
CRISTIAN CALUDE 

WHAT IS A RANDOM STRING?· 

I. MOTIVATION 

Suppose that persons A and B give us a sequence of 32 bits each, saying that they 
were obtained from independent coin flips. If A gives the string 

u=01001110100111101001101001110101 

and B gives the string 

v = OOOOOOOOOOOOOOOO()()OO()()OOOOOO()()OO I 

then we would tend to believe A and would not believe B: the string u seems to be 
random, but the string v does not. Further on, if we change the value of a bit (say, 
from 1 to 0) in a (non) "random" string, then the result is still a (non) "random" 
string. If we keep making such changes in a "random" string, then we will eventu
ally complete destroy randomness. 

Laplace [21], pp.16-17 was, in a sense, aware of the above paradox, as it may 
be clear from the following phrase: 

In the game of heads and tails, if head comes up a hundred times in a row then this appears to 

us extraordinary, because after dividing the nearly infinite number of combinations that can 

arise in a hundred throws into regular sequences, or those in which we observe a rule that is 
easy to grasp, and into irregular sequences, the latter are incomparably more numerous. 

In other words: non random strings are strings possessing some kind of regularity, 
and since the number of all those strings (of a given length) is small, the occurrence 
of such a string is extraordinary. 

Furthermore, regularity is a good basis for compression. Accordingly, random
ness means the absence of any compression possibility; it corresponds to maximum 
information content (because after dropping any part of the string, there remains no 
possibility of recovering it). As we shall prove in Section 5, most strings have this 
property. In opposition, most strings we deal with do not. 

The information content of a phrase in a natural language (English, for exam
pIe) can be recovered even some letters (words) are omitted. The reason comes from 
the redundancy of most spoken languages. As a consequence, there exist many ef
ficient programs to compress texts written in natural languages. It is important to 
emphasize that all these methods work very well on texts written in some natural 
language, but they do not work well on average, i.e. on all possible combinations 
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of letters of the same length. Redundancy is also a very powerful handle to readers 
of mathematical books (and, in general, of scientific literature), and also to cryptan
alysts (for example, Caesar's ciphers-just permutations of letters--can be broken 
by frequency analysis; see more on this topic in Salomaa [27]). A hypothetical lan
guage in which there are only strings with maximum information content gives no 
preference to strings (i.e. they have equal frequency); this makes the cipher impos
sible to break. However, such languages do not exist (and cannot be constructed, 
even with the help of the best computers, available now and in the future); redun
dancy is essential and inescapable in a spoken language (and to a large extent in 
most artificial languages; see Marcus [25]). 

Before passing to some the formal treatment it is natural to ask the following 
question: Are there any random strings? Of course, we do not have yet the necessary 
tools to properly answer this question, but we may try to approach it informally. Let 
us call canonical program the smallest program generating a string. We claim that 
every canonical program should be random, independently if it generates or not a 
random output. Indeed, assume that x is a canonical program generatingy. If x is not 
random, then there exists a program z generating x which is substantially smaller 
than x. Now, consider the program 

from z calculate x, then from x calculate y. 

This program is only a few letters longer than z, and thus it should be much shorter 
than x, which was supposed to be canonical. We have reached a contradiction. 

Borel [1, 2] was the first author who systematically studied random sequences. 
The complexity-theoretic approach was independently initiated by Kolmogorov 
[22] and Chaitin [9]. For more historical facts see Chaitin [17] (A Ufe in Math), 
Uspensky [31], U and Vitanyi [23] and Calude [4]. 

II. COMPUTERS AND COMPLEXITIES 

Denote by N the set of natural numbers; N+ = N\ to}. IfS is a finite set, then #S 
denotes the cardinality of S. We shall use the following functions: i) rem( m, i), the 
remainder of the integral division of m by i (m, i E N+), ii) l a J, the integral part of 
the real a, iii) lo~, the base Q logarithm, log = llog2J. 

FixA = {al, ... ,aQ},Q ~ 2, a finite alphabet. By A' we denote the free monoid 
generated by A (under concatenation). The elements of A' are called strings; 'A is 
the empty string. For x inA', Ixl is the lengthofx(I'A1 = 0). For min N,Am = {x E 
A' I Ixl = m}. For every x EA' and natural n put.x" = xx ... x, (n times); xD = 'A. 

