
Theoretical Computer Science 112 (1993) 383-390 
Elsevier 

383 

Note 

Note on the topological structure 
of random strings* 

Communicated by A. Salomaa 
Received July 1991 
Revised April 1992 

Ahsrruct 

Calude. C. and C. Campeanu, Note on the topological structure of random strings, Theoretical 
Computer Science I I2 (1993) 3833390. 

A string Y is random according to Kolmogorov [lo] if, given its length, there is no stringy, sensibly 
shorter than .x, by means of which a universal partial recursive function could produce X. This remark- 
able definition has been validated in several ways (see [12,14,2,1 I]), including a topological one [13]. 

Our present aim is to develop a constructive topological analysis of the “size” of the set of random 
strings in order to show to what extent they are incompressible. A substring of an incompressible 
string can be compressible [ll] (conforming a well-known fact from probability theory: every 
sufficiently long binary random string must contain long runs of zeros). The converse operation 
makes sense and we may ask the question: can a compressible string be “padded” in order to be 
a substring of a random string’? The answer depends upon the way we “pad” the initial string: for 
instance, if we add only arbitrary long prefixes (suffixes), then the answer is no, but if we pad from 
both directions, the answer is yes. 

1. Preliminaries 

The set of natural numbers will be denoted by N = { 0,  1,2, . }. We work with 
a finite alphabet X= (a,,~~,..., a,}, with ~32 elements. The free monoid generated 
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by X under concatenation is X* (h is the empty string). The length of a string 
.x=.xr.x2..._ Y, is I(x)= 17 (I(h)=O). The set X* is quasi-lexicographically ordered by 
h<u, <u2< .t. <u,,<a,a,< ... <u,u,,< ...; let I, be the nth string in this order. 

For recursion function theory and general notation see [2]. For every partial 
recursive (pr.) function 4: X* x P& :X* we define the Kolmogorov complexity 
induced by 4 to be the function K,: X* x N -+ Nu ( .Y”) defined by 
K~(xIm)=minIl(z)lzEX*, 4(z, m) = .x) (min @ = =c). Fix a unicersal Kolmoyoroc 

ulyorithm $ : X* x N : X*, i.e. a p.r. function such that for every p.r. function 4 there 
exists a natural c (depending upon I,/? and 4) such that Kti(x 1 m) < K,(x 1 m) + c, for all 
XEX*, rn~kJ (Kolmogorov’s Theorem); denote by K the complexity K,. A string 
xeX* is called t-random (with respect to $) if K(xll(.x))> /(x)-t (here t~kJ). The 
O-random strings are called random strings. The set of t-random strings is denoted by 
RAND,. 

For all natural II 3 t 3 0, one has 

cardj.ugX*lI(x)=n, K(x~n)3n-t)3p”(l--p~‘)/(p--l)~O 

(see [3, 21). Consequently, there exist random strings of every length and, moreover, 
from a quantitative point of view, most strings of fixed length are r-random (t 30); see 
[2] for other estimations. 

Let < be a partial order on X* which is recursive, i.e. “U < c” is a binary recursive 
predicate. Denote by T(C) the topology generated by the family ( Uw)wEx*, 

U,= {x~X*l w <x). Note that T( <) is a T,,-space (which is not T, in case it is 
not trivial). The closure operator in this space acts as follows: A c X*, 

AHA={xEX*~.~<Z, for some ZEA). For every AcX* and weX* the following 
three statements are equivalent: (i) An U, = 8, (ii) An U,, = 0, (iii) ~‘$2. A set A c X* 
is dense if A= X*. See [9] for more topological facts. 

2. Results 

In a topological space, a set A is rare if its closure contains no nonempty open set. 
So, a set A in T( < ) is rare if U,, $2, for every WEX *. A set A is recursioely rare if for 
every WEX* we can obtain, in a recursive way, a witness which certifies that U,,,$ 2, 
i.e. a string w < D, ~$2. Thus, we obtain the following definition inspired by [l] (and 
used in [ 133 in case of the prefix order). 

Definition 2.1. A set AcX* is recursively rare if there exists a recursive function 
r : N -+ N such that the following two conditions hold for all IZ 30: 

(1) y(n) < y(r(n)L 

(2) An uy(rCnjj = 8. 

Remark. The family of recursively rare sets is closed under subset. Every recursively 
rare set is rare. 



385 

Example 2.2. Each basic neighborhood U,,, is not (recursively) rare. 

Remark. Let A c X*. The following assertions are equivalent: (i) A is recursively rare, 
(ii) A is recursively rare, and (iii) there exists a recursive function r: N --f N such that for 
all natural ~30, y(n)<y(r(n)) and y(r(n))$A. 

