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We prove that every super-exponential function of Aekermarm type (i.e., nonprimitive recursive) in the sense of Porto and 
• Matos (1980) is SmuUyan rudimentary (Smullyan, 1961). 
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1. Preliminaries 

Let N = {0, 1, 
k > 0 .  

Ackermann-Peter 's  function A : N 2 ~ N is defined by the equations (see [1,13]): 

A(0, x) = x + 1, 
A(n  + 1, 0) = A(n, 1), 
A(n  + 1, x + 1) -- A(n, A(n + 1, x)). 

. . .  ) be the set of natural numbers. All functions in this paper are of the form f: N k ~ N, 

(1) 
(2) 
(3) 

It is well known that A is re.cursive and nonprimitive recursive. Skolem [18] showed that A has a 
primitive re.cursive graph; in [17,20] it is proved that A has a context-sensitive graph, whereas in [5] it is 
proved that the graph of A is elementary in Kalmar's sense. 

We assume the reader to be familiar with the monotonicity properties of A; in particular, (i) A is strictly 
increasing in each argument, (ii) the value of A is greater than any of its arguments, and (iii) the first 
argument has a greater influence on the value of A than its second argument [13]. The last property can 
more exactly be stated as follows. For each natural n, denote by eXpn (respectively EXPn) the unary 
functions eXpn(X ) = A(n, x) (respectively EXPn(x ) = A(x, n)). Each eXpn has a super-exponential growth for 
n > 3, and so has each EXP n, for n >/0; every exp~ is primitive recursive, but no EXP n has this property. 

A binary function satisfying (3) for all n >t no and x >f x 0 (n o and x o are fixed naturals) is called a 
super-exponential of Ackermann's type (see [14]). 

A predicate is called rudimentary (or bounded arithmetic) if it is obtainable from the predicates z = x + y 
and z = x -y ,  by a finite number of applicatioris of the Boolean operations, finite quantifications (both 
existential and universal) and explicit transformations [19]. The Boolean operations will be denoted by --,, 
v ,  &; relations ~ and ~ respectively denote implication and equivalence. A finite quantification is of 
the form 0¢x < y) or (3x < y), where y is some free variable of the formula. Explicit transformation is a 
generaliTed form of substitution which includes composition, identification, permutation of variables, etc. 
[19] (see [4,9,10,11] for various characterizations of rudimentary predicates). Furthermore, it is well known 
that the rudimentary predicates constitute a subclass of Grzegorczyk's d', ° class [8]. A function f: N k ~ N 
is called rudimentary in Smullyan sense [19] if the predicate z = f(xl , . . .  ,Xk) is r u d i m e n t a r y .  
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GSdel [7] proved that the exponential x y is arithmetic. Bennett [4] strengthened this result by showing 
that x y is rudimentary (see also [10,15]). Finkelstein [6] proved that each primitive recursive super-ex- 
ponential eXpn is rudimentary. 

2. Main result 

Our aim is to show that the Ackermann-Peter  function is rudimentary. We shall use the injective 
function OP : IN2 ~ IN given by OP(y, z) = (y + z) 2 + y + 1, and GSders 13 function [7]. For completeness 
we give some details here (see [16]). The function [3 : IN 2 _.., IN is defined by the formula 

13(a, i) = (~tx < a -  1)(3y < a)(3z < a)(a = OP(y, z) & Div(y, 1 + (1 + OP(x, i))z)),  

where Div(y, x) means "x  divides y", x - y = max(0, x -  y} is the arithmetical difference and ~ refers to 
the (bounded) minimization operator. Given a sequence a0, a a , . . . , a n _  1 of natural numbers and an 
injective rudimentary unary function f, there exists a natural t such that, for every i < n, 13(t, f(i)) = ai, 
and, for every j, 

13(t, j)  < t - 1 <--, (3i < n)(j = f(i)). 

Such a t can be obtained as follows: take 

c = m a x { 1  + O P ( a i ,  f(i))}, r = c ! ,  y=rI((l+ (1 + O P ( a i ,  f ( i ) ) ) r ) ; i = 0 , . . . , n -  1), 

and finally put t = OP(y, r). All of the above manipulations are rudimentary. 
Equations (1)-(3) will be used in the rightmost way, i.e., they are always applied at the innermost level 

of the nest. We continue by making estimations concerning the growth of some functions involved in the 
rightmost computation of A(n, x). 

First, in view of the inequality A(i, j) >/A(i - 1, j + 1), one has 

i + j >I A(n, x) ---) A(i, j) > A(n, x). (4) 

Second, for every pair (n, x) we define the finite set 

useful(n, x) = ( (n, x) } U { (i, j )  ~ IN2 ;A(i,  j)  is used in the rightmost computation of A(n, x) } 

and the binary function length(n, x) = card(useful(n, x)). Clearly, if ( i , j)  is in useful(n, x), then A(i, j)  ~< 
A(n, x). So, by (4), 

length(n, x) < (A(n, x ) ) : -  1. 