Every total ordering on A, say al < a2 < ... < aQ, induces a quasi-lexico
graphical order on A' : 'A < al < ... < aQ < alal < ... < alaQ < aQaQ < 
... < alalal < .... We denote by string(n) the nth string inA' according to the 
quasi-lexicographical order. The induced order on each setAm coincides with the 
lexicographical order. 

Working with partial recursive (p.r.) functions q> : A' x A' ~ A • (called some
time blank-endmarker computer-see Chaitin [15]) we adopt the notations from 
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Calude [3]. If x E dom(IP), that isx is in the domain oflP, then we write IP(x) < 00. 
A Chaitin computer is a p.r. function C : A ° x A ° ~ A ° with a prefix-free domain 
(i.e. for every string z, there is no pair of distinct strings x,y such that U(x,z) < 
00, U(y,z) < 00, and x is a prefix ofy). To a ChaitincomputerC one associates the 
sell-delimiting complexity or Chaitin complexity 

He :Ao ~ N, Hc(x/y) = min{lzll zEAo ,C(z,yO) =x}, 

with the conventionmin0 = 00; here yO = min{wEAO I U(w,A.) = y}, the operator 
min being taken according to the quasi-lexicographical order. 

The basic result obtained by Chaitin [9] (called the Invariance Theorem) states 
the existence of a Chaitin computer U (called universal Chaitin computer) such that 
for every Chaitin computer C there exists a constant c (depending upon U and C) 
such that 

Hu(x/y) '$ He (x/y) + c, 

for all x,y E A 0 .1 The complexity induced by a blank-endmarker computer .p, K. is 
defined by K.(x/y) = min{lzll zEAo ,.p(z,y) = x}. A similarInvariance Theorem 
holds true for blank-end marker computers. See also Chaitin [9, 10], Kolmogorov 
[22], Martin-I...Of[26], Calude [3]. 

For this paper we fix a universal Chaitin computer U and denote by H the in
duced complexity. Also, fix a universal blank-endmarker computer 1p : A ° x A ° ~ 
AO and denote by K the induced complexity. By H(x), K(x) we denote the com
plexitiesH(x/A.), K(x/A.), respectively. 

Let I,g, h: AO -+ [0,00) be three functions. We write I::; g+ O(h) in case there 
exists C > 0 such that I(x) '$ g(x) + Ch(x) , for almost all strings x. We write I = 
g+ O(h) in case I::; g+ O(h) and g::; 1+ O(h); I x g means that there exists two 
positive reals a, ~ such that I(x) '$ ag(x) and g(x) ::; ~/(x), for almost all strings 
x. 

III. CHAITIN RANDOM STRINGS 

To motivate our approach we use the analogy between "tallness" and "randomness". 
To appreciate if a person is or is not tall we proceed as follows. We choose a unity 
measure (say, centimetre) and we evaluate the height. We get an absolute value. 
Next, we establish "a set of people of reference". For instance, if we have to appre
ciate how tall is a little girl we fix an age and we relate her height to the average 
height of girls of that age. But, if we discuss the same question for a teenager, the 
situation is completely different. It follows that the adjective tall is relative. To cor
rectly appreciate it we need both components: the exact one (height) and the rela
tive one (comparison within a fixed set). It is fortunate that in English we have two 
words to express this: height and tall. 

For randomness we proceed in a similar way, trying to capture, as best as pos
sible, the idea that a string is random il it cannot be algorithmically compressed. 
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First we use a measure of complexity for strings (H); this represents the "absolute 
component". Secondly, we define randomness "relative to a set" -the relative com
ponent. In our case we appreciate the degree of randomness of a string with respect 
to the set of all strings, over a fixed alphabet, having the same length.2 Of course, 
the success or failure of the approach depends upon the measure of complexity we 
are adopting. 