Definition 2.3. A partial order < on X* is unbounded if for every XIZX* and every 
natural n > l(x), there exists a string y of length I(y) 3 n such that x < y. 

Example 2.4. The following partial orders on X* are unbounded and recursive (here 
w=w1w2...w,, l(w)=n and T=u~v~...v,,,, l(u)=m; a,<a2<...<a, is the order 
on X): 

(1) w cP u iff v = wu, for some UEX* (prefix order), 
(2) w cS v iff u= uw, for some ucX* (suffix order), 
(3) ~t’<r v iff u=xwu, for some X,UEX* (infix order), 
(4) VV<,,V iff c=uIw1u2...u,w,u,+1, for some u~,u~,...,u,+~EX* (embedding 

order), 
(5) w<,v iff M’,_i<U,_i, for all O<i<min(m,n)-1 and if n>m, then wj=Ul, for 

all 1 <j < n -m (masking order), 

(6) w<pm v iff I(w)< I(v) and bvi < vi, for all i, 1 <i< I(w) (prefix-masking order), 
(7) w cd r iff w cP L’ and w cS c’ (2-ps-codes order), 
(8) w<,v iff w<,v or w=.xai~‘, v=xnjz with i<j, for some x, y,z~X* (lexi- 

cographical order). 0 

Remark. See [8, 73 for relevance of the above partial orders. 

Example 2.5. If < is a partial recursive (unbounded) order on X * andf: X * +X* is 
a recursive bijection, then the partial order: x <r y iff f(x) <,f(y), is recursive (un- 
bounded). For instance, cS is obtained from cp using the mirror function 
mir: X*+X*, mir(h) = h, mir(x) = x, xeX, mir(xy)=mir(y) mir(x), xfzX*, yEX. 

Proposition 2.6. Assume that < is recursive and unbounded. A set A c X * is recursively 

rare ifthere exist a natural i and a recursive function f: N + N such that y(n) < y( f (n)), 

for every ncN and CJs( S,n,, n A = 0, ,for all strings with 1 (y(n)) > i. 

Proof. Define the recursive function q: N +N by q(n)=min{m>Oly(n)<y(m) 

and l(y(m))> i}. Take r =fi q. Clearly, y(n)<y(q(n))<y(,f(q(n))) = y(r(n)). Finally, 
Wq(n))) > i implies ~,~,~,~~~A = ~,3cfcqcnJJpA = 0. 0 

Theorem 2.7. Assume that < is recursive and unbounded and suppose that there exists 

a recursive function s: N +X* such that 

(*) for all natural i, j, if s(i) < x, s(j) < x, for some string x, then i=j; 
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then we can ,find a rare set which is not recursively rare. 

Proof. Let ( cbnhI 2 “, 4”: N : fV be an acceptable Godel numbering of the unary p.r. 
functions. Define the set A = { v( t,,) 1 n 2 0)) where t, is defined only in case 4,,(n) # a 
and t,=min(jEFUIs(n)<Js(j), I(~(j))>/(s(n))+#,,(Fr)}. 

The set A is rare. Assume, by reductio ad ahsurdum, that U, c A, for some .YEX*. So, 
there exists ~20 such that s<y(t,,), s(n)<y(t,,), I(y(t,))>I(s(n))+#,(n). Pick a string 
z with y(tn) < z and I(z) > /(y(r,,)). Clearly, ZEU,. We shall prove that z&A, a contra- 
diction. For, if ZEN, there exists 1~30 and 1~ such that s(m)< w, z<~L’, 
I(w) 3 /(s(m))+ 4,,,(m) and v is the least string (according to the quasi-lexicographical 
order) having the above properties. So, s(n) < y( t,) <z < IV, s(m) < w; by (*), II = m, i.e. 
44’(rn)) = l(z). 

Next we prove that A is not recursively rare. Again we proceed by reductio ad 
absurdum. Suppose that, for all n>O, y(n)<y(r(n)) and An UYtr(,,)) =@ for some 
fixed recursive function r: N + N. Let ,f; g: KI + N be the recursive functions given by 
~(.f(n))=s(n) and u(n)= MU’(n))))- MBr))). 

First note that y(r(,f’(n)))$A, f or all ~30, since ?‘(r(,f(n)))EU,,,,s,n))) and 
AflU -8. )‘W(f‘(fl)H - 

Secondly, g(n) # @,,()I), for all II 30. If y(n)=&(n), for some ~20, then choose 
the least j>O, with s(n) < y(j) and I();( j)) > /(s(n))+ 4,,(n) = I(y(r(,f(n)))); one has 
y(j)=y(r(f ln))) ;  so ,  .v(r( . f‘(~l))kA .  

