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Finite-state complexity is a variant of algorithmic information theory obtained by replac-
ing Turing machines with finite transducers. We consider the number of states needed
for transducers used in minimal descriptions of arbitrary strings and, as our main result,
show that the state-size hierarchy with respect to a standard encoding is infinite. We
consider corresponding hierarchies yielded by more general computable encodings and
establish that for a suitably chosen computable encoding every level of the state-size
hierarchy can be strict.
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1. Introduction

Algorithmic information theory [7, 5] uses the minimal size of a Turing machine

that outputs a string x as a descriptional complexity measure. The theory has

produced many elegant and important results; however, a drawback is that all

variants of descriptional complexity based on various types of universal Turing

machines are uncomputable. Descriptional complexity defined by resource-bounded
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Turing machines has been considered in [4], and, at the other end of the spectrum,

lie models based on context-free grammars or finite automata.

Grammar-based complexity measures the size of the smallest context-free gram-

mar generating a single string. This model has been investigated since the 70’s, and

recently there has been renewed interest due to applications in text compression

and connections with Lempel-Ziv codings, see e.g., [12, 13]. A general overview of

this area can be found in [11]. The automatic complexity of a string [17] is defined

as the smallest number of states of a DFA (deterministic finite automaton) that

accepts x and does not accept any other string of length |x|. Note that a DFA rec-

ognizing the singleton language {x} always needs |x|+1 states, which is the reason

the definition considers only strings of length |x|. Automaticity [1, 16] is an anal-

ogous descriptional complexity measure for languages. The finite-state dimension

is defined in terms of computations of finite transducers on infinite sequences, see

e.g., [2, 9].

The NFA (nondeterministic finite automaton) based complexity of a string [8]

can also be viewed as being defined in terms of finite transducers that are called

“NFAs with advice” in [8]. However, the model allows the advice strings to be over

an arbitrary alphabet with no penalty in terms of complexity and, as observed in [8],

consequently the NFAs used for compression can always be assumed to consist of

only one state.

The finite-state complexity of a finite string x was introduced recently [6] in

terms of a finite transducer and a string p such that the transducer on input p

outputs x. Due to the non-existence of universal transducers, the size of the trans-

ducer is included as part of the descriptional complexity measure. We get different

variants of the measure by using different encodings of the transducers.

In our main result we establish that the measure produces a rich hierarchy

in the sense that there is no a priori upper bound for the number of states used

by transducers in minimal descriptions of given strings. The result applies to our

standard encoding, as well as to any other “reasonable” encoding where a transducer

is encoded by listing the productions in some uniform way.

By the state-size hierarchy we refer to the hierarchy of languages L≤m, m ≥ 1,

consisting of strings where a minimal description uses a transducer with at most m

states. We show that the state-size hierarchy with respect to the standard encoding

is infinite; however, it remains an open question whether the hierarchy is strict at

every level.

Note that a similar hierarchy based on description size of the strings is trivially

infinite. This follows from the simple observation that the set of strings having a

description of size at most a given constant is always finite.

In a more general setting, the definition of finite-state complexity [6] allows an

arbitrary computable encoding of the transducers, and properties of the state-size

hierarchy depend significantly on the particular encoding. We establish that, for

suitably chosen computable encodings, every level of the state-size hierarchy can be

strict.
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2. Preliminaries

If X is a finite set then X∗ is the set of all strings (words) over X , with ε denoting

the empty string. The length of x ∈ X∗ is denoted by |x|. We use ⊂ to denote strict

set inclusion.

For all unexplained notions concerning transducers we refer the reader to [3, 18].

In the following, by a transducer we mean a (left) sequential transducer [3], also

called a deterministic generalised sequential machine [18], where both the input and

output alphabet is {0, 1}. The set of all transducers is TDGSM.