The complexity of the most complex strings of a given length (first obtained in 
Chaitin [12]) is given by 

Theorem 3.1 For every n E N, one has: 

maxH(x) = n+H(string(n)) +0(1). 
xEA" 

We conclude with the following definition. Let I : N -+ N be the function defined 
by 

I(n) = maxH(x). 
xEA" 

In view of Theorem 3.1, I(n) = n +H(string(n)) + 0(1). We define the random 
strings of length n to be the strings with maximal self-delimiting complexity among 
the strings of length n, i.e. the strings x EAn havingH(x) ~ I(n). 

Definition 3.2 A string x EA· is Chaitin m-random (m is a natural number) if 
H(x) ~ I(lxl) - m; x is Chaitin random ifit is O-random. 

The above definition depends upon the fixed universal computer U; the generality 
of the approach comes from the Invariance Theorem. 

Obviously, for every length n and for every m ~ 0 there exists a Chaitin m
random string x of length n. Denote by RAND~,RANd, respectively, the sets of 
Chaitin m-random strings and random strings. 

It is worth to note that the property of Chaitin m-randomness is asymptotic. In
deed, for x E RAND~, the larger is the difference between Ixl and m, the more ran
dom is x. There is no sharp dividing line between randomness and pattern, but it 
looks as though all x E RAND~ with m ~ H(string(lxl)) have a true random be
haviour. 

How many strings x E An have maximal complexity, i.e. H(x) = I(lxl)? The 
answer was given by Chaitin [18]: 

Theorem 3.3 There exists a natural constant c > 0 (which depends upon the size 
of the underlying alphabet, Q) such that 

y(n) = #{x E An I H(x) = I(lxl)} > Qn-c, 

for all natural n. 
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How large is c? Out of Qn strings of length n, at most Q + Q2 + ... + ~-m-l = 
(Qn-m _ 1) / (Q - 1) can be described by programs of length less than n - m. The 
ratio between (Qn-m_l)/(Q_l) and Qn is less than 10-i as Qm 2: 10i, irrespective 
of the value ofn. For instance, this happens incase Q = 2,m = 20,i= 6; it says that 
less than one in a million among the binary strings of any given length is not Chaitin 
20-random. 

So, in a strictly quantitative sense, almost all strings are Chaitin random. 

Problem. Denote by (CQ)Q~2 the sequence of constants appearing in Theorem 3.3. 
Is this sequence bounded? 

The rest of this paper will be devoted to the analysis of the adequacy of Chaitin's 
definition of randomness. 

IV. A STATISTICAL ANALYSIS OF RANDOM STRINGS 

In this section we confront Chaitin's definition of randomness with the probability 
point of view. As we have already said, the present proposal identifies randomness 
with incompressibility. In order to justify this option we have to show that the strings 
that are incompressible justify the various properties of stochasticity identified by 
the classical Probability Theory. It is not so difficult, although tedious, to check sep
arately such a single property. However, we may proceed in a better way, due to the 
celebrated theory developed by Martin-LOf: We demonstrate that the incompress
ible strings do possess all conceivable effectively testable properties of stochastic
ity. Here we include the known properties, but also the possible unknown ones. A 
general transfer principle will emerge, by virtue of which various results from clas
sical probability theory carry automatically for random strings. 

The ideas of Martin-LOrs theory are rooted in the statistical practice. We are 
given an element x of some sample space (associated to some distribution) and we 
want to test the hypothesis x is a typical outcome. Being typical means "belonging 
to every reasonable majority". An element x will be "random" just in case x lies in 
the intersection of all such majorities. 

A level of a statistical test is a set of strings which are found relatively non
random (by the test). Each level is a subset of the previous level, containing less 
and less strings, considered more and more non-random. The number of strings de
creases exponentially fast at each level. In the binary case, a test contains at level 0 
all possible strings, at level two only at most 1/2 ofthe strings, at level three only 
1/4 of all strings, and so on; accordingly, at level m the test contains at most 2n- m 

strings of length n. 

We give now the formal definition. 
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Definition 4.1 An r.e. set V CA' x N+ is called a Martin-LOrtest if the following 
two properties hold true: 
1) Vm+l C Vm, for all m 2:: 1 (Vm = {x EA' I (x,m) E V} is the m-section ofV), 
2) #(AnnVm) < Qn-m/(Q_l), for all n 2:: m 2:: 1. 

