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Abstract

Calude, C. and C. Campeanu, Note on the topological structure of random strings, Theoretical
Computer Science 112 (1993) 383-390.

A string x is random according to Kolmogorov [10] if, given its length, there is no string y, sensibly
shorter than x, by means of which a universal partial recursive function could produce x. This remark-
able definition has been validated in several ways (see [12, 14,2, 11]), including a topological one [13].

Qur present aim is to develop a constructive topological analysis of the “size” of the set of random
strings in order to show to what extent they are incompressible. A substring of an incompressible
string can be compressible [11] (conforming a well-known fact from probability theory: every
sufficiently long binary random string must contain long runs of zeros). The converse operation
makes sense and we may ask the question: can a compressible string be “padded” in order to be
a substring of a random string? The answer depends upon the way we “pad” the initial string: for
instance, if we add only arbitrary long prefixes (suffixes), then the answer is no, but if we pad from
both directions, the answer is yes.

1. Preliminaries

The set of natural numbers will be denoted by N={0,1,2,...}. We work with
a finite alphabet X = {a,,q,....,a,}, with p>2 elements. The free monoid generated
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by X under concatenation is X* (A is the empty string). The length of a string
X=X{X5...X, Is [(x)=n (I(A)=0). The set X* is quasi-lexicographically ordered by
r<ay<a;< - <da,<da,a;<---<a,a,<---;let y(n) be the nth string in this order.

For recursion function theory and general notation see [2]. For every partial
recursive (p.r.) function ¢: X* x NS X* we define the Kolmogorov complexity
induced by ¢ to be the function Ky :X*xN->Nu{ow}] defined by
Kg(x|m)=min{l(z)|zeX*, ¢(z,m)=x} (min@=oc). Fix a universal Kolmogorov
algorithm - X* x N 5 X*, ie. a p.r. function such that for every p.r. function ¢ there
exists a natural ¢ (depending upon s and ¢) such that K, (x|m)< Ky (x|m)+c, for all
xeX* meN (Kolmogorov's Theorem); denote by K the complexity K,. A string
xeX* is called t-random (with respect to ) if K(x|l(x))={(x)—t (here teN). The
0-random strings are called random strings. The set of t-random strings is denoted by
RAND,.

For all natural n>t >0, one has

card {xe X *|l(x)=n, K(x|n)=n—t}=p"(1=p ")/ (p—1)>0

(see [ 3, 2]). Consequently, there exist random strings of every length and, moreover,
from a quantitative point of view, most strings of fixed length are t-random (t = 0); see
[2] for other estimations.

Let < be a partial order on X * which is recursive, i.e. “u<v” is a binary recursive
predicate. Denote by t(<) the topology generated by the family (U,)wex™,
U,={xeX*|w<x}. Note that 1(<) is a To-space (which is not 7 in case it is
not trivial. The closure operator in this space acts as follows: A< X*,
A—A={xeX*|x<z, for some zeA}. For every Ac X* and weX* the following
three statements are equivalent: (i) AnU,, =9, (ii)) AnU,, =0, (iii) weAd Aset Ac X*
is dense if A =X*. See [9] for more topological facts.

2. Results

In a topological space, a set A is rare if its closure contains no nonempty open set.
So, a set A in t(<)is rare if U, ¢ A, for every weX *. A set 4 is recursively rare if for
every we X * we can obtain, in a recursive way, a witness which certifies that U,, & A,
i.e. a string w < v, v¢ A. Thus, we obtain the following definition inspired by [1] (and
used in [13] in case of the prefix order).

Definition 2.1. A set A< X* is recursively rare if there exists a recursive function
r:N—N such that the following two conditions hold for all n>0:

(1) y(n)<y(r(n)),

(2) ANU,pim),=0.

Remark. The family of recursively rare sets is closed under subset. Every recursively
rare set is rare.
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Example 2.2. Each basic neighborhood U, is not (recursively) rare.

Remark. Let 4 = X*. The following assertions are equivalent: (i) A4 is recursively rare,
(ii) A is recursively rare, and (iii) there exists a recursive function r:N — N such that for
all natural n=0, y(n)<y(r(n)) and y(r(n))¢A.