A transducer T ∈ TDGSM is denoted as a quadruple T = (Q, q0, δ, µ) where Q is

the finite set of states, q0 ∈ Q is the start state, (all states of Q are considered to be

final), δ : Q× {0, 1} → Q defines the state transitions and µ : Q× {0, 1} → {0, 1}∗

gives the output associated with each transition. The function δ is, in the natural

way, extended as a function δ̂ : Q× {0, 1}∗ → Q defined by setting δ̂(q, ε) = q and

δ̂(q, xa) = δ(δ̂(q, x), a), q ∈ Q, a ∈ {0, 1}. Also the extension δ̂ is denoted simply by

δ.

The function {0, 1}∗ → {0, 1}∗ computed by the transducer T is, by slight abuse

of notation, also denoted by T and defined by T (ε) = ε, T (xa) = T (x)·µ(δ̂(q0, x), a),

for x ∈ {0, 1}∗, a ∈ {0, 1}.

When a transducer is represented as a figure, each transition δ(q, i) = p, µ(q, i) =

w, q, p ∈ Q, i ∈ {0, 1}, w ∈ {0, 1}∗, is represented by an arrow with label i/w from

state q to state p, and i (respectively, w) is called the input (respectively, output)

label of the transition. By the (state) size of T , size(T ), we mean number of states

in the set Q.

By a computable encoding of all transducers we mean a pair S = (DS , fS) where

DS ⊆ {0, 1}∗ is a decidable set and fS : DS → TDGSM is a computable bijective

mapping that associates a transducer T S
σ with each σ ∈ DS .

a

We say that S is a polynomial-time (computable) encoding if DS ∈ P and for

a given σ ∈ DS we can compute the transducer T S
σ ∈ TDGSM in polynomial time.

We identify a transducer T ∈ TDGSM with the functions δ and µ that specify the

state transitions and the output strings associated with each transition, respectively,

and the set of state names is always {1, . . . , |Q|} where 1 is the start state. By

“computing the transducer T S
σ ” we mean an algorithm that (in polynomial time)

outputs the list of four-tuples (q, i, w, p), δ(q, i) = p, µ(q, i) = w determining the

transitions of T S
σ , and with state names written in binary.

Next we define a fixed natural encoding S0 of transducers that we call the stan-

dard encoding. For our main result we need some fixed encoding of the transducers

where the length of the encoding relates in a “reasonable way” to the lengths of

the transition outputs. We encode a transducer as a binary string by listing for

each state q and input symbol i ∈ {0, 1} the target state and the output string

aIn a more general setting the mapping fS may not be injective (for example, if we want to define
DS as a regular set [6]), however, in the following we restrict consideration to bijective encodings in
order to avoid unnecessary complications with the notation associated with our state-size hierarchy.
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corresponding to the pair (q, i), that is, δ(q, i) and µ(q, i). Thus, the encoding of a

transducer is a list of (encodings of) states and output strings.

The results of section 4 remain valid if, as our standard encoding, we would

encode the transducers by listing the transitions (that is, the pairs consisting of

the target state and the output string encoded in binary) in any reasonable way

where an output string w corresponding to an individual transition contributes to

the length of the encoding a quantity c · |w|, where c is a constant.

Below we give one particular definition of the standard encoding that uses self-

delimiting versions of the strings and other technical tricks to make the encoding

succinct, albeit the encodings could be further improved [6]. In particular, in the

list we omit (that is, replace by ε) the state names that correspond to transitions

that are self-loops.

By bin(i) we denote the binary representation of i ≥ 1. Note that for all i ≥ 1,

bin(i) always begins with a 1. For v = v1 · · · vm, vi ∈ {0, 1}, i = 1, . . . ,m, we use

the following functions producing self-delimiting versions of their inputs (see [5]):

v† = v10v20 · · · vm−10vm1 and v⋄ = (1v)†, where is the negation morphism given

by 0 = 1, 1 = 0. It is seen that |v†| = 2|v|, and |v⋄| = 2|v|+ 2.

