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We prove that every infiniteset of random strings is not recursively enumerable. In particular, the 
set of all random str,ings is not recursively enumerable. This property asserts that in a strong sense 
random strings are not constructable. 
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1) Let X = {a , ,  a,, . . ., a,}, p 2 2 be a finite alphabet. Denote by X* the free 
monoid generated by X (the elements of X* are called strings; the empty string 
is denoted by A). Ifx =x,x, . . . x, is in X*,  then the length ofx is l(x) = n; l(1) = 0. 
N = {O,1,2,. . . ) is the set of natural numbers. 

Let A and B be two sets. The notation f :  A%B means that f' is partially 
defined on A and takes its values in B. The domain off is denoted by dom (f ). 
We shall consider partial recursive functions (p.r. functions in the sequel) 
cp: X* x N ~ x * ,  or f :  N ~ x * .  They are sometimes assumed to take the 
(conventional) value co at points not belonging to their domain. A recursive 
funcrion is a p.r. function which is everywhere defined. The range of a p.r. 
function is a recursively enumerable set (r.e. set in the sequel). For Recursive 
Function Theory see [3], [5].  

For a p.r. function cp: X* x N%X* we define the Kolmogorov complexity 
induced by cp, denoted K,, to be the function K,: X* x N%N u {co), 

min (l(y) 1 y E X*, cp(y, n) = x), if such y exists, 
K,(x I n) = otherwise. 
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It is proved in [2] the existence of a p.r. function $: X* x N % X *  (universal 
algorithm in the sense of Kolmogorov) such that: For every p.r. function 
cp: X* x N%x*, there exists a constant c (depending upon $ and c p )  such that 
K,(x 1 n) K,(x I n)  + c, for every x in X* and n in N. Put K ,  = K ,  for some fixed 
universal algorithm $, and notice that K takes only finite values. 

A string x is called random (in the sense of Kolmogorov [2] )  if K ( x  I l(x)) 2 l(x). 
Random strings exist (for every $ and every length). 

See [2],  [4],  [6] for general results concerning binary random strings. For 
the nonbinary case see [I]. 

2) We rely heavily on the following result: 

THEOREM 1 .  Let f :  N % X *  be a partial function with the following two 
properties: 

1) dorn ( I )  is infinite, 
2) K(  f (n) 1 n) 2 n, for every n in dorn ( f  ). 
Then f has no partial recursive extension (consequently f itselfis not partial 

recursive). 

Proof Suppose there exists a p.r. function f *: N ~ X *  which extendsf: We 
shall derive a contradiction. 

First, we construct the auxiliary p.r. function cpf , :  X* x N%x*, given by 
cpf*(x, m)=f *(m), for all x in X* and m in N. Clearly, dom(cpr*) 
= X* x dorn ( f  *). 

We claim that K,,*( f ( n )  ( n)  =0, for all n in dorn ( f  *) (because cpf,(L, n) 
= f *(n), for every n in dorn ( f  )). 

According to Kolmogorov's Theorem we get a constant c (depending upon 
I// and qf,) such that 

for every n in dorn ( f  ). 
Using condition ( I ) ,  for every n in dorn ( f  ), n > c, we have: K( f *(n) 1 n) 

= K( f (n) I n) S c, contradicting condition (2)  which yields K(  f (n)  I n)  2 n > c. 
Q.E.D. 

COROLLARY 1. (P. Martin-Lof). There is no recursive function f :  N- tX*  
such that I( f (n))  = n and K( f (n) 1 n) 2 n, for all n in N.  

Remarks 

1 )  Corollary I shows that there is no algorithm which generates for every n 
in N a random string of length n. 
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2) Corollary I provides a motivation for Kolmogorov's definition of 
"random strings". Indeed, if x is random, there are no recursive tools for 
recognizing this. 

3) From Corollary 1 it follows that the Kolmogorov complexity is not a p.r. 
function. 

THEOREM 2. Every infinite set of random strings is not recursively enumerable. 
In particular, the set of all random strings is not recursively enumerable. 

Proof Let A be an infinite r.e. set of random strings. There exists an 
injective recursive function f ' : N+X* such that.f(N)= A. We can construct a 
p.r. function f *: N%X* such that dom( f *)is infiniteand K( f *(n) I n) 2 n,forall 
n in dom (f *), thus contradicting Theorem 1. 

The procedure for computing f * is the following: 
1. Put i=O.  
2. Put ,f *(l( f (i))) = f (i). 
3. Put i = i + l .  
4. If I( f (i)) = l(f (j)), for some j < i, then go to step 3. 
5. Go to step 2. 
Because A is infinite, the domain of f * is also infinite. For every n in 

dom (f *) one has: I( f *(n)) = n and K( f *(n) I l( f *(n))) 2 l(j'*(n)) = n, because 
J'*(N)\{co) c A. Q.E.D. 

Remark Theorem 2 reinforces the non-constructivity argument in Remark 
(2) following Corollary 1. 
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