
Information Processing Letters 25 (1987) 311-315 10 July 1987
North-Holland

SUPER-EXPONENTIALS NONPRIMITIVE RECURSIVE, BUT RUDIMENTARY

Cristian CALUDE
Department of Mathematics, University of Bucharest, Str. Academiei 14, R-70109 Bucharest, Romania

Communicated by A.P. Ershov
Received 3 December 1986

We prove that every super-exponential function of Aekermarm type (i.e., nonprimitive recursive) in the sense of Porto and
• Matos (1980) is SmuUyan rudimentary (Smullyan, 1961).

Keywords: Ackermann function, nonprimitive recursive function, rudimentary function, loop-program

1. Preliminaries

Let N = {0, 1,
k > 0 .

Ackermann-Peter 's function A : N 2 ~ N is defined by the equations (see [1,13]):

A(0, x) = x + 1,
A(n + 1, 0) = A(n, 1),
A(n + 1, x + 1) -- A(n, A(n + 1, x)).

. . .) be the set of natural numbers. All functions in this paper are of the form f: N k ~ N,

(1)
(2)
(3)

It is well known that A is re.cursive and nonprimitive recursive. Skolem [18] showed that A has a
primitive re.cursive graph; in [17,20] it is proved that A has a context-sensitive graph, whereas in [5] it is
proved that the graph of A is elementary in Kalmar's sense.

We assume the reader to be familiar with the monotonicity properties of A; in particular, (i) A is strictly
increasing in each argument, (ii) the value of A is greater than any of its arguments, and (iii) the first
argument has a greater influence on the value of A than its second argument [13]. The last property can
more exactly be stated as follows. For each natural n, denote by eXpn (respectively EXPn) the unary
functions eXpn(X) = A(n, x) (respectively EXPn(x) = A(x, n)). Each eXpn has a super-exponential growth for
n > 3, and so has each EXP n, for n >/0; every exp~ is primitive recursive, but no EXP n has this property.

A binary function satisfying (3) for all n >t no and x >f x 0 (n o and x o are fixed naturals) is called a
super-exponential of Ackermann's type (see [14]).

A predicate is called rudimentary (or bounded arithmetic) if it is obtainable from the predicates z = x + y
and z = x -y , by a finite number of applicatioris of the Boolean operations, finite quantifications (both
existential and universal) and explicit transformations [19]. The Boolean operations will be denoted by --,,
v , &; relations ~ and ~ respectively denote implication and equivalence. A finite quantification is of
the form 0¢x < y) or (3x < y), where y is some free variable of the formula. Explicit transformation is a
generaliTed form of substitution which includes composition, identification, permutation of variables, etc.
[19] (see [4,9,10,11] for various characterizations of rudimentary predicates). Furthermore, it is well known
that the rudimentary predicates constitute a subclass of Grzegorczyk's d', ° class [8]. A function f: N k ~ N
is called rudimentary in Smullyan sense [19] if the predicate z = f(xl , . . . ,Xk) is r u d i m e n t a r y .

00200190/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 311

Volume 25, Number 5 INFORMATION PROCESSING LETTERS 10 July 1987

GSdel [7] proved that the exponential x y is arithmetic. Bennett [4] strengthened this result by showing
that x y is rudimentary (see also [10,15]). Finkelstein [6] proved that each primitive recursive super-ex-
ponential eXpn is rudimentary.

2. Main result

Our aim is to show that the Ackermann-Peter function is rudimentary. We shall use the injective
function OP : IN2 ~ IN given by OP(y, z) = (y + z) 2 + y + 1, and GSders 13 function [7]. For completeness
we give some details here (see [16]). The function [3 : IN 2 _.., IN is defined by the formula

13(a, i) = (~tx < a - 1)(3y < a)(3z < a)(a = OP(y, z) & Div(y, 1 + (1 + OP(x, i))z)),

where Div(y, x) means "x divides y", x - y = max(0, x - y} is the arithmetical difference and ~ refers to
the (bounded) minimization operator. Given a sequence a0, a a , . . . , a n _ 1 of natural numbers and an
injective rudimentary unary function f, there exists a natural t such that, for every i < n, 13(t, f(i)) = ai,
and, for every j,

13(t, j) < t - 1 <--, (3i < n)(j = f(i)).

