digit or colour, i.e. a
monochromatic arithmetic progression of length k .

SpuriousCorrelations
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Ω in the media

The CBS drama TV show Numb3rs,

http://www.cbs.com/primetime/numb3rs/,

season 5; episode 5; scene 6) includes the following dialogue:

LARRY: Ah, Charles, my ambulatory reference book.
Chaitin’s Omega Constant...?

CHARLIE: Omega equals .00787499699. Why, what’re
you working on? (sees the file, reacts) Oh. FBI file.

The math is explained at http://numb3rs.wolfram.com/505.
Incomputability of Omega
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Graph isomorphism
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The graph isomorphism problem

The graph isomorphism problem is the computational problem
of determining whether two finite graphs are isomorphic.

Instance: Two graphs G1 = (V1,E1) and G2 = (V2,E2) with
|V1| = |V2| and |E1| = |E2|.

Question: Determine whether there exists a bijective edge-
invariant vertex mapping (isomorphism)
f : V1 → V2.

The mapping f is edge-invariant if for every pair of vertices {u, v},
we have uv ∈ E1 iff f (u)f (v) ∈ E2.

This is one of a very few problems in NP that is neither known to
be solvable in polynomial time nor NP-complete.
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QUBO direct formulation for the graph isomorphism problem

Following [19] we present a QUBO objective function F for the
graph isomorphism problem which requires n2 binary variables
represented by a binary vector x ∈ Zn2

2 :

x = (x0,0, x0,1, . . . , x0,n−1, x1,0, x1,1, . . . , x1,n−1,

. . . , xn−1,0, . . . , xn−1,n−1).

The equality xi ,i ′ = 1 encodes the property that the function f
maps the vertex vi in G1 to the vertex vi ′ in G2: f (vi ) = vi ′ .

For this mapping we need to pre-compute n2 binary constants ei ,j ,
0 ≤ i < n and 0 ≤ j < n: ei ,j = 1 if ij ∈ E2.
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QUBO direct formulation for the graph isomorphism problem

The objective function F (x) has the following form:

F (x) = H(x) +
∑
ij∈E1

Pi ,j(x), (7)

where

H(x) =
∑

0≤i<n

1−
∑

0≤i ′<n

xi ,i ′

2

+
∑

0≤i ′<n

1−
∑

0≤i<n

xi ,i ′

2

, (8)

and

Pi ,j(x) =
∑

0≤i ′<n

xi ,i ′
∑

0≤j ′<n

xj ,j ′(1− ei ′,j ′)

 . (9)
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QUBO direct formulation for the graph isomorphism problem

The function F consists of two parts, H(x) and
∑

ij∈E1
Pi ,j(x).

Each part serves as a penalty for the case when the function f is
not an isomorphism.

I The first part H ensures that f is a bijective function:

H = 0 iff the function f encoded by the vector x is a bijection.

I The second term ensures that f is edge-invariant:∑
ij∈E1

Pi ,j(x) > 0 iff there exists an edge uv ∈ E1 such that

f (u)f (v) /∈ E2.
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QUBO direct formulation for the graph isomorphism problem

Assume that
x∗ = min

x
F (x).

Then, the mapping f can be ‘decoded’ from the values of the
variables xi ,i ′ using an additional partial function D. Let F be the
set of all bijections between V1 and V2.

Then D : Zn2

2 → F is a partial ‘decoder’ function that re-constructs
the vertex mapping f from the vector x, if such f exists.
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QUBO direct formulation for the graph isomorphism problem

The domain of D contains all vectors x ∈ Zn2

2 that can be
‘decoded’ into a bijective function f :

dom(D) =

x ∈ Zn2

2

∣∣∣∣∣∣
∑

0≤i ′<n

xi ,i ′ = 1, for all 0 ≤ i < n

and
∑

0≤i<n

xi ,i ′ = 1, for all 0 ≤ i ′ < n

 ,

and

D(x) =

{
f , if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is a bijection such that f (vi ) = vi ′ iff xi ,i ′ = 1.
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QUBO direct formulation for the graph isomorphism problem

The following two lemmata will be used to prove correctness of the
objective function F in (7).