Third, we need two more estimations, namely, for every y > 0, 

b(x) = x xx < A(4, x), 

and, for every n > 4, 

A ( n , x ) = A ( 4 ,  y) ~ y > 1 2 n - 1 .  

Given a pair (n, x) we encode the rightmost computation of the value z = A(n, x) by the sequence 

(A(ia, Jl) ,  OP(il ,  Jl)),-.., (A(ik, Jk), OP(ik, Jk)), 

(5) 

(6) 

(7) 

(8) 
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where 
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k = length(n, x), useful(n,x)= ((i l ,  j l ) , . . . ,  (ik, jk)} , 

A( i l , j l  ) ~<A(iE,j=) ~< . . -  < A(ik,Jk) ,  

and if A(iu, ju) = A(i~+l, J~+l), then OP(iu, j~) < OP(i ,+l ,  Ju+l)- Finally, sequence (8) can be coded by a 
natural t (depending upon n and x) by means of GSdel's 13 function. More precisely, t satisfies the 
relations 

A(i, j) =13 (t, OP( i , j ) )  for every (i, j) ~ useful(n, x), (9) 
(Vw)(13(w, t) < t -  1) ~ (3( i , j )  ~useful(n, x ) ) ( w =  OP( i , j ) ) .  (10) 

Now let f :  N 3--, N be the rudimentary function given by f(n, x, y ) =  13(y, OP(n, x)) and consider the 
ternary predicates P and R defined as follows: 

P (n ,x ,  y ) ~ ( f ( n , x ,  y ) < y -  1 ) & { [ ( n = 0 ) a ( f ( n , x ,  y ) = x +  1)] 

Vt(n > 0 ) a ( x = 0 ) a ( f ( n -  1, x +  1, y) < y -  1)&(f(n, x, y) = f ( n -  1, x +  1, Y))] 
v [(nx > 0 ) & ( f ( n ,  x - 1, y ) < y -  1)&(f(n  - 1, f(n, x -  1, y), y ) < y -  1) 

&(fin ,  x, y) = f(n - 1, f(n, x -  1, y), y))] }, 
R(n, x, y) ~ (f(n, x, y) < y - 1)&(Yu < y)(Vi < u)(Vj < u) 

[(u = OP(i, j ) )&(f ( i ,  j, y) < y - 1)--, P(i, j, y) ] .  

Using equations (1)-(3) one can easily prove, by induction on i and j, the following statement: for all 
n, x, y, 

R(n, x, y ) & ( u  = O P ( i , j ) ) & ( f ( i , j ,  y) < y -  1) ---> A ( i , j ) =  f ( i , j ,  y). (11) 

Finally, notice that for every pair (n, x) the least natural t satisfying predicate R(n, x, t) does exist and, 
in view of (9) and (10), 

z = A(n, x) ~ (3t)(z = f(n, x, t )&R(n,  x, t)). (12) 

In what follows we shall restrict ourselves to n > 4 and x > 0 because it is well known that the expn 
(n ~< 4) are rudimentary. Using (3) one gets 

z = A ( n ,  x) = A(n - 1, A(n,  x -  1)) = A(n - 1, zn) 

= A ( n  - 2 ,  A ( n  - 1,  z n - 1 ) )  = A ( n  - 2 ,  Zn_l) 

= A ( 4 ,  A ( 5 ,  z 6 - 1 ) )  = A ( 4 ,  z 5 ) ,  

where 

z n = A(n,  x - 1), 

zi = A(i, zi+l - 1), 5 ~ i ~ < n - 1 .  

On the basis of (13) and (14) we may write the equivalence 

z = h ( n ,  x) ~ (3Zn) . . .  (=lz5)((z n = A(n ,  x -  1 ) ) & - - .  & ( z i =  A(i, zi+ 1 - 1)) 

& - ' - & ( z  5 = A ( 5 ,  z 6 -  1 ) ) & ( z =  A(4, z5))).  

(13) 
(14) 

(15) 
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The next step consists in the estimation of the domain of variation of the variables t, Zn,...  ,z 5 
occurring in (12) and (15). We use the notations established in the paragraph that describes GSdel's 13 
function. An elementary analysis gives 

c =  max(1 + OP(A(i,  j) ,  OP(i, j ) ) ;  (i, j) E useful(n, x) } 

< 1 + OP(A(n,  x), A(n, x)) = 1 + OP(z, z) < z 3, 
r : C! ~ Z 3z3, 

y --- I-I((1 + (1 + OP(A(i,  j) ,  OP(i, j ) ) ) r ) ;  (i, j )  ~ useful(n, x)) 

< (1 + (1 + OP(z, z))r) l~gth(~'x)+a < (1 + (1 + OP(z, z))r)~ ~< 2z 4~s 

(we have used (5)), and 

t = OP(y,  r) ~< 5y 2 ~< 20z sz5 < z z~ = b(z), 

because z >/20. Accordingly, formula (12) can be written as follows: for n > 4 and x > 0, 

z =  A(n, x) ~ (3t ~ b(z))[(z = f(n, x, t ) ) & R ( n ,  x, t)] .  (16) 
Furthermore, for 5 < i < n - 1, by (6) one gets 

z i = A ( i ,  zi+ 1 -  1) > I A ( i -  1, Zi+a) >/A(4, z i+l)  > b(zi+l) .  (17) 

