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Abstract. In this paper we define and study finite state complexity of
finite strings and infinite sequences and study connections of these com-
plexity notions to randomness and normality. We show that the finite
state complexity does not only depend on the codes for finite transducers,
but also on how the codes are mapped to transducers. As a consequence
we relate the finite state complexity to the plain (Kolmogorov) complex-
ity, to the process complexity and to prefix-free complexity. Working with
prefix-free sets of codes we characterise Martin-Löf random sequences in
terms of finite state complexity: the weak power of finite transducers is
compensated by the high complexity of enumeration of finite transducers.
We also prove that every finite state incompressible sequence is normal,
but the converse implication is not true. These results also show that
our definition of finite state incompressibility is stronger than all other
known forms of finite automata based incompressibility, in particular the
notion related to finite automaton based betting systems introduced by
Schnorr and Stimm [28]. The paper concludes with a discussion of open
questions.

1 Introduction

Algorithmic Information Theory (AIT) [7,18,25] uses various measures of de-
scriptional complexity to define and study various classes of “algorithmically
random” finite strings or infinite sequences. The theory, based on the existence
of a universal Turing machine (of various types), is very elegant and has produced
many important results.
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The incomputability of all descriptional complexities was an obstacle towards
more “down-to-earth” applications of AIT (e.g. for practical compression). One
possibility to avoid incomputability is to restrict the resources available to the
universal Turing machine and the result is resource-bounded descriptional com-
plexity [6]. Another approach is to restrict the computational power of the ma-
chines used, for example, using context-free grammars or straight-line programs
instead of Turing machines [13,20,21,27].

The first connections between finite state machine computations and random-
ness have been obtained for infinite sequences. Agafonov [1] proved that every
subsequence selected from a (Borel) normal sequence by a regular language is
also normal. Characterisations of normal infinite sequences have been obtained
in terms of finite state gamblers, information lossless finite state compressors
and finite state dimension: (a) a sequence is normal if and only if there is no
finite state gambler that succeeds on it [28] (see also [5,15]) and (b) a sequence
is normal if and only if it is incompressible by any information lossless finite
state compressor [33]. Doty and Moser [16,17] used computations with finite
transducers for the definition of finite state dimension of infinite sequences. The
NFA-complexity of a string [13] can be defined in terms of finite transducers that
are called in [13] “NFAs with advice”; the main problem with this approach is
that NFAs used for compression can always be assumed to have only one state.

The definition of finite state complexity of a finite string x in terms of a
computable enumeration of finite transducers and the input strings used by
transducers which output x proposed in [9,10] is utilised to define finite state
incompressible sequences. We show basic connections of this new notion com-
pared to standard complexity measures in Theorem 5: It lies properly between
the plain complexity as a lower bound and the prefix-free complexity as an upper
bound in the case that the enumeration of transducers considered is a universal
one. Furthermore, while finite state incompressibility depends on the enumera-
tion of finite transducers, many results presented here are independent of the
chosen enumeration. For example, we show that for every enumeration S every
CS–incompressible sequence is normal, Theorem 13. Furthermore, we can show
that a sequence is Martin-Löf random iff it satisfies a strong incompressibility
condition (parallel to the one for prefix-free Kolmogorov complexity) for every
measure CS based on some perfect enumeration S. One can furthermore transfer
this characterisation to the measure CS for universal enumerations S.

Our notation follows standard textbooks [4,7]:

– By {0, 1}∗ we denote the set of all binary strings (words) with ε denoting
the empty string; {0, 1}ω is the set of all (infinite) binary sequences.

– The length of x ∈ X∗ is denoted by |x|.
– Sequences are denoted by x,y; the prefix of length n of the sequence x is

denoted by x � n; the nth element of x is denoted by x(n).
– By w � u and w � y we denote that w is a prefix of u and y, respectively.
– If A,B are sets of strings then the concatenation is defined as A ·B = {xy :

x ∈ A, y ∈ B}.
– A prefix-free set A ⊂ X∗ is a set with the property that for all strings

p, q ∈ X∗, if p, pq ∈ A then p = pq.
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– By K, KmD, and H we denote, respectively, the plain (Kolmogorov) com-
plexity, the process complexity and the prefix-free complexity for appropri-
ately fixed universal Turing machines.

2 Admissible Transducers and Their Enumerations

We consider transducers which try to generate prefixes of infinite binary se-
quences from shorter binary strings and consider hence the following transduc-
ers: An admissible transducer is a deterministic transducer given by a finite set
of states Q with starting state q0 and transition functions δ, μ with domain
Q× {0, 1}, and say that the transducer on state q and current input bit a tran-
sitions to q′ = δ(q, a) and appends w = μ(q, a) to the output produced so far.

One can generalise inductively the functions μ and δ by stating that μ(q, ε) = ε
and μ(q, av) = μ(q, a) ·μ(δ(q, a), v) for states q and input strings av with a being
one bit; similarly, δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v). The output T (v) of a
transducer T on input-string v is then μ(q0, v).