Finally, y = rbi, for some i&O; since 9 is total, one has g(i)= tii(i) # CXI, a contra- 
diction. 0 

Example 2.8. (a) The prefix and suffix orders satisfy the hypothesis of Theorem 2.7. 
For instance, in case of suffix order take s(i)= al a;. (b) If < is a partial recursive, 
unbounded order having the property (*) with respect to s, then the partial recursive 
order <r has the same property for .f’- 1 s. 

Remark. Theorem 2.7 was proved in [13] for the prefix order. 

Proposition 2.9. Assume that < is recursice, unbounded and for all strings x, y there 

exists a string z \.vith x <I and y< 7. Then (i) each rare set is recursively rare and 

(ii) every nonrare set is dense. 

Proof. (i): Let ZEX* with U=nA =@ and define the recursive function ,f: RY -tN 
by j(n)=min (iEN 1 ;<y(i) and y(n)<y(i)). Clearly, y(n)<y(.f(n)) and 
U ycf(,,,nA = U,nA =@. 

(ii): Let AC X* be a nonrare set, i.e. I/,. c 2 for some \vEX*. Take .YEX* and pick 
a string 4’ such that \V<Y and S<J. One has .YEU,.CU,,.CA=A. 0 

Example 2.10. The infix, embedding, masking and prefix-masking orders satisfy the 
hypothesis of Proposition 2.9. 
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Theorem 2.11. Let < be recursive and unbounded. Then, there exists a natural c>O 

such that for all naturals m and d, with d 3 c, the set 

A(m,d)={xEX*Il(x)>m, K(xIl(x))dd} 

is dense. 

Proof. Define the recursive function f: N-+N by ,f(n)=min{iaO( l(y(i))an, 

y(n)<y(i)}. Put B(m)={y(f(n))(n>m} and construct the p.r. function 
4:X*x N-$X*, 4(-u, l(f(n)))=y(f(n)), for all XEX* and nam. 

Clearly, K+(y(f(n))l l(y(f(n))))=O, for all n3m; so, according to Kolmogorov’s 
Theorem, there exists a constant c>O such that K(y(f(n)) 1 l(y(f(n))))<c, for all 
n3m. 

Next we show that for every dac, B(m)cA(m,d). Indeed, if n>m, then 
l(y(f(n)))3n>m and K(y(f(n))l l(y(f(n))))dcdd. 

Finally, to prove that B(m)=X* we show that for every XEX* there exists n>m 

such that x<y(,f(n)). If x=y(k), kBm, take n=k (since x<y(f(k)), k>m). If x=y(k) 

with k<m, thentakey(i) withx<y(i)andl(y(i))>m:x<y(i)<y(f(i))andi>m. 0 

Corollary 2.12. For every natural t>O, non-RAND,={xeX* 1 K(xl l(x))<l(x)-t} is 
dense in case < is recursive and unbounded. 

Proof. For every d 3 0, A( 1 + d + t, d) c non-RAND, (here A( 1 + d + t, d) comes from 
Theorem 2.11). Pick d 3 c, where c also comes from Theorem 2.11. I7 

Remarks. (a) A stronger form of the above statement can be easily obtained: for every 
increasing, unbounded (not necessarily recursive) function f: N+N, the set 
T(,f)=ix~X* I K(x I l(x))df‘(l(x))) is d ense. Indeed, pick a natural D such that 
,f(m)> d whenever m3D (here d comes from Theorem 2.11). If xcX*, l(x)> D, then 
f(l(x))>d; so, A(D,d)c T(f) a.s.o. 

(b) We can interpret Corollary 2.12 as follows: each section of the universal 
Martin-Liif test V(ll/) = {(x, m)EX* x N I K (x, l(x)) < /(x) - rnj is dense: see, for details, 
r5,21. 

So, every set non-RAND, is “large” with respect to all topologies considered in 
Examples 2.4 and 2.5 (for unbounded <). Now we pass to the study of RAND,. 

A routine verification shows the validity of Lemma 2.13. 

Lemma 2.13. A set AcX* is rare (recursively rare, dense) in t( <) iff 

f(A)=if(x)l.u~A} zs rare (recursively rare, dense) in t( cf), where f: X*--+X* is 

recursive and bijective. 