By definition, the empty set is a Martin-LOftest. 
The set Vm is called the critical region at level Q-m / (Q - 1). (Getting an out

come stringx in Vm means the rejection of the randomness hypothesis forx.) A string 
x is declared "random" at level m by V in case x tf. Vm and Ixl > m. 

The set 

{( ) • II Ni(X) 1 I m 1 } 
V= x,m EA xN+ Txr-Q >Q JiXi ' 

whereNi(X) is the number of occurrences of the letter ai inx, is a Martin-LOftest. 
Almost all Chaitin random strings pass all conceivable effective tests of stochas

ticity, i.e. they are declared random by every Martin-LOftest: 

Theorem 4.2 Fix tEN. Almost all strings in RANDf will be declared eventually 
random by every Martin-Vjftest. 

V. A COMPUTATIONAL ANALYSIS OF RANDOM STRINGS 

We pursue the analysis of the relevance of Chaitin's definition by confronting it 
with a natural, computational requirement: there should be no algorithmic way to 
recognize what strings are random. 

Recall that a subset X C A" is immune iff it is infinite and has no infinite r.e. 
subsets. 

Corollary 5.1 The set RANDf is immune for every t 2:: o. 
The above theorem can be expressed as: 

('1B CA')(B infinite and r.e. ~B\RANDf # 0). 

There are two (classically equivalent) ways to represent the above statement: 

1. ('Ix EN) (WX infinite ~ 3y EA" : y E Wx \RANDf), 

2. 'Ix EA' : (WX C RANDf ~ (3n E N) #(Wx ) $ n). 

Based on theses statements we can formulate two constructive versions of immu
nity: 

The set RCA' is called constructively immune (Li [24]) ifthere exists 
a p.r. functionqJ :A'~A' such that for all X EA', ifWx is infinite, then 
qJ(x) # 00 and qJ(x) E Wx \R. 
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The set RCA· is called effectively immune (Smullyan [30]) if there 

exists a p.r. function a :A·~N such that for all x EA·, ifWx C R, then 
o(x) ::/: 00 and #(Wx) ::; o(x). 
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It is worth noticing that there exist constructively immune sets which are not effec
tively immune and vice-versa. Moreover, if the complement of an immune set is 
r.e., then that set is constructively immune. Hence, we get: 

Theorem 5.2 For every t ~ 0, RANDf is constructively immune. 

With a different proof we show: 

Theorem 5.3 For all t ~ 0, RANDf is effectively immune. 

VI. RANDOM STRINGS ARE BOREL NORMAL 

Another important restriction pertaining a good definition of randomness concerns 
the frequency of letters and blocks of letters. In a "true random" string each letter 
has to appear with approximately the same frequency, namely Q-l. Moreover, the 
same property should extend to "reasonably long" substrings. 

These ideas have been stated by Borel [1, 2] for sequences. In Chaitin [10] one 
shows that Chaitin Omega Number representing the halting probability of a univer
sal self-delimiting computer is Borel normal. 

Motivated by these facts we formalize the Borel normality property for strings. 
First, letNi(x) be the number of occurrences of the letterai in the string x, 1 ::; i::; Q. 
Accordingly, the ratio Ni(X) Ilxl is the relative frequency ofthe letter ai in the string 
x. 

For strings of length m ~ 1 we proceed as follows. We consider the alphabet 
B =Am and constructthe free monoidB· = (Am)". Every x E B· belongs toA·, but 
the converse is false. For x E B· we denote by Ixlm the length of x (according to B) 
which is exactly Ixlm-1. 

For every 1 ::; i ::; Qm denote by N'(' the number of occurrences of Yi in the 
string x E B· ,B = {yt, ... ,YQ"'}. For example, take A = {O, 1 },m = 2,B = A2 = 
{00,01, 10, 11} = {Yl.Y2.Y3,Y4},X = YIY3Y3Y4Y3 E B·(x = 0010101110 EA·). It is 
easy to see that Ixl2 = 5, Ixl = 1O,NI(x) = I,Ni(x) = O,~(x) = 3,~(x) = 1. Note 
that the string Y2 = 01 appears three times into x, but not on the right positions. 