A partially computable function S with a prefix-free domain mapping binary
strings to admissible transducers is called an enumeration; for a σ in the domain
of S, the admissible transducer assigned by S to σ is denoted as T S

σ .

Definition 1 (Calude, Salomaa and Roblot [9,10]). A perfect enumeration
S of all admissible transducers is a partially computable function with a prefix-
free and computable domain mapping each binary string σ in the domain to an
admissible transducer T S

σ in a one-one and onto way.

Note that partially computable one-one functions with a computable range (as
considered here) have also a computable inverse. It is known that there are
perfect enumerations with a regular domain and that every perfect enumeration
S can be improved to a better perfect enumeration S′ such that for each c there
is transducer represented by σ in S and σ′ in S′ and these representations satisfy
|σ′| < |σ| − c, [9,10].

Definition 2. A universal enumeration S of transducers is a partially com-
putable function with prefix-free domain whose range contains all admissible
transducers such that for each further enumeration S′ of admissible transducers
there exists a constant c such that for all σ′ in the domain of S′, the transducer
T S′
σ′ equals to some transducer T S

σ where σ is in the domain of S and |σ| ≤ |σ′|+c.

The construction of a universal enumeration S can be carried over from Kol-
mogorov complexity: If U is a universal machine for prefix-free Kolmogorov
complexity and S′ is a perfect enumeration of the admissible transducers, then
the domain of S is the set of all σ such that U(σ) is defined and in the domain
of S′ and T S

σ is T S′
U(σ). The fact that U is a universal machine for prefix-free Kol-

mogorov complexity implies that also S is a universal enumeration of admissible
transducers.
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3 Complexity and Randomness

Recall that the plain complexity (Kolmogorov) of a string x ∈ {0, 1}∗ w.r.t. a
partially computable function φ : {0, 1}∗ → {0, 1}∗ is Kφ(x) = inf{|p| : φ(p) =
x}. It is well-known that there is a universal partially computable function U :
{0, 1}∗ → {0, 1}∗ such that

KU (x) ≤ Kφ(x) + cφ

holds for all strings x ∈ {0, 1}∗. Here the constant cφ depends only on U and φ
but not on the particular string x ∈ {0, 1}∗. We will denote the complexity KU

simply by K. Furthermore, in the case that one considers only partially com-
putable functions with prefix-free domain, there are also universal ones among
them and the corresponding complexity, called prefix complexity is denoted with
H ; like K, the prefix-free complexity H depends only up to a constant on the
given choice of the underlying universal machine.

Schnorr [29] considered the subclass of partially computable prefix-monotone
functions (or processes) ψ : {0, 1}∗ → {0, 1}∗, that is, functions which satisfy the
additional property that for strings v, w ∈ dom(ψ), if v � w, then ψ(v) � ψ(w).
For this class of functions there is also a universal partially computable prefix-
monotone function W : {0, 1}∗ → {0, 1}∗ such that for every further such ψ
(with the same properties) there is a constant cψ, depending only on W and ψ,
fulfilling

KW (x) ≤ Kψ(x) + cψ, (1)

for all binary strings x ∈ {0, 1}∗.
Martin-Löf [23] introduced the notion of the random sequences in terms of

tests and Schnorr — as cited by Chaitin [11] — characterised them in terms of
prefix-free complexity; we take this characterisation as a definition. Furthermore,
Schnorr [29] showed that the same definition holds for process complexity.

Definition 3 (Martin-Löf [23]; Schnorr [11,29]). An infinite sequence x ∈
{0, 1}ω is Martin-Löf random if there is a constant c such that H (x � n) ≥ |n|−c,
for all n ≥ 1. Equivalently one can say that x is Martin-Löf random iff there is
a constant c such that KmD(x � n) ≥ |n| − c, for all n ≥ 1.

4 Complexity Based on Transducers

For a fixed admissible transducer T , one usually denotes the complexity CT (x) of
a binary string x as the length of the shortest binary string y such that T (y) = x.
This definition is now adjusted to enumerations S of admissible transducers.

Definition 4. Let S be an enumeration of the admissible transducers. For each
string x, the S-complexity CS(x) is the minimum |σ| + |y| taken over all σ in
the domain of S and y in the domain of T S

σ such that T S
σ (y) = x.
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This S-complexity is also called the finite state complexity based on S of a given
string. Note that if S is universal and S′ is any other enumeration then there is
a constant c such that

CS(x) ≤ CS′(x) + c

for all binary strings x. Thus the universal enumerations define an abstract finite
state complexity in the same way as it is done for prefix-free and plain complexity.
The next result relates the complexity CS for universal enumerations S to the
plain complexity K, the prefix-free complexity H and the process complexity
KmD.

Theorem 5. Let S be a universal enumeration of the admissible transducers.
Then there are constants c, c′, c′′ such that, for all binary strings x,

K(x) ≤ CS(x) + c, KmD(x) ≤ CS(x) + c′, CS(x) ≤ H(x) + c′′.

Furthermore, one cannot obtain equality up to constant for any of these inequal-
ities.