Definition 2.3. A partial order < on X* is unbounded if for every xe X* and every
natural n>[(x), there exists a string y of length I(y) > n such that x < y.

Example 2.4. The following partial orders on X* are unbounded and recursive (here
W=wiw, ... W, l(w)=n and v=0v,0;...0,, [(t)=m; a,<a,<--<a, is the order
on X)
(1) w<,viff v=wu, for some ueX™* (prefix order),
(2) w<,v iff v=uw, for some ue X* (suffix order),
(3) w<,;v iff v=xwu, for some x,ue X* (infix order),
4 w<yv iff v=u,wyu,...u,wyu,.,, for some u,,u,,...,u,+,;€X* (embedding
order),
(5) w<q,viff w,_;<wv,_;, for all 0<i<min(m,n)—1 and if n>m, then w;=a,, for
all 1<j<<n—m (masking order),
(6) w <, iff [(W)<I(v) and w; <, for all i, 1 <i<I(w) (prefix-masking order),
(7) w<qv iff w<,v and w<, v (2-ps-codes order),
@) w<yv iff w<,v or w=xa;y, v=xa;z with i<j, for some x,y, zeX* (lexi-
cographical order). O

Remark. See [8, 7] for relevance of the above partial orders.

Example 2.5. If < is a partial recursive (unbounded) order on X * and f: X * - X * is
a recursive bijection, then the partial order: x < y iff f(x)<f(y), is recursive (un-
bounded). For instance, <, is obtained from <, using the mirror function
mir: X* - X* mir(A) =X, mir(x)=x, xe X, mir(xy)=mir(y) mir(x), xeX*, yeX.

Proposition 2.6. Assume that < is recursive and unbounded. A set A < X * is recursively
rare iff there exist a natural i and a recursive function f: N — N such that y(n)<y(f(n)),
for every neN and Uy ;m,NnA=0, for all strings with I(y(n))>i.

Proof. Define the recursive function ¢:N—N by g(rn)=min{m=0|y(n)<y(m)

and I(y(m))>i}. Take r=f°q. Clearly, y(n)<y(q(n))<y(f(q(n)))=y(r(n)). Finally,
H(y(q(n)))>i implies UypmynA=Uy(squmnA=0. O

Theorem 2.7. Assume that < is recursive and unbounded and suppose that there exists
a recursive function s:N— X* such that

(%) Sor all natural i, j, if s(i)<x, s(j)<x, for some string x, then i=j;
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then we can find a rare set which is not recursively rare.

Proof. Let (¢,)ns0, On: N %N be an acceptable Gédel numbering of the unary p.r.
functions. Define the set 4 ={y(r,)|n=0}, where t, is defined only in case ¢,(n) # oc
and t,=min{jeN|s(r) < y(j), (y(N)=1(s(n)+¢,(n)}. ~

The set A4 is rare. Assume, by reductio ad absurdum, that U, c A, for some xe X *. So,
there exists n= 0 such that x < y(t,), s(n) <y(t,), [(y(t,)) =1(s(n))+ ¢,(n). Pick a string
z with y(t,) <z and I(z) > [(y(t,)). Clearly, zeU .. We shall prove that z¢ A, a contra-
diction. For, if zeAd, there exists m=0 and w such that s(m)<w, z<w,
I(w) = l(s(m))+ ¢,,(m) and w is the least string (according to the quasi-lexicographical
order) having the above properties. So, s(n) < y(t,) <z<w, s(m)<w; by (), n=m, ie.
I(y(t,))=1(2).

Next we prove that A4 is not recursively rare. Again we proceed by reductio ad
absurdum. Suppose that, for all n=0, y(n)<y(r(n)) and ANU, =0, for some
fixed recursive function r:N—N. Let f, g:N— N be the recursive functions given by
y(f(n))=s(n) and g(n)=1(y(r(f(n)) —1(y(f(n))).

First note that y(r(f(n)))¢A, for all n=0, since y(r(f(MNeU,u(rm), and
AUy gy =9.

Secondly, g(n)# ¢,(n), for all n=0. If g(n)=¢,(n), for some n=0, then choose
the least j=0, with s(n)<y(j) and l(y(/))=1(s(n))+ ¢, (n)y=1(y(r(f(n}))); one has
y(j)=y(r(f(n)); so, y(r( fn))eA.