Corollary 2.14. For every t 3 0, RAND, is recursively rare in T( cp), z( <,), T( -=+). 
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Proof. The first part comes from [13, Theorem 41; the second follows from Lemma 
2.13 and Example 2.5. For the third let rs and rp be the recursive functions satisfying 
Definition 2.1(l) and 2.1(2) for RAND, in z( cp), T( cs), respectively; the recursive 
function r(n)=min (k>O) J,(rp(n))<,y(k) and y(rs(n))<,Ja(k)) will work for RAND, 
in z(<~). 0 

Proposition 2.15. For every t 30, RAND, is recursively rare in r( <,,,). 

Proof. Define the recursive function .f: fV 4 N by y(.f’( n)) = ~2~‘“)’ and the p.r. function 
4:X*x N>X*, ~(x,n)=xc~“,-“~‘, in case n>/(x). 

Let i > t + c, where c comes from Kolmogorov’s Theorem applied to rl/ and 4. Note 
that y(n) <,.r(.f‘(n)); every \VE U.,.(.l.,n,, with I(y(n)) > i, can be written as w = xy(f(n)), 
for some XEX*. One has K(~t~(I(~~))6K~(wII(w))+c~l(~~)-/(~(,~(n)))+c=I(w)- 
/(y(n))+c<I(vv)-I(y(n))+i-t<I(w)-t; so, M~#RAND,, i.e. U,,f,,,,nRAND,=@ 
The result follows from Proposition 2.6. 0 

Proposition 2.16. For euery t 20, RAND, is recursiaely rure in T( -c~,,,). 

Proof. Use the partial recursive 
n>!(x), in a similar construction 
2.15. 0 

Lemma 2.17. Assume that < is a recursive partial order on X* and let AC X*. !f 

function 4 : X* x i% 2 X*, 4(x, n) = u:-‘(~)x, if 
as that displayed in the proof of Proposition 

for etleq, xEX* we can ,find u natural m and II striny IV, such that x <w und 

card{yEX*II(y)=m, w<y)>card{zEX*(I(z)=m, z$A), then A is dense. 

Proof. Given a string x we can find m and u’ with the above properties. Accordingly, 
there exists YE A, with 1%’ <J?. Since x < w, it follows that x < y, i.e. XE A. 0 

Corollary 2.18. Let t 3 0. !f.for every string x there exists a natural m und a string w, 

such that x<wund cardjy~X*(I(y)=m, w<y).(p-l)>p”-‘, then RAND,=X*. 

Proof. It is known (see [2]) that card{yEX*/I(y)=m, K(ylm)<m-t}< 

(pm-‘- l)/(p- 1). 0 

Theorem 2.19. lf p > 2 or t > 0, then RAND, is dense with respect to the infix order. 

Proof. Recall that p=card X. We shall use Corollary 2.18; the proof will be divided 
into several steps. 

A string .YEX * is called unhordered if for all strings y, z with y #h, x # yzy [6] 
(unbordered strings are called variate in 141). 
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Fact 2.20. Let x be an unbordered string qf length n33. Let m be natural. Put 

R(m,x)=p”-card{yEX*jI(y)=m, X<iy}. Then 

R(m,x)=p”, Qdm<n, 

R(m+l,x)=p.R(m,x)-R(m+l-n,x), man. 

Fact 2.21. For every unbordered string x of length n 3 3 there is a natural M such that 

for every m3M, R(m’,x)< pm’-“/(p- 1). 

See [4] for the proofs of Facts 2.20 and 2.21. 
Now, given a string x, we construct the unbordered string u(x)=a:(x)xa:‘X’, 

x<ic’(x). We shall prove the existence of a natural m such that card{yEX* 1 !(y)=m, 

~<iU(X)J~(p-l)3pm-‘j the condition required by Corollary 2.18 in order to assure 
that RAND, is dense. 

From Fact 2.21 it follows that, for every i 3 M, 

R(i2,u(x))<pi’-i/(p- 1). 

Take m > max(M, t). The required inequality becomes 

P “‘-“/(p- 1)6p”(l- W(p- 1)X 

which is true in case p > 2 or t > 0. 0 

Open problem. Is RAND dense with respect to the infix order in the binary case? In 
view of Proposition 2.9, RAND is rare or dense. 

Corollary 2.22. For eoery t 30. RAND, is dense with respect to the uniform and 

embedding orders. 

Proof. If IV<~U, then u’<,u (w=a or I(w)<I(v)) and w<hv. 0 

Final comment. For every string x we can construct a context (u, u) such that uxu is 
t-random, whereas there exist strings y and z such that uy (respectively, zv) are not 
t-random, for all strings u and u. 
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