Proof. For the first inequality, note that if T S
σ (y) = x then σ stems from

a prefix-free set and hence there is a plain Turing machine ψ which on input
p first searches for a prefix σ of p which is in dom(S) and, in the case that
such a σ is found, outputs T S

σ (y) for the unique y with σy = p. Thus the
mapping from all σy to T S

σ (y) with σ ∈ dom(S) and y ∈ dom(T S
σ ) is partially

computable and well-defined. The inequality follows then from the universality
of the plain Kolmogorov complexity K. One can furthermore see that ψ is also
prefix-monotone and therefore also witnessing that KmD(x) ≤ CS(x) + c′ for
some constant c′.

To see that the first inequality is proper, note that K(x) ≤ KmD(x)+ c′′′ but
there is no constant c′′′′ such that KmD(x) ≤ K(x) + c′′′′ for all x [29].

Theorem 6 below implies that the second inequality is proper.
Let S′ be a fixed perfect enumeration of all admissible transducers; it is known

that S′ exists [9,10]. The inequality CS(x) ≤ H(x) + c′′ might be obtained by
choosing an enumeration S which for every p in the domain of a prefix-free
universal machine U assigns to p0 a transducer mapping ε to U(p) and, in the
case that U(p) ∈ dom(S′), to p1 the transducer T S′

U(p). Clearly, if U(p) = x then

T S
p0(ε) = x and therefore CS(x) ≤ |p| + 1. This enumeration of transducers is

universal.
Furthermore, there is a fixed code σ for the transducer realising the identity

(T S
σ (x) = x), hence CS(x) ≤ |x|+ |σ| for all x. It is known that this bound is not

matched by longer and longer prefixes of Chaitin’s Ω with respect to H , hence
one cannot reverse the third inequality to an equality up to constant. �
The properness of one inequality was missing in the previous result. It follows
from the following theorem.

Theorem 6. There is a prefix-monotone partially computable function ψ such
that for every enumeration S and each constant c there is a binary string x with
Kψ(x) < CS(x)− c.
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Proof. Let Ω be Chaitin’s random set and let Ωs be an approximation to Ω
from the left for s steps. Now define

ψ(x) = 0min{s:x≤lexΩs}.

Note that this function is partially computable and furthermore it is monotone.
It is defined on all x with x ≤lex Ω. Note that for x = Ω � n, ψ(x) coincides
with the convergence module cΩ(n) = min{s : ∀m < n [Ωs(m) = Ω(m)]}.

The goal of the construction is now to show that for all constants c and all
enumerations S of admissible transducers, almost all prefixes x � Ω satisfy that
ψ(x) is larger than the length of any value T S

σ (y) with |σy| ≤ |x|+ c. So fix one
enumeration S.

The first ingredient for this is to use that for almost all σ, if T S
σ (y) is longer

than ψ(Ω � |σ|+|y|−c) then y is shorter than |σ|. Assume by way of contradiction
that this is not be true and that there are infinitely many n with corresponding
σ, y such that n = |σ|+ |y| − c and |T S

σ (y)| ≥ ψ(Ω � n) = cΩ(n) and |σ| ≤ n/2.
Now one can compute from σ and |y| the maximum length s of an output of
T S
σ (z) with |z| ≤ |y| and then take Ω � n as Ωs � n. Hence H(Ω � n) is, up to a

constant, bounded by |σ| + 2 log(|y|) which is bounded by n/2 plus a constant,
in contradiction to the fact that H(Ω � n) ≥ n for almost all n. Thus the above
assumption cannot be true.

Hence, for the further proof, one has only to consider transducers whose input
is at most as long as the code. The correspdonding definition would be to let,
for each σ ∈ dom(S), φ(σ) be the length of the longest output of the form T S

σ (y)
with y ≤ |σ|.

Now assume by way of contradiction that there are a constant c and infinitely
many x � Ω such that there exists a σ with |ψ(x)| ≤ φ(σ) and |σ| ≤ |x| + c.
Then one can construct a prefix-free machine V with the same domain as S such
that V (σ) for all σ ∈ dom(S) outputs z = Ωφ(σ) � |σ| − c. As |σ| ≤ |x| + c it
follows that z is a prefix of x and a prefix of Ω.

The domains of V and S are the same, hence V is a partially computable
function with prefix-free domain which has for infinitely many prefixes z � Ω
an input σ of length up to |z| + 2c with V (σ) = z, that is, which satisfies
HV (z) ≤ |z|+ 2c for infinitely many prefixes z of Ω. This again contradicts the
fact that Ω is Martin-Löf random, hence this does not happen.

Note that Kψ(x) ≤ KmD(x)+c′ for some constant c′. Now one has, for almost
all n that the string un = 0cΩ(n) satisfies un = ψ(Ω � n) and Kψ(un) = n and
KmD(un) ≤ n+c′ while, for all S and c and almost all n, CS(un) > n+c, hence
CS(un) − KmD(un) goes to ∞ for n → ∞. So CS and KmD cannot be equal
up to constant for any enumeration S of admissible transducers. �
Furthermore, for perfect enumerations S, one can show that there is an algorithm
to compute CS .