Not every string x EA· belongs to B· . However, there is a possibility "to ap
proximate" such a string by a string in B· . We proceed as follows. For x EA· and 
1 ::; j ::; Ixl we denote by [x; 11 the prefix of x of length Ixl - rem (lxi, j) (i.e. [x; j] 
is the longest prefix of x whose length is divisible by j). Clearly, [x; 1] = x and 
[x; 11 E (Aj)·. We are now in a position to extend the functionsN'(' from B· toA·: 
putN'('(x) =N'('([x;m]), in case Ixl is not divisible by m. Similarly, Ixlm = I [x; m] 1m. 
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Definition 6.1 A non-empty string x EA· is called t:-iimiting (ll is a fixed positive 
real) iffor aliI ~ i ~ Q,x satisfies the inequality: 

Definition 6.2 A string x EA' is called Borel nonnal ifffor every natural m, 1 ~ 
m ~ 10~lo~ lxi, 

for every 1 ~ j ~ Qm. 

IN,],(X) _ Q-ml < 
Ixlm -

In Calude [5] one proves the following result: 

10~lxl 
-Ixl-

Theorem 6.3 For every natural t ~ 0 we can effectively compute a natural 
number M/ (depending upon t) such that every string of length greater than M/ in 
RANDf is Borel normal. 

Theorem 6.3 can be used to prove the following result (a weaker version was ob
tained in Calude, Campeanu [6]): 

Theorem 6.4 For every natural t and for every string x we can find two strings 
u, v such that uxv E RANDf. 

VII. EXTENSIONS OF RANDOM STRINGS 

In this section we deal with the following problem: To what extent is it possible to 
extend an arbitrary string to a Chaitin random or non-random string? 

Theorem 6.4 says that every string x can be embedded into a Chaitin random 
string. The next results will put some more light on this phenomenon. 

Theorem 7.1 For every natural t and every string x EA· there exists a string u E 
A' such that for every string z EA· , xuz rt. RANDf. 

Corollary 7.2 For every natural t we can find a string x no extension of which is 
inRANDf· 

The above result shows that in Theorem 6.4 we need both the prefix u and the suffix 
v, i.e. it is not possible to fix u = f... and then find an appropriate w. However, such a 
possibility is regained--conforming with the probabilistic intuition-as far as we 
switch fromRANDf with a fixed t toRANDf with an appropriate, small t. 

Theorem 7.3 For every string x and natural n we can find a string u such that: i) 
Ixul ~ n, ii) for some natural t (which is about llo~ IxulJ), xu E RANDf· 
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VIII. CHAITIN'S MODEL VS KOLMOGOROV'S MODEL 

The original definition of random strings (see Kolmogorov [22J, Chaitin [9,10,15]) 
is motivated by the fact that 

maxK(x) = Ixl + 0(1); 
Ixl=n 

accordingly, x is called Kolmogorov t-random if K(x) ~ Ixl- t; RANDf stands for 
the set of Kolmogorov t-random strings.3 

All results cited in this paper concerning the adequacy of Chaitin's definition 
of random strings actually hold true for Kolmogorov's model of random strings.4 

To the best of our knowledge there are no "natural" properties associated with ran
domness valid for one model and not valid for the other one. The underlying com
plexitiesH and K are "asymptotical equivalent". Indeed, a crude relation between 
Hand K is the following: 

H(x) :::::K(x). 

A more exact relation was obtained by Solovay [28]. Put: 

Kl(X) = K(x), K"+l(x) = K(string(K" (x))) , 

Hl(x) =H(x), Hn+l(x) =H(string(Hn(x))). 

Theorem S.1 The following relations hold true: 

H(x) =K(x) +K2(x) +O(K3(x)), 

K(x) = H(x) _H2(x) +O(H3(x)). 

In view of Theorem 8.1 it might be the case that the set of Kolmogorov random 
strings actually coincides with the set of Chaitin random strings. This is not the 
case! 

Using the proof of Theorem 3.1 one can show that every Chaitin random string is 
Kolmogorov random. However, the converse is not true as Solovay [28] has shown. 
Actually, Solovay [29] conjectures that there exists a constant L such that for all 
sufficiently large n, there are at least Qn/2 strings of length n, s, such that: 

K(s) ~ Ixl-L, 

H(s) ~ lsi +H(string(n)) - ~K2(string(n)). 
So, many Kolmogorov random strings only "look" random, but in fact, they are not. 
It is an open question to find out "natural" properties related to the informal notion 
of randomness which hold true for Chaitin random strings, but fail to be true for 
Kolmogorov random strings. Martin-LOf analysis, developed in Section 4, is not 
fine enough for this problem. 