Finally, g = ¢;, for some i>=0; since ¢ is total, one has g(i)=¢;(i) # oo, a contra-
diction. [

Example 2.8. (a) The prefix and suffix orders satisfy the hypothesis of Theorem 2.7.
For instance, in case of suffix order take s(i)=a,a5. (b) If < is a partial recursive,
unbounded order having the property (*) with respect to s, then the partial recursive
order <, has the same property for /7' - s.

Remark. Theorem 2.7 was proved in [13] for the prefix order.

Proposition 2.9. Assume that < is recursive, unbounded and for all strings x, y there
exists a string = with x<z and y<z. Then (i) each rare set is recursively rare and
(i) every nonrare set is dense.

Proof. (i) Let zeX* with U.nA=0 and define the recursive function f:N—-N
by f(m)=min{ieN|z<y(i) and y(n)<y(i)}. Clearly, y(n)<y(f(n)) and
Uy rmnAcU.nAd=0.

(i) Let A< X* be a nonrare set, i.e. U, = A for some we X *. Take xe X* and pick
a string y such that w<y and x<y. One has xeU,cU,cA=A4. U

Example 2.10. The infix, embedding, masking and prefix-masking orders satisfy the
hypothesis of Proposition 2.9.
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Theorem 2.11. Let < be recursive and unbounded. Then, there exists a natural ¢>0
such that for all naturals m and d, with d =2 c, the set

A(m,d)={xe X*|I(x)=m, K(x|l(x))<d}

is dense.

Proof. Define the recursive function f:N-N by f(n)=min{i=0|ly(i))=n,
y(m)<y(i)}. Put Bm)={y(f(n))[nzm} and construct the p.r. function
G X*x NS X* o(x, I(f(m)=y(f(n)), for all xeX* and n=m.

Clearly, Ky (y(f(n)(y(f(n))))=0, for all n=m; so, according to Kolmogorov’s
Theorem, there exists a constant ¢>0 such that K(y(f(n)}|(y(f(n))))<c, for all
nzm.

Next we show that for every d>=c¢, B(m)c A(m,d). Indeed, if n=m, then
Hy(f(m))Znzm and K(y(f N[ 1(y(f(n)))<c<d.

Finally, to prove that B(m)=X* we show that for every xe X* there exists n=m
such that x <y(f(n)). If x=y(k), k=m, take n=k (since x <y(f(k)), k=m). If x=y(k)
with k <m, then take y(i) with x<y(i)and I(y(i)})=zm: x<y(i)<y(f(i))and izm. O

Corollary 2.12. For every natural t 20, non-RAND,={xe X*| K(x|l(x))<l(x)—t} is
dense in case < is recursive and unbounded.

Proof. For every d=0, A(1+d+t,d)cnon-RAND, (here A(1+d+1t,d) comes from
Theorem 2.11). Pick d >c¢, where ¢ also comes from Theorem 2.11. O

Remarks. (a) A stronger form of the above statement can be easily obtained: for every
increasing, unbounded (not necessarily recursive) function f:N-—N, the set
T(f)={xeX*|K(x|I(x))<f(l(x))} is dense. Indeed, pick a natural D such that
f(m)>d whenever m>=D (here d comes from Theorem 2.11). If xe X*, I(x)> D, then
fU(x))>d; so, A(D,d)cT(f) a.s.o.

(b) We can interpret Corollary 2.12 as follows: each section of the universal
Martin-Lof test V()= {{x,m)eX* x N | K(x, [(x))<I(x)—m} is dense: see, for details,
(5,2].

So, every set non-RAND, is “large” with respect to all topologies considered in
Examples 2.4 and 2.5 (for unbounded <). Now we pass to the study of RAND,.
A routine verification shows the validity of Lemma 2.13.

Lemma 2.13. A set AcX* is rare (recursively rare, dense) in t(<) iff
f(A)={f(x)|xeA} is rare (recursively rare, dense) in ©(< ), where f: X*—>X* is

recursive and bijective.