Proposition 7. Let S be a perfect enumeration of the admissible transducers.
Then the mapping x 	→ CS(x) is computable.

Proof. Note that there is a fixed transducer T S
τ such that T S

τ (x) = x for all
x. Now CS(x) is the length of the shortest σy with σ ∈ dom(S), y ∈ {0, 1}∗,
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|σy| ≤ |τx| and T S
σ (y) = x. Due to the length-restriction |σy| ≤ |τx|, the search

space is finite and due to the perfectness of the enumeration S, the search can
be carried out effectively. �

5 Complexity of Infinite Sequences

Martin-Löf randomness can be formalised using both prefix-free Kolmogorov
complexity and process complexity, see Definition 3. Therefore it is natural to
ask whether such a characterisation does also hold for the CS complexity. The
answer is affirmative as given in the following theorem.

Theorem 8. The following statements are equivalent:

(a) The sequence x is not Martin-Löf random;
(b) There is a perfect enumeration S such that for every c > 0 and almost all

n > 0 we have CS(x � n) < n− c;
(c) There is a perfect enumeration S such that for every c > 0 there exists an

n > 0 with CS(x � n) < n− c;
(d) For every universal enumeration S and for every c > 0 and almost all n > 0

we have CS(x � n) < n− c;
(e) For every universal enumeration S and for every c > 0 there exists an n > 0

with CS(x � n) < n− c.

Proof. If x is Martin-Löf random then, as noted after Definition 3, KmD(x �
n) ≥ n− c for some constant c and all n. It follows that, for every enumeration
S, from Theorem 5 that CS(x � n) ≥ n−c′ for some constant c′ and all n. Hence
non of the conditions (a-e) is satisfied.

Now assume that (a) is satisfied, that is, that x is not Martin-Löf random.
Let U be a universal prefix-free machine and HU = H . Using U we define the
following enumeration S of finite transducers:

For ση such that σ ∈ dom(U) and time(U(σ)) = |η|, let T S
σ be defined

as the trnasucer which maps every string τ to U(σ)ητ .

Here time(U(σ)) denotes the time till the computation stops; S is computable
and prefix-free because dom(U) is prefix-free.

If the sequence x is not Martin-Löf random, then for every c > 0 there exists
an n > 0 such that H(x � n) < n− c. Hence, for every c > 0 there exist n > 0,
σ ∈ {0, 1}∗, s > 0 such that U(σ) = x � n, |σ| < n − c and time(U(σ)) = s.
Consequently, for every c > 0 there exist n > 0, σ ∈ {0, 1}∗, s > 0 and η ∈ {0, 1}s
such that ση ∈ dom(S), |σ| < n− c, T S

ση(ε) = x � (n+ s), hence for every c > 0
there exist n, s > 0 such that CS(x � (n+ s)) < n+ s− c. We have showed that
for every c > 0 and almost all m > 0, CS(x � m) < m − c. Thus (b) holds. If
S′ is a universal enumeration, then CS(x) ≤ CS′(x) + c′′ for some constant c′′

and all binary strings x. Hence (d) holds. Furthermore, (b) implies (c) and (d)
implies (e). So (a-e) hold. Hence the conditions (a-e) are equivalent. �

Corollary 9. A sequence x is Martin-Löf random iff for every enumeration S
there is a constant c such that for every n ≥ 1 the inequality CS(x � n) ≥ n− c
holds true.
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6 Finite State Incompressibility and Normality

In this section we define finite state incompressible sequences and prove that each
such sequence is normal. Given an enumeration S of all admissible transducers,
a sequence x = x1x2 · · ·xn · · · is CS–incompressible if lim infn CS(x � n)/n = 1.

Proposition 10. Every Martin-Löf random sequence is CS–incompressible for
all enumerations S, but the converse implication is not true.

Proof. If x is a Martin-Löf random sequence, then lim infn K(x � n)/n = 1,
so by Theorem 5, x is CS–incompressible. Next we take a Martin-Löf random
sequence x and modify it to be not random: define x′(n) = 0 whenever n is a
power of 2 and x′(n) = x(n), otherwise. Clearly, x′ is not Martin-Löf random,
but lim infn K(x � n)/n = 1, so x is CS–incompressible for every enumeration S
of all admissible transducers. �
A sequence is normal if all digits are equally likely, all pairs of digits are equally
likely, all triplets of digits equally likely, etc. This means that the sequence
x = x1x2 · · ·xn · · · is normal if the frequency of every string y in x is 2−|y|,
where |y| is the length of y.

Lemma 11. If the sequence x is not normal, then there exist a transducer T S
σ

and a constant α with 0 < α < 1 (depending on x, σ, S) such that for infinitely
many integers n > 0 we have CTS

σ
(x � n) < α · n.

Proof. According to [16,17,28], if the sequence x is not normal, then there exist
a transducer T S

σ , a sequence y, and a real α ∈ (0, 1) such that limm→∞ T S
σ (y �

m) = x and for infinitely many m > 0

T S
σ (y � m) � x and m < α · |T S

σ (y � m)|.