Such a t can be obtained as follows: take

c = m a x { 1 + O P (a i , f(i))}, r = c ! , y=rI((l+ (1 + O P (a i , f (i))) r) ; i = 0 , . . . , n - 1),

and finally put t = OP(y, r). All of the above manipulations are rudimentary.
Equations (1)-(3) will be used in the rightmost way, i.e., they are always applied at the innermost level

of the nest. We continue by making estimations concerning the growth of some functions involved in the
rightmost computation of A(n, x).

First, in view of the inequality A(i, j) >/A(i - 1, j + 1), one has

i + j >I A(n, x) ---) A(i, j) > A(n, x). (4)

Second, for every pair (n, x) we define the finite set

useful(n, x) = ((n, x) } U { (i, j) ~ IN2 ;A(i, j) is used in the rightmost computation of A(n, x) }

and the binary function length(n, x) = card(useful(n, x)). Clearly, if (i , j) is in useful(n, x), then A(i, j) ~<
A(n, x). So, by (4),

length(n, x) < (A(n, x)) : - 1.

Third, we need two more estimations, namely, for every y > 0,

b(x) = x xx < A(4, x),

and, for every n > 4,

A (n , x) = A (4 , y) ~ y > 1 2 n - 1 .

Given a pair (n, x) we encode the rightmost computation of the value z = A(n, x) by the sequence

(A(ia, Jl) , OP(il , Jl)),-.., (A(ik, Jk), OP(ik, Jk)),

(5)

(6)

(7)

(8)

312
- . .~tr

Volume 25, Number 5

where

INFORMATION PROCESSING LETTERS 10 July 1987

k = length(n, x), useful(n,x)= ((i l , j l) , . . . , (ik, jk)} ,

A(i l , j l) ~<A(iE,j=) ~< . . - < A(ik,Jk) ,

and if A(iu, ju) = A(i~+l, J~+l), then OP(iu, j~) < OP(i ,+l , Ju+l)- Finally, sequence (8) can be coded by a
natural t (depending upon n and x) by means of GSdel's 13 function. More precisely, t satisfies the
relations

A(i, j) =13 (t, OP(i , j)) for every (i, j) ~ useful(n, x), (9)
(Vw)(13(w, t) < t - 1) ~ (3(i , j) ~useful(n, x)) (w = OP(i , j)) . (10)

Now let f : N 3--, N be the rudimentary function given by f(n, x, y) = 13(y, OP(n, x)) and consider the
ternary predicates P and R defined as follows:

P (n ,x , y) ~ (f (n , x , y) < y - 1) & { [(n = 0) a (f (n , x , y) = x + 1)]

Vt(n > 0) a (x = 0) a (f (n - 1, x + 1, y) < y - 1)&(f(n, x, y) = f (n - 1, x + 1, Y))]
v [(nx > 0) & (f (n , x - 1, y) < y - 1)&(f(n - 1, f(n, x - 1, y), y) < y - 1)

&(fin , x, y) = f(n - 1, f(n, x - 1, y), y))] },
R(n, x, y) ~ (f(n, x, y) < y - 1)&(Yu < y)(Vi < u)(Vj < u)

[(u = OP(i, j))&(f (i , j, y) < y - 1)--, P(i, j, y)] .

Using equations (1)-(3) one can easily prove, by induction on i and j, the following statement: for all
n, x, y,

R(n, x, y) & (u = O P (i , j)) & (f (i , j , y) < y - 1) ---> A (i , j) = f (i , j , y). (11)

Finally, notice that for every pair (n, x) the least natural t satisfying predicate R(n, x, t) does exist and,
in view of (9) and (10),

z = A(n, x) ~ (3t)(z = f(n, x, t)&R(n, x, t)). (12)

In what follows we shall restrict ourselves to n > 4 and x > 0 because it is well known that the expn
(n ~< 4) are rudimentary. Using (3) one gets

z = A (n , x) = A(n - 1, A(n, x - 1)) = A(n - 1, zn)

= A (n - 2 , A (n - 1, z n - 1)) = A (n - 2 , Zn_l)

= A (4 , A (5 , z 6 - 1)) = A (4 , z 5) ,

where

z n = A(n, x - 1),

zi = A(i, zi+l - 1), 5 ~ i ~ < n - 1 .

On the basis of (13) and (14) we may write the equivalence

z = h (n , x) ~ (3Zn) . . . (=lz5)((z n = A(n , x - 1)) & - - . & (z i = A(i, zi+ 1 - 1))

& - ' - & (z 5 = A (5 , z 6 - 1)) & (z = A(4, z5))).