Lemma
For every x ∈ Zn2

2 , H(x) = 0 iff D(x) is defined (in this case D(x)
is a bijection).

Lemma
Let x ∈ Zn2

2 and assume that D(x) is a bijective function. Then,∑
ij∈E1

Pi ,j(x) = 0 iff the mapping f = D(x) is edge-invariant.

Theorem
For every x ∈ Zn2

2 , F (x) = 0 iff the mapping f : V1 → V2 defined
by f = D(x) is an isomorphism.
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QUBO direct formulation for the graph isomorphism problem: the graph P3

The matrix QUBO can only contain quadratic terms, so some
terms of F (x) have to be modified in such a way that this
condition is satisfied and the optimal solutions of (??) are
preserved. To this aim two operations will be performed.

First, any constant term is ignored because removing it does not
modify the optimal solutions of (??): the value of F (x) is reduced
by a constant amount for all x ∈ Zn

2.

Second, as all variables xi ,i ′ are binary, we replace xi ,i ′ with x2
i ,i ′ for

all xi ,i ′ with no effect on the value of F (x).
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QUBO direct formulation for the graph isomorphism problem: the graph P3

Consider the path graph P3 of order 3 and two copies represented
as G1 with edges E1 = {{0, 1}, {1, 2}} and G2 with edges
E2 = {{0, 1}, {0, 2}}. It is easy to see there are two possible
isomorphisms between G1 and G2, where we require vertex 1 of G1

to be mapped to vertex 0 of G2.

The QUBO formulation requires 32 = 9 variables and the binary
variable vector x ∈ Z9

2 is:

x = (x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x2,0, x2,1, x2,2).

By expanding (8) we get:

H(x) = (1− (x0,0 + x0,1 + x0,2))2 + (1− (x1,0 + x1,1 + x1,2))2

+ (1− (x2,0 + x2,1 + x2,2))2 + (1− (x0,0 + x1,0 + x2,0))2

+ (1− (x0,1 + x1,1 + x2,1))2 + (1− (x0,2 + x1,2 + x2,2))2 .
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QUBO direct formulation for the graph isomorphism problem: the graph P3

Finally we obtain the following penalty terms:

P0,1 = x0,0x1,0 + x0,1(x1,1 + x1,2) + x0,2(x1,1 + x1,2),
P1,2 = x1,0x2,0 + x1,1(x2,1 + x2,2) + x1,2(x2,1 + x2,2).

The objective function F (x) can only contains quadratic terms, so
we need to process some of the penalty terms before we can
encode them in a QUBO instance. Finally, for all elements xi ,i ′ in x
we map the variable xi ,i ′ to the index d(xi ,i ′) = 3i + i ′ + 1
(between 1 and 9) and then the entry Q(d(xi,i′ ),d(xj,j′ )) is assigned

the coefficient of the term xi ,i ′xj ,j ′ in F (x).

As for each pair xi ,i ′ and xj ,j ′ there are two possible equivalent
terms, xi ,i ′xj ,j ′ and xj ,j ′xi ,i ′ , as a convention, we will use the term
that is be mapped to the upper-triangular part of Q.
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QUBO direct formulation for the graph isomorphism problem: the graph P3

The upper-triangular matrix representation of Q is:

Table: QUBO matrix for P3

variables x0,0 x0,1 x0,2 x1,0 x1,1 x1,2 x2,0 x2,1 x2,2

x0,0 -2 2 2 3 0 0 2 0 0
x0,1 -2 2 0 3 1 0 2 0
x0,2 -2 0 1 3 0 0 2
x1,0 -2 2 2 3 0 0
x1,1 -2 2 0 3 1
x1,2 -2 0 1 3
x2,0 -2 2 2
x2,1 -2 2
x2,2 -2

We have removed a constant value of 6 from F (x) when encoding
it into Q, so the value of the optimal solution of f (x) = xTQx will
be decreased by 6, obtaining the following two optimal solutions:

x1 = (0, 1, 0, 1, 0, 0, 0, 0, 1) and x2 = (0, 0, 1, 1, 0, 0, 0, 1, 0).
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