Consequently, for infinitely many m > 0

CTS
σ
(T S

σ (y � m)) ≤ m < α · |T S
σ (y � m)|,

hence CTS
σ
(x � n) < α · n for infinitely many n > 0 because T S

σ (y � m) � x for
infinitely many m > 0. �

Example 12. Ambos-Spies and Busse [2,3] as well as Tadaki [31] investigated
infinite sequences x which can be predicted by finite automata in a certain
way. The formalisations result in the following equivalent characterisations for a
sequence x to be finite state predictable:

– The sequence x can be predicted by a finite automaton in the sense that
every state is either passing or has a prediction on the next bit and when
reading x the finite automaton makes infinitely often a correct prediction
and passes in those cases where it does not make a correct prediction, that
is, it never predicts wrongly.
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– There is a finite automaton which has in every state a label from {0, 1}∗
such that, whenever the automaton is in a state with a non-empty label w
then some of the next bits of x are different from the corresponding ones in
w.

– x fails to contain some string w as a substring.
– There is a finite connected automaton with binary input alphabet such that

not all states of it are visited when reading x.
– The sequence x is the image T (y) for some binary sequence y and a finite

transducer T which has only labels of the form (a, aw) with a ∈ {0, 1} and
w ∈ {0, 1}∗ and where in the translation from y into x infinitely often a
label (a, aw) with w 
= ε is used.

Finite state predictable sequences are not normal and, by the work of Schnorr
and Stimm [28], there is a finite-automaton martingale which succeeds on such
a sequence. Furthermore, there are sequences which are not normal but also not
finite-state predictable. An example can be obtained by translating the decimal
Champernowne sequence y [12] into a binary sequence x such that x(k) = 1
iff y(k) ∈ {1, 2, . . . , 9} and x(k) = 0 iff y(k) = 0; now the resulting x is not
normal; however, x contains every substring as a substring and is thus also not
finite-state predictable.

Theorem 13. Every CS–incompressible sequence is normal.

Proof. Assume that the sequence x is not normal. According to Lemma 11
there exist α ∈ (0, 1) and σ ∈ dom(S) such that for infinitely many integers n > 0
we have CTS

σ
(x � n)) < α ·n. For these n it also holds that CS(x � n) < α ·n+ |σ|.

Since α < 1, x is not CS–incompressible. �

7 How Large Is the Set of Incompressible Sequences?

It is natural to ask whether the converse of Theorem 13 is true. The results in
[1,5,28,33] discussed in Introduction might suggest a positive answer. In fact, the
answer is negative.

To prove this result we will use binary de Bruijn strings of order r ≥ 1 which
are strings w of length 2r + r − 1 over alphabet {0, 1} such that any binary
string of length r occurs as a substring of w (exactly once). It is well-known that
de Bruijn strings of any order exist, and have an explicit construction [14,32].
For example, 00110 and 0001011100 are de Bruijn strings of orders 2 and 3
respectively.

Note that de Bruijn strings are derived in a circular way, hence their prefix of
length r − 1 coincides with the suffix of length r − 1. Denote by B(r) the prefix
of length 2r of a de Bruijn string of order r. The examples of de Bruijn strings
of orders 2 and 3 previously presented are derived from the strings B(2) = 0011
and B(3) = 00010111, respectively. Thus the string B(r) · B′(r), where B′(r) is
the length r − 1 prefix of B(r), contains every binary string of length string r
exactly once as a substring.
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In [26] it is shown that every sequence of the form

bf = B(1)f(1)B(2)f(2) · · ·B(n)f(n) · · ·
is normal provided that the function f : N → N is increasing and satisfies
the condition f(i) ≥ ii for all i ≥ 1. Moreover, in this case the real 0.bf is a
Liouville number, i.e. it is a transcendental real number with the property that,
for every positive integer n, there exist integers p and q with q > 1 and such
that 0 < |0.bf − p

q | < q−n.

Lemma 14. Every string w, B(1) � w � bf can be represented in the form

w = B(1)f(1)B(2)f(2) · · ·B(n− 1)f(n−1)B(n)jw′ (2)

where n ≥ 1, 1 ≤ j ≤ f(n) and |w′| < 2n+1 = |B(n+ 1)|.
Proof. Indeed, in the case

B(1)f(1)B(2)f(2) · · ·B(n− 1)f(n−1) � w � B(1)f(1)B(2)f(2) · · ·B(n)f(n)

we can choose w′ � B(n), and if

B(1)f(1)B(2)f(2) · · ·B(n)f(n) � w � B(1)f(1)B(2)f(2) · · ·B(n)f(n)B(n+ 1)

we can choose w′ � B(n+ 1). �
Next we show that there are normal sequences which are simultaneously Liouville
numbers and compressible by transducers, that is, the converse of Theorem 13
is false. This also proves that CS–incompressibility is stronger than all other
known forms of finite automata based incompressibility, cf. [1,5,15,28,33].

Theorem 15. For every enumeration S there are normal sequences x such that
limn→∞ CS(x � n)/|n| = 0, so x is CS–compressible.