(13)
(14)

(15)

313

Volume 25, Number 5 INFORMATION PROCESSING LETTERS 10 July 1987

The next step consists in the estimation of the domain of variation of the variables t, Zn,... ,z 5
occurring in (12) and (15). We use the notations established in the paragraph that describes GSdel's 13
function. An elementary analysis gives

c = max(1 + OP(A(i, j) , OP(i, j)) ; (i, j) E useful(n, x) }

< 1 + OP(A(n, x), A(n, x)) = 1 + OP(z, z) < z 3,
r : C! ~ Z 3z3,

y --- I-I((1 + (1 + OP(A(i, j) , OP(i, j))) r) ; (i, j) ~ useful(n, x))

< (1 + (1 + OP(z, z))r) l~gth(~'x)+a < (1 + (1 + OP(z, z))r)~ ~< 2z 4~s

(we have used (5)), and

t = OP(y, r) ~< 5y 2 ~< 20z sz5 < z z~ = b(z),

because z >/20. Accordingly, formula (12) can be written as follows: for n > 4 and x > 0,

z = A(n, x) ~ (3t ~ b(z))[(z = f(n, x, t)) & R (n , x, t)] . (16)
Furthermore, for 5 < i < n - 1, by (6) one gets

z i = A (i , zi+ 1 - 1) > I A (i - 1, Zi+a) >/A(4, z i+l) > b(zi+l) . (17)

We conclude our proof as follows. Start with (15) and replace each relation (13) or (14) by the
corresponding fight-hand side given by (16); by (17) one gets

z = A (n , x) o (3 z n) . . . (3 z s) (3 y n < b (z n)) . . . (3 y s < b (z 5))

[(z~ = f(n, x - 1, yn))&R(n , x - 1, y n) & , , ,

&(z5 -- f(5, z6 - 1, Ys))&R(5, z6 - 1, Ys)&(z = A(4, zs))] . (18)

Now consider the sequence (ai), 0 ~< i ~< 2n - 9, defined by ai = Yn-i if 0 ~< i ~< n - 5, ai = z~_ i_4 if
n - 5 < i ~< 2n - 9, and the identity function. By means of GiSdel's 13 function one obtains a code w such
that 13(w, i) = a i, for all 0 ~< i ~< 2n - 9. Furthermore, a similar estimation as in the case of t works:

c = m a x (l + O P (a i , i) ; 0 ~ < i < 2 n - 9 } = l + O P (z s , 2 n - 9) ~ < l + O P (z S zs)~<z 3 ' 5 ,
27.s because, from (7), z = A(n, x) = A(4, z5) ---' z5 >1 2n - 1, r .<< z 3z3, y ~< z 5 5, w = OP(y, r) ~< 5y 2 ~< 5z~ ~<

b(z5) < A(4, z5) = z, by (6). Accordingly, the whole of the right-hand side of equivalence relation (18) can
be bounded by z, i.e.,

z = A (n , x) ~ (3 w < z) [(1 3 (w , n - 4) = f (n , x - l , 13(w, 0))) & R (n , x - l , 13(w, 0))
& . . . &(13(w, 2 n - 9) = f(5, 13(w, 2n - 10) - 1, 13(w, n -" 5)))

&R(5, 13(w, 2n - 10) - 1, 13(w, n - 5))&(z = A(4, 13(w, 2n - 9)))] ,
which shows that A is rudimentary.

3. Concluding remarks

(a) The binary function step(n, x) --- (t~t)Q(n, x, t), where Q(n, x, t) ~ (z -- f(n, x, t))&R(n, x, t) is rudi-
mentary and nonprimitive reeursive. Indeed,

t = step(n, x) ~ Q(n, x, t)&((Vu < t)--,Q(n, x, u)) and A(n, x) = f(n, x, step(n, x))
(see (12)).

314

Volume 25, Number 5 INFORMATION PROCESSING LETI'ERS 10 July 1987

(b) Each nonprimit ive recursive funct ion EXP n is rudimentary . Fur thermore , our proof shows that
every super-exponential of A c k e r m a n n type is rudimentary.