110 CRISTIAN CALUDE 

IX. THE ROLE OF THE UNDERLYING ALPHABET 

It seems that there is a wide spread feeling that the binary case encompasses the 
whole strength and generality of coding phenomena, at least from an algorithmic 
point of view. The problem is the following: Does there exist a binary asymptotical 
optimal coding of all strings over an alphabet with q > 2 elements? Surprisingly, 
the answer is negative. The answer is negative for both complexitiesK and H. As 
our main interest is directed to Chaitin complexity we shall outline the results for 
this complexity measure. 

Let q > p 2:: 2 be naturals, and fix two alphabets, A ,X, having q and p elements, 
respectively. The lengths of x EA· and y E X· will be denoted by IxlA and Iylx, 
respectively. Fix a universal Chaitin computer U : A· x A· ~ A· and denote by H 
its induced complexity. 

Does there exist a Chaitin computer C : X· x A· ~ A· which is universal for 
the class of all Chaitin computers acting on A·? 

The upshot is the following result (see Calude [4], Calude, JUrgensen, and Sa
lomaa [8]): 

Theorem 9.1 There is no Chaitin computer C : X· x A· ~ A· which is universal 
for the class of all Chaitin computers acting on A·. 

Let us study Chaitin complexity acting on alphabets of different size. We need some 
more notation. For every natural i 2:: 2 putAj = {O, 1, ... , i - 1 }, and let us denote by 
stringi(n) the nth string inA; (according to the quasi-lexicographical order induced 
by 0 < 1 < ... < i - 1); let Hi : Ai --t N be Chaitin complexity. 

Theorem 9.2 Let 2 $ q < Q. Then, there exists a constant a (which depends upon 
q, Q) such that for all x E A~ we have: 

Theorem 9.3 For every 2 $ q < Q and all x E A~, 

HQ(x) < Ixl +0(1). 

So, no string x E A~ is random over AQ.5 In the binary case we have only two such 
strings, namely 

00 ... 0 and 11 ... 1, 

which are obviously non-random. In the non-binary case we have 

strings over the alphabet AQ which are non-binary because they do not contain all 
Q letters. For instance, for Q = 3 one has 3 x 2n such strings, some of them (in 
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fact, according to Theorem 3.3, more then 3 x 2n- c2 , where C2 is a constant which 
depends on the size of the alphabet but not on the length n) are random as binary 
strings. So, it is shown once again, that randomness is a contextual property. 

x. CONCLUSION 

In view of the above discussion we conclude that Chaitin's model of random strings 
satisfy many natural requirements related to randomness, so it can be considered as 
an adequate model for finite random objects. It is a better model than the original 
(Kolmogorov) proposal. However, one has very little "insight" concerning the sig
nificance of the distinction between Chaitin's model and Kolmogorov's model, in 
the sense that no property-naturally associated with randomness--holdingtrue for 
Chaitin random strings and failing to be satisfied by Kolmogorov random strings is 
actually known. All descriptional complexities in the binary and non-binary cases 
have crucial differences, so it appears that it is only natural to discuss the complexity 
and randomness of finite objects in a non-necessarily binary framework. 
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NOTES 

This work has been partially supported by Auckland University Research Grant 
A18/XXXXX/62090!F3414022. 
Exact values for all additive constants discussed in this paper have been recently com
puted by Chaitin [19]-using a Lisp model of computation. 
So, the "context" is determined by the length and the size of the alphabet. 
Martin-LOf [26] used the blank-endmarkercomplexity of a string relative to its length 
to measure the degree of randomness of a string "within" the context of all strings 
having the same length. 
See Chaitin [11, 12, 13, 14, 15], Martin-Lof [26], Solovay [28], Calude [3, 4], Li and 
Vitanyi [23] for a more detailed discussion. 
This result follows also from Theorem 6.3. 
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