Proof. Define the transducer Tn = ({0, 1}, {s1, . . . , sn+1}, s1, δn, μn) as follows:

δn(si, 0) = si, μn(si, 0) = B(i), for i ≤ n,
δn(si, 1) = si+1, μn(si, 1) = B(i), for i ≤ n,

δn(sn+1, a) = sn+1, μn(sn+1, a) = a, for a ∈ {0, 1} .
For example, the transducer T4 is presented in Figure 1. Let σn be an encoding
of Tn according to S. Choose a function f : N → N which satisfied the following
two conditions for all n ≥ 1, i > 1:

f(n) ≥ max{|σn+1|, nn, 2n+2} and f(i) ≥ 2 · f(i− 1). (3)

Finally, let pi = 0f(i)−11 and p′j = 0j−11. Eq. (2) shows that

Tn(p1 · · · pn−1p
′
jw

′) = B(1)f(1) · · ·B(n− 1)f(n−1)B(n)jw′

is a prefix of the normal sequence x = bf . We then have:
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s1 s2 s3 s4 s5

0/B(1) 0/B(2) 0/B(3) 0/B(4)

1/B(1) 1/B(2) 1/B(3) 1/B(4)

0/0

1/1

Fig. 1. Block representation of the transducer T4

|Tn(p1 · · · pn−1p
′
jw

′)| =
n−1∑

i=1

2if(i) + 2nj + |w′|

≥ 2n−1f(n− 1) + 2nj,

and

|σn|+ |p1 · · · pn−1 · p′j · w′|

= |σn|+
n−1∑

i=1

|pi|+ |p′n−1|+ |w′|

≤ f(n− 1) + 2f(n− 1) + j + f(n− 1)

= 4f(n− 1) + j.

This shows that for every prefix w of bf presented in the form (2) as

w = B(1)f(1) · · ·B(n− 1)f(n−1) ·B(n)j · w′,

we have B(1) � w � bf and (by using the inequality a+b
c+d ≤ max

{
a
c ,

b
d

}
, when

0 < a, b, c, d):
CS(w)

|w| ≤ 4f(n− 1) + j

2n−1f(n− 1) + 2nj
≤ 4

2n−1
.

This shows that limn→∞ CS(x � n)/|n| = 0. �
In the proof of Theorem 15 we have used an arbitrary function f satisfying (3).
Of course, there exist computable and incomputable such functions.

Corollary 16. For every perfect enumeration S there are normal and CS–
compressible computable and incomputable sequences.

One might also consider transducers which satisfy that |μ(q, a)| ≤ m for all
(q, a) ∈ Q×{0, 1}, that is, the output can always be at most m times as long as

the input. For these one can then also consider the variantC
(m)
S ofCS which looks

at complexity using m-bounded transducers. The following result is a sample
result for this area.
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Theorem 17. For every enumeration S of all 2-bounded admissible transducers,

there are normal sequences x such that limn→∞ C
(2)
S (x � n)/n = 1/2.

Proof. We start from the transducers Tn defined in the proof of Theorem 15
and we split every long output B(i) of Tn into 2i−1 pieces of length 2. Formally,

we replace the states si, i ≤ n, by sub-transducers Ai = ({0, 1}, Ri, ri,1, δ
(i)
n , μ

(i)
n )

where Ri = {ri,1, . . . , ri,2i−1},
δ
(i)
n (ri,j , a)=ri,j+1, μ

(i)
n (ri,j , a)=ui,j , j < 2i, a < 2,

δ
(i)
n (ri,2i−1 , 0)=ri,1, μ

(i)
n (ri,2i−1 , 0)=ui,2i−1 ,

δ
(i)
n (ri,2i−1 , 1)=ri+1,1, μ

(i)
n (ri,2i−1 , 1)=ui,2i−1 ,

and B(i) = ui,1 · · ·ui,2i−1 with |uij | = 2. Observe that the transition with input
1 on state ri,2i−1 leads to the initial state of the next sub-transducer (for i = n
this leads to state rn+2,1 = sn+1 of Tn).

Then, the new transducer is defined as follows:

Qn =

n⋃

i=1

Ri ∪ {sn+1}, q0n = r1,1,

δ′n =

n⋃

i=1

δ(i)n ∪ {(sn+1, 0, sn+1), (sn+1, 1, sn+1)} ,

and

μ′
n =

n⋃

i=1

μ(i)
n ∪ {(sn+1, 0, 0), (sn+1, 1, 1)}.

Again let σ′
n be an encoding of T ′

n in S, and let p̄i = (02
i−1

)f(i)−102
i−1−11 where

f : N → N, f(n) ≥ max{|σ′
n+1|, nn, 2n+2}, f(i) ≥ 2 · f(i− 1), is as in the proof

of Theorem 15. Let p̄′i,j = (02
i−1

)j−102
i−1−11.

Furthermore, let B(1) � w � bf . According to Eq. (2) we have:

w = B(1)f(1) · · ·B(n− 1)f(n−1)B(n)jw′ = T ′
n(p̄1 · · · p̄n−1p̄

′
jw

′).