(c) In [2], modif ied loop-programs are defined as follows. A loop(O) program is a finite sequence o f the
following six assignments, t ~ 0, t ~ 1, t ~ t - 1, t *-- sg(s), t *-- t + 1, t ~ s (the last two s ta tements are
called principal; sg(0) = 0, sg(x + 1) = 1). A loop(n + 1) p rogram is recursively def ined as: (i) a loop(n)
program, or (ii) of the fo rm LooP t, P, END, where P is a loop (n) program, or (iii) a concatenat ion o f two
loop(n + 1) programs, subject to the restriction: if a loop-program contains a subprogram Q : L o o p t, P,
END, where P contains only assignment statements, then t does not appear as the lef t-hand side of any
principal s ta tement in P or in the scope of any loop directly containing Q. The meaning of these programs
should be clear. We stress that, in the case of deterministic use of the loop-programs, all the working
variables and the output variable have ent ry zero; in the case of nondeterministic use, they m a y have
arbi t rary values. The run- t ime of a program is the number of steps executed until termination. Now, in
view of the fact that each rud imen ta ry predicate is in Grzegorczyk's 8 ° class and ¢2 is the set of
polynomial ly computable funct ions in deterministic modif ied loop-programs [2, Theorem 1], it follows that
the funct ion A can be compu ted nondeterroinistically in polynomial t ime by the modif ied loop-programs.
Notice that the above ' po lynomia l computa t ion ' is not the well-known Tur ing polynomial computa t ion
(see [3,11]). It is an open problem (formulated in [12]) to show that A does no t have a polynomial- t ime
nondeterminis t ic Turing computab le graph.

References

[1] W. Ackermann, Zum Hilbertsehen Aufbau der reellen
Zahlen, Math. Ann. 99 (1928) 118-133.

[2] A. Amir and Y. Choueka, Loop-programs and polynomi-
ally computable functions, Internat. J. Comput. Math. 9
(1981) 195-205.

[3] A. Amir and Y. Choueka, A syntactical definition of the
P =?NP problem, Internat, J. Comput. Math. 17 (1985)
217-228.

[4] J.H. Bennett, On spectra, Ph.D. Dissertation, Princeton
Univ., 1962.

[5] ~. Buze~eanu and C. Calude, Functions having the graph
in the nth Grzegorczyk class, Found. Control Engrg. 11
(1986) 61-67.

[6] S. Finkelstein, On rudimentary languages, Unpublished
manuscript, 1977 (quoted following [9]).

[7] K. Gtidel, Uber formal unentseheidbare Siitze der Prin-
eipia Mathematica mad verwandte Systeme, "left I,
Monatshefte f. Math. & Physik 38 (1931) 173-198 [Eng-
lish translation in: M. Davis, ed., The Undecidable (Raven
Press, New York, 1965) 5-38].

[8] A. Grzegorczyk, Some classes of reeursive functions,
Rozprawy Math. 4 (1953) 1-45.

[9] K. Harrow, Equivalence of some hierarchies of primitive
recursive functions, Z. f. Math. Logik & Grundlag. Math.
25 (1979) 411-418.

[10] V.A. Nepomnjab3~, Rudimentary interpretations of two-
tape Turing computations, Kybernetika 2 (1970) 29-35
(in Russian).

[11] V.A. Nepomnja,~3fi, Rudimentary predicates and Turing
computations, Dokl. Akad. Nauk SSSR 195 (1970)
1462-1465.

[12] V.A. Nepomnj~ , Personal communication, September
1986.

[131 R. Peter, Rekursive Funktionen (Akad&niai Kiad6, Buda-
pest, 1957).

[14] A.G. Porto and A.B. Matos, Ackermann and the super-
powers, ACM SIGACT News 12 (3) (1980) 90-95.

[15] P. Pudlak, A definition of exponentiation by a bounded
arithmetical formula, Comm. Math. Univ. Carolin. 24
(1983) 667-671.

[16] J.R. Shoenfield, Mathematical Logic (Addison-Wesley,
Reading~ MA, 1967).

[17] D. Simoviei, Context-sensitive languages and Ackermann's
function, Found. Control Engrg. 5 (1980) 91-103.

[18] T. Skolem, Remarks on recursive functions and relations,
Norske Vid. Selsk. Forh. 17 (1944) 89-92; also in: J.E.
Fenstad, ed., Selected Works in Logic (Universitetsforla-
get, Oslo, 1970) 483-486.

[19] R.M. Smullyan, Theory of Formal Systems (Princeton
University Press, Princeton, NJ, 1961).

[20] M. T~lfftrkna, Aekermann-Peter's function has primitive
recursive graph and range, Found. Control Engrg. 2 (1984)
177-180.

315