Corollary 2.14. For every t=>0, RAND, is recursively rare in 1(<,), (<), 1(<g).
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Proof. The first part comes from [13, Theorem 4]; the second follows from Lemma
2.13 and Example 2.5. For the third let rs and rp be the recursive functions satisfying
Definition 2.1(1) and 2.1(2) for RAND, in 1(<,), 7(<,), respectively; the recursive
function r(n)=min{k=0] y(rp(n)) <,y(k) and y(rs(n))<,y(k)} will work for RAND,
int(<q) O

Proposition 2.15. For every t 20, RAND, is recursively rare in 1(<,,).

Proof. Define the recursive function f:N—N by y(f(n))=a'*"” and the p.r. function
¢ X*x N X* d(x,n)=xa’ ™" in case n>1(x).

Let i >t + ¢, where ¢ comes from Kolmogorov’s Theorem applied to ¢ and ¢. Note
that y(n) <, y(f(n)); every we U ;) with [(y(n)) > i, can be written as w=xy( f(n)),
for some xeX*. One has K(w{/(w)<Kg(w|l(w))+c<IW)—I(y(f(n))+c=1(w)—
I(y(n)+c<l(w)=l(y(n)+i—t<lw)~t; so, w¢RAND,, ie. U, ;) RAND,=0.
The result follows from Proposition 2.6. [

Proposition 2.16. For every t 20, RAND, is recursively rare in 1(<,py).

Proof. Use the partial recursive function ¢:X*xN % X* ¢(x,n)=a"'®x, if
n=l(x), in a similar construction as that displayed in the proof of Proposition
215 O

Lemma 2.17. Assume that < is a recursive partial order on X* and let Ac X*. If
for every xeX* we can find a natural m and a string w, such that x<w and
card{yeX*|l(y)=m, w<yl>card{ze X*|l(z)=m, z¢ A}, then A is dense.

Proof. Given a string x we can find m and w with the above properties. Accordingly,
there exists ye A, with w<y. Since x <w, it follows that x<y, ie. xe A 0O

Corollary 2.18. Let 1 =0. If for every string x there exists a natural m and a string w,
such that x <w and card {ye X*|l(y)=m, w<y}-(p—1)=p™ ', then RAND,=X*.

/
Proof. It is known (see [2]) that card{yeX*|l(y)=m, K(ylm)<m—t}<

(P —=DAp—1H. O
Theorem 2.19. If p>2 or t >0, then RAND, is dense with respect to the infix order.

Proof. Recall that p=card X. We shall use Corollary 2.18; the proof will be divided
into several steps.

A string xe X* is called unbordered if for all strings y,z with y#A, x#yzy [6]
(unbordered strings are called variate in [4]).
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Fact 2.20. Let x be an unbordered string of length n=3. Let m be natural. Put
R(m,x)=p"-card{ye X *|l(y)=m, x<;y}. Then

R(m,x)=p", 0<m<n,

R(m+ 1,x)=p-R(m,x)—R(m+1—n,x), m=n

Fact 2.21. For every unbordered string x of length n=3 there is a natural M such that
for every m=M, R(m%, x)< p™ ~™/(p—1).

See [4] for the proofs of Facts 2.20 and 2.21.

Now, given a string x, we construct the unbordered string v(x)=a}® xay™,
x <;v(x). We shall prove the existence of a natural m such that card {ye X * | l(y)=m,
y<iv(x)} (p—1)=p"~", the condition required by Corollary 2.18 in order to assure
that RAND, is dense.

From Fact 2.21 it foliows that, for every i= M,

R(i%,0(x))<p” " (p—1).
Take m>=max(M,t). The required inequality becomes
P (p—=1)<pm (1= 1/p'(p— 1),

which is true in case p>2 or t>0. [

Open problem. [s RAND dense with respect to the infix order in the binary case? In
view of Proposition 2.9, RAND is rare or dense.

Corollary 2.22. For every t=0. RAND, is dense with respect to the uniform and
embedding orders.

Proof. If w<;v, then w< v {(w=v or I(w)<I(v)) and w<,v. O

Final comment. For every string x we can construct a context (u, v) such that uxv is
t-random, whereas there exist strings y and z such that uy (respectively, zv) are not
t-random, for all strings u and v.
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