We then have:

|T ′
n(p̄1 · · · p̄n−1(0

j−1)1 · w′)| = ∑n−1
i=1 2i · f(i) + 2nj + |w′|

≥ ∑n−1
i=1 2i · f(i) + 2nj,

and
C

(m)
S (w) ≤ |σ′

n|+
∑n−1

i=1 2i−1f(i) + 2n−1j + |w′|
≤ f(n− 1) +

∑n−1
i=1 2i−1f(i) + 2n−1j + f(n− 1),

finally obtaining

C
(m)
S (w)

|w| ≤
∑n−2

i=1 2i−1f(i) + 2n−1j + (2n−2 + 2)f(n− 1)
∑n−2

i=1 2if(i) + 2nj + 2n−1f(n− 1)

≤ 2n−2 + 2

2n−1
.
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This proves that limt→∞ C
(2)
S (x � t)/t = 1/2. �

Theorem 17 can be easily generalised to m-bounded complexity thereby yielding

the bound limn→∞ C
(m)
S (x � n)/n = 1/m. Moreover, the results of Theorems 15

and 17 can be also generalised to arbitrary (output) alphabets Y . Here the
circular de Bruijn strings of order n, CB |Y |(n), have length |Y |n.

In connection with Theorem 15, we can ask whether the finite state com-
plexity of each sequence x representing a Liouville number satisfies the in-
equality lim supn→∞ CS(x � n)/n < 1. The answer is negative: Example 12
of [30] shows that there are sequences x representing Liouville numbers having
lim supn→∞ K(x � n)/n = 1, hence by Theorem 5, lim supn→∞ CS(x � n)/n = 1.

The following result complements Theorem 15: the construction is valid for every
enumeration, but the degree of incompressibility is slightly smaller.

Theorem 18. There exists an infinite, normal and computable sequence x
which satisfies the condition lim infn→∞ CS(x � n)/n = 0, for all enumerations
S.

Proof. Fix a computable enumeration (Tm)m≥1 of all admissible transducers
such that each Tm has at most m states and each transition in Tm from one state
to another has only labels which produce outgoing strings of at most length m
(that is, complicated transducers appear sufficiently late in the list).

Now define a sequence of strings αn such that each αn is the length-
lexicographic first string longer than n such that for all transducers Tm with
1 ≤ m ≤ n, for all states q of Tm and for each string γ of less than n bits,
there is no string β of length below n−1

n · |αn| such that γTm(q, β) is αn or an
extension of it. Note that these αn must exist, as every sufficiently long prefix of
the Champernowne sequence meets the above given specifications due to Cham-
pernowne sequence normality [12]. Furthermore, α0 = 0 as the only constraint
is that α0 is longer than 0. An easy observation shows that also |αn| ≤ |αn+1|
for all n.

In what follows we will use an acceptable numbering of all partially com-
putable functions from natural numbers to natural numbers of one variable
(ϕe)e≥1. Now let f be a computable function from natural numbers to natu-
ral numbers satisfying the following conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√
t.

Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.
Match: ∀n ∀e < n ∃t [ϕe(n) < ∞ =⇒ t > ϕe(n) ∧ f(t) = n ∧ f(t + 1) =

n ∧ . . . ∧ f(t2) = n].

In order to construct f , consider first a computable one-one enumeration
(e0, n0,m0), (e1, n1,m1), . . . of the set of all (e, n,m) such that e < n∧ϕe(n) = m.
The function f is now constructed in stages where the requirement “Short” is
satisfied all the time, the requirement “Finite-to-one” will be a corollary of the
way the function is constructed and the requirement “Match” will be satisfied
for the k-th constraint (ek, nk,mk) in the k-th stage.
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In the k-th stage, let sk be the first value where f(sk) was not defined in
an earlier stage and let tk be the first number such that tk > sk+mk and
|αnk

| ≤ √
sk. Having these properties, for u with sk ≤ u < tk, let f(u)

be the maximal � with |α	| ≤
√
max{1, u}, and for u with tk ≤ u ≤ t2k,

let f(u) = nk.

It is clear that the function f is computable. Next we verify that it satisfies the
required three conditions.

Short: This condition, which is more or less hard-coded into the algorithm,
directly follows from the way tk is selected and f(u) is defined in the two
cases.

Finite-to-one: The inequality f(u) ≤ n is true only in stages k where for some
u either |αn+1| > √

sk or nk ≤ n; both conditions happen only for finitely
many stages k.

Match: For each n and e with ϕe(n) being defined, there is a stage k such that
(ek, nk,mk) = (e, n, ϕe(n)). The choice of tk makes then f to be equal to nk

on tk, tk + 1, . . . , t2k and furthermore tk > ϕek (nk).

Let x be the sequence αf(0)αf(1)αf(2) . . . which is obtained by concatenating all
the strings αf(n) for the n in default order. It is clear that x is computable.

