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a Halting Probability?
Cristian S. Calude and G. J. Chaitin

Turing’s famous 1936 paper “On computable
numbers, with an application to the Entschei-
dungsproblem” defines a computable real number
and uses Cantor’s diagonal argument to exhibit an
uncomputable real.

Roughly speaking, a computable real is one that
can be calculated digit by digit, one for which there
is an algorithm for approximating as closely as one
may wish. All the reals one normally encounters
in analysis are computable, like π ,

√
2, and e.

But they are much scarcer than the uncomputable
reals because, as Turing points out, the computable
reals are countable, whilst the uncomputable reals
have the power of the continuum. Furthermore,
any countable set of reals has measure zero, so
the computable reals have measure zero. In other
words, if one picks a real at random in the unit
interval with uniform probability distribution, the
probability of obtaining an uncomputable real is
unity. One may obtain a computable real, but that
is infinitely improbable.

But how about individual examples of uncom-
putable reals? We will show two: H and the halting
probability Ω, both contained in the unit inter-
val. Their construction was anticipated in 1927 by
Émile Borel, who “defined” a real number 0 < B < 1
in the following way. TheNth digit bN of B answers
the Nth question in an enumeration of all possible
yes/no questions that one can write in French.
Borel argued that knowledge of every point of the
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continuum would have strange consequences, and
B is a case in point. The number B is an oracle
that “would give answers to all past, present, and
future enigmas of science, history, and curiosity.”

Let’s change this into something more mathe-
matical, more realistic: an oracle for the halting
problem H.

Systematically enumerate all programs with no
input (say, lexicographically). The Nth bit hN of
the real number H tells us whether or not the Nth
computer program ever halts. H is an oracle for
the halting problem, which would be extremely
useful to have, as we will show later.

However, this oracle H for the halting problem
is extremely wasteful, because N instances of the
halting problem are not N bits of mathematical
information, they are only log2N bits of math-
ematical information. One only needs to know
how many of these N programs halt—a number
expressed in less than or equal to 1+ log2N bits—
to be able to determine which ones halt. Indeed,
one just runs in parallel all programs till exactly
the known number of programs that halt have
stopped: all the remaining programs won’t halt.

Using a slightly more sophisticated version
of this idea, we finally arrive at the halting

probability Ω, which is defined by the following
formula:

0 < Ω =
∑

program p halts

2−(size of p in bits) < 1.

This is the probability that a computer program
whose bits are generated one by one by indepen-
dent tosses of a fair coin will eventually halt. There
are actually many halting probabilities, not one,
because the precise numerical value of Ω = ΩL de-
pends on the choice L of programming language
for the programs p.
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Nota Bene: For this definition of a halting
probability to work properly, the computer pro-
gramming language L that the programs p are
written in has to satisfy certain requirements:

• The programs p have to be self-delimiting
(no extension of a valid program is a valid
program) or the sum won’t converge. This
enables one to construct large programs
by concatenating (abutting) subroutines.

• The language L has to be universal and
concise. More precisely, if any other lan-
guage L′ can program something in K bits,
then L can do it in ≤ K + cL′ bits.

For historical reasons, such a programming lan-
guage L is often referred to as a universal
self-delimiting Turing machine, and we shall do
so below.

What are the key properties of a halting
probability Ω?

By writing Ω in binary one can show that given
the first N bits ω1 . . .ωN of

Ω =
∑

K=1,2,3,...

ωK/2K ,

one can solve the halting problem for all programs
up to N bits in size. This implies that the bits of
Ω are algorithmically and logically irreducible:

• The smallest program for computing the
first N bits of Ω has ≥ N − O(1) bits.
(This algorithmic irreducibility property is
normally called (algorithmic) randomness.)

• Any formal axiomatic theory, like ZFC,
that enables one to prove what are the
values of the first N bits of Ω must have
≥ N −O(1) bits of axioms. (This is logical
irreducibility.)

In other words, the bits of Ω are the most con-
cise oracle for solving the halting problem, the
best possible compression of all the answers to
individual instances of the halting problem.

The philosophical and epistemological signif-
icance of Ω is primarily due to the following
surprising fact:

The bits ω1ω2ω3 . . . of the halting
probability Ω provide a perfect
simulation within pure mathemat-
ics, where all truths are necessary,
of an infinite stream of contingent,
accidental yes/no facts.

For instance, Ω provides us with a natural
example of what É. Borel termed an absolutely
normal real number. This means that if Ω is
written in any base b ≥ 2, then all blocks of K
base-b digits will occur with equal limiting relative
frequency b−K .

It is an immediate corollary of Ω’s algorithmic
and logical irreducibility that Ω is uncomputable
and that, in fact, no algorithm can compute more
than finitely many scattered bits of Ω. Some of

these bits have actually been determined. For a
natural choice of the programming language L,
the first 40 bits of Ω = ΩL are1

0001000000010000101001110111000011111010.

If we knew the first 7,780 bits,2 which is less than
one quarter of this note’s size in bits, we would
know whether the Riemann hypothesis is correct.

Now for some more advanced results.
Although uncomputable, Ω is the most “com-

putable” among all algorithmically random reals:
any ΩL is left-computable, i.e., the least upper
bound of a computable sequence of rationals. The
set {ΩL} of all halting probabilities of univer-
sal self-delimiting Turing machines L coincides
with the set of all left-computable algorithmically
random reals.

Can a halting probability be formally proved
algorithmically random in Peano arithmetic (PA)?
The answer depends on the representation: if
Ω = ΩL is given by a self-delimiting Turing machine
L whose universality (and conciseness) is proved
in PA, then PA proves that Ω is algorithmically
random. Every Ω can be written as Ω = ΩL, for
some L satisfying the above requirements, so it is
provably random in PA.3

Further Reading. For the intellectual history
leading up to Ω, including the role played by
Leibniz, see the second author’s Meta Math!. For
a technical treatment, see the first author’s In-
formation and Randomness, or An Introduction to
Kolmogorov Complexity and Its Applications by M.
Li and P. Vitányi. For halting probabilities for ver-
sions of a real programming language, LISP, and a
plethora of other nonstandard halting probabili-
ties and their applications, see the second author’s
Information-Theoretic Incompleteness. For some of
the latest results, see Computability and Random-
ness by A. Nies and Algorithmic Randomness and
Complexity by R. G. Downey and D. Hirschfeldt
(forthcoming). For discussions of the philosophical
impact and additional historical material, see the
second author’s Thinking about Gödel and Turing.
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