We conclude our proof as follows. Start with (15) and replace each relation (13) or (14) by the 
corresponding fight-hand side given by (16); by (17) one gets 

z = A ( n , x )  o ( 3 z n ) . . . ( 3 z s ) ( 3 y  n < b ( z n ) ) . . . ( 3 y s < b ( z 5 )  ) 

[(z~ = f(n, x -  1, yn) )&R(n ,  x -  1, y n ) & , , ,  

&(z5 -- f(5, z6 - 1, Ys))&R(5, z6 - 1, Ys)&(z = A(4, zs) ) ] .  (18) 

Now consider the sequence (ai), 0 ~< i ~< 2n - 9, defined by ai = Yn-i if 0 ~< i ~< n - 5, ai = z~_ i_4  if 
n - 5 < i ~< 2n - 9, and the identity function. By means of GiSdel's 13 function one obtains a code w such 
that 13(w, i) = a i, for all 0 ~< i ~< 2n - 9. Furthermore, a similar estimation as in the case of t works: 

c = m a x ( l + O P ( a i ,  i ) ; 0 ~ < i < 2 n - 9 } = l + O P ( z s , 2 n - 9 ) ~ < l + O P ( z  S zs)~<z 3 ' 5 ,  
27.s because, from (7), z = A(n, x) = A(4, z5) ---' z5 >1 2n - 1, r .<< z 3z3, y ~< z 5 5, w = OP(y, r) ~< 5y 2 ~< 5z~ ~< 

b(z5) < A(4, z5) = z, by (6). Accordingly, the whole of the right-hand side of equivalence relation (18) can 
be bounded by z, i.e., 

z = A ( n , x )  ~ ( 3 w < z ) [ ( 1 3 ( w , n - 4 ) = f ( n , x - l ,  13(w, 0 ) ) ) & R ( n , x - l ,  13(w, 0)) 
& . . .  &(13(w, 2 n -  9) = f(5, 13(w, 2n - 10) - 1, 13(w, n -" 5))) 

&R(5,  13(w, 2n - 10) - 1, 13(w, n - 5 ) )&(z  = A(4, 13(w, 2n - 9)))] ,  
which shows that A is rudimentary. 

3. Concluding remarks 

(a) The binary function step(n, x) --- (t~t)Q(n, x, t), where Q(n, x, t) ~ (z -- f(n, x, t))&R(n, x, t) is rudi- 
mentary and nonprimitive reeursive. Indeed, 

t =  step(n, x) ~ Q(n, x, t )&((Vu < t)--,Q(n, x, u)) and A(n, x) = f(n, x, step(n, x)) 
(see (12)). 
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(b) Each  nonprimit ive recursive funct ion EXP n is rudimentary .  Fur thermore ,  our proof shows that  
every super-exponential  of  A c k e r m a n n  type is rudimentary.  

(c) In  [2], modif ied loop-programs are defined as follows. A loop(O) program is a finite sequence o f  the 
following six assignments, t ~ 0, t ~ 1, t ~ t - 1, t *-- sg(s), t *-- t + 1, t ~ s (the last two s ta tements  are 
called principal; sg(0) = 0, sg(x + 1) = 1). A loop(n + 1) p rogram is recursively def ined as: (i) a loop(n) 
program, or (ii) of  the fo rm LooP  t, P, END, where P is a loop (n) program, or (iii) a concatenat ion o f  two 
loop(n + 1) programs, subject to the restriction: if a loop-program contains a subprogram Q : L o o p  t, P, 
END, where  P contains only assignment  statements, then t does not  appear  as the lef t-hand side of  any  
principal  s ta tement  in P or  in the  scope of any loop directly containing Q. The  meaning  of  these programs 
should be clear. We stress that, in the case of deterministic use of the loop-programs,  all the working 
variables and the output  variable have ent ry  zero; in the case of nondeterministic use, they m a y  have 
arbi t rary values. The run- t ime of  a program is the number  of steps executed until  termination.  Now,  in 
view of  the fact that  each rud imen ta ry  predicate is in Grzegorczyk's  8 ° class and ¢2 is the set of  
polynomial ly  computable  funct ions  in deterministic modif ied loop-programs [2, Theorem 1], it follows that  
the funct ion A can be compu ted  nondeterroinistically in polynomial  t ime by  the modif ied loop-programs.  
Notice that  the above ' po lynomia l  computa t ion '  is not  the well-known Tur ing polynomial  computa t ion  
(see [3,11]). It is an open problem (formulated in [12]) to show that  A does no t  have a polynomial- t ime 
nondeterminis t ic  Turing computab le  graph. 
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