Consider any enumeration S of transducers. Choose e such that ϕe(n) takes
the value the length of the code of that transducer Tn which has the starting
state q and a further state q′ and follows the following transition table:

state input output new state
q 0 ε q′

q 1 αn q
q′ 0 0 q
q′ 1 1 q

As ϕe is total, there is for each n > e a t larger than the code of the transducer
Tn such that f(t), f(t + 1), . . . , f(t2) are all n. Now σ = αf(0) . . . αf(t2) can be

generated by Tn by a code of the form β = 0σ(0)0σ(1) . . . 0σ(u − 1)1t
2−t where

u is the length of αf(0)αf(1) . . . αf(t−1). The length of β is 2u+ t2 − t. Note that

u ≤ t·√t by the condition “Short” and therefore |β| ≤ t2+t3/2−t while the string
σ generated from β by the transducer Tn has at least the length (t2 − t) · |αn|
which is at least (t2− t) · (n+1). Furthermore, the representation of Tn in S has
at most length t, thus

CS(σ)/|σ| ≤ (t2 + t3/2)/(n · (t2 − t)) ≤ 2

n
.

It follows that lim infn→∞ CS(x � n)/n = 0.
Next we prove that x is normal. Fix a transducer Tm. Then, for every n > m,

there is a sufficiently large t such that (n− 1) · t of the first n · t values s < n · t
satisfy f(s) > n. Fix such a t and let β = β0β1 . . . βn·t be such that β0 . . . βs

is the shortest prefix of β with Tm producing from the starting state and input
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β0 . . . βs an extension of αf(0) . . . αf(s). Note that the image of β0 . . . βs is at
most m − 1 symbols longer than αf(0) . . . αf(s). Let σ = αf(0) . . . αf(t·n). One
can prove by induction that for all s with f(s) ≥ n we have

|βs| ≥ n− 1

n
· |αf(s)|,

and for all s where f(s) < n we have

|αf(s)| ≤ |σ|/(t · n).

It follows that |β| ≥ (n−1)2

n2 · |σ| and therefore we have sufficiently long prefixes of
x which are concatenations of the strings αf(0) . . . αf(t·n), all having complexity
relative to Tm near 1. Furthermore, the length difference between any given
prefix and a prefix of such a form is smaller than the square root of the length
and therefore one can conclude that the sequence is incompressible with respect
to each fixed transducer Tm. Hence, by Theorem 13, it is normal. �

The proof method in Theorem 18 can be adapted to obtain the following result.

Theorem 19. There exists a perfect enumeration S and a sequence which is
computable, normal and CS–incompressible.

Proof. The sequence of the Tn and αn is defined as in the proof of Theorem 18;
furthermore, it is assumed that the listing of the Tn is one-one. However, f has
is chosen such that it satisfies the following three conditions:

Short: For all t ≥ 1, |αf(t)| ≤
√
t.

Finite-to-one: For all n ≥ 1 and almost all t ≥ 1, f(t) > n.

Monotone: For all t ≥ 1, f(t) ≤ f(t+ 1).

This is achieved by selecting

f(t) = max{m : |αm| ≤ √
t}.

It is clear that f is computable and satisfies the conditions “Short” and “Mono-
tone”. The condition “Finite-to-one” follows from the observation that f(t) > n
for all t with |αn+1| ≤

√
t and the fact that almost all t satisfy this condition.

As above one can see that whenever f(t) > n and m ≤ n then Tm(β) extends
αf(0)αf(1) . . . αf(n·t) only if |β| ≥ (n − 1)2/n2. Now one makes S such that the

transducer Tm has the code word 0m1m
2·tm for the first tm such that f(tm) > m.

It can be concluded that CTm(σ)/|σ| ≥ (m − 1)2/m2 · |σ|, for all prefixes σ of
x and that CTm(σ)/|σ| goes to 1 for longer and longer prefixes of x. Thus the
sequence x is normal and furthermore x is incompressible with respect to the
here chosen S. �
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8 Conclusion and Open Questions

Enumerations are — in the context of this paper — computable listings of all
admissible transducers and have a prefix-free domain. We have investigated two
main notions of enumerations, the perfect ones (which have a decidable domain,
are one-one, are surjective and have a computable inverse) and the universal
ones (which optimise the codes for the transducers up to a constant for the
best possible value). We have showed that Martin-Löf randomness of infinite
sequences can be characterised with both types of enumerations. Furthermore,
we have related the finite-state complexity based on universal enumerations with
the prominent notions of algorithmic description complexity of binary strings.

The results of Sections 6 and 7 show that our definition of finite state in-
compressibility is stronger than all other known forms of finite automata based
incompressibility, in particular the notion related to finite automaton based bet-
ting systems introduced by Schnorr [28].

There are various interesting open questions. Here are three more: Are there
an enumeration S, a computable sequence x and a constant c such that CS(σ) >
|σ| − c, for all prefixes σ of x? For which enumerations S is it true that every
sequence satisfying CS(x � n) ≥ n−c is Martin-Löf random?What is the relation
between CS–incompressible sequences and ε–random sequences, [8]? Note that
some ε–random sequences can be finite-state predictable by not having a certain
substring, cf. [31], hence they can be compressed by a single transducer; this is,
however, not true for all ε–random sequences.
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22. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer (2007)
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