We define the set DS0
to consist of all strings of the form

σ = bin(i1)
‡ · v⋄1 · bin(i2)

‡ · v⋄2 · · · bin(i2n)
‡ · v⋄2n, (1)

where 1 ≤ it ≤ n, vt ∈ {0, 1}∗, t = 1, . . . , 2n, and

bin(it)
‡ =

{

bin(it)
† if it 6= ⌈ t

2
⌉

ε if it = ⌈ t
2
⌉

, 1 ≤ t ≤ 2n.

A string σ as in (1) encodes the transducer T S0

σ = ({1, . . . , n}, 1, δ, µ), where

δ(j, k) = i2j−1+k and µ(j, k) = v2j−1+k. j = 1, . . . , n, k ∈ {0, 1}. Note that in (1),

bin(it)
‡ = ε if the corresponding transition of δ is a self-loop. This convention is used

to reduce the length of the encodings. For an encoding with a simpler definition, we

could use bin(it)
† always in place of bin(it)

‡. In the following we will need, roughly

speaking, only the property that in the standard encoding each output w produced

by an individual transition “contributes” constant times |w| to the length of the

encoding and the details of the encoding are not important.

Example 1. The transducer T with the shortest standard encoding has one state

and always produces the empty string. It has transition functions δ : {1}× {0, 1} →

{1} and µ : {1} × {0, 1} → {0, 1}∗ defined by δ(1, 0) = δ(1, 1) = 1, µ(1, 0) =

µ(1, 1) = ε. In the notations of (1), i1 = 1, i2 = 1, and the transducer is coded as

σ = bin(i1)
‡ · ε⋄ · bin(i2)‡ · ε⋄ = 0000.

The identity transducer Tid is given by δ(1, 0) = 1, δ(1, 1) = 1, µ(1, 0) = 0,

µ(1, 1) = 1. Again i1 = 1, i2 = 1, and the code of Tid is

σid = bin(i1)
‡ · 0⋄ · bin(i2)

‡ · 1⋄ = ε · 0⋄ · ε · 1⋄ = 01100100.

Example 2. As a slightly bigger example consider the transducer T2 depicted in

Figure 1.
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1 2

0/101

1/ε

1/11

0/0110

Fig. 1. The transducer T2.

In the notations of (1), we have now i1 = 1, i2 = 2, i3 = 2, i4 = 1 and the

standard encoding of the transducer T2 is

σ2 = bin(i1)
‡ · (101)⋄ · bin(i2)

‡ · ε⋄ · bin(i3)
‡ · (0110)⋄ · bin(i4)

‡ · (11)⋄

= ε · 10100011 · 1001 · 11 · ε · 1000101001 · 11 · 101011

= 01011100100100011101011011010100.

Now we define the standard encoding S0 as the pair (DS0
, fS0

) where fS0
asso-

ciates with each σ ∈ DS0
the transducer T S0

σ as described above. It can be verified

that for each T ∈ TDGSM there exists a unique σ ∈ DS0
such that T = T S0

σ ,

that is, T and T S0

σ have the same transition function. The details of verifying that

T S0

σ1
6= T S0

σ2
when σ1 6= σ2 can be found in [6]. For T ∈ TDGSM , the standard encod-

ing of T is the unique σ ∈ DS0
such that T = T S0

σ . The standard encoding S0 is a

polynomial-time encoding.

Note that using a modification of the above definitions it is possible to guarantee

that the set of all legal encodings of transducers is regular [6] – this is useful e.g., for

showing that the non-existence of a universal transducer is not caused simply by the

fact that a finite transducer cannot recognize legal encodings of transducers. More

details about computable encodings can be found in [6], including binary encodings

that are more efficient than the standard encoding.

3. Finite-State Complexity

In the general form, the transducer based finite-state complexity with respect to a

computable encoding S of transducers in TDGSM is defined as follows [6].

We say that a pair (T S
σ , p), σ ∈ DS , p ∈ {0, 1}∗, defines the string x ∈ {0, 1}∗

provided that T S
σ (p) = x; the pair (T S

σ , p) is called a description of x. As the pair

(T S
σ , p) is uniquely represented by the pair (σ, p) we define the size of the description

(T S
σ , p) by

||(T S
σ , p)||S = |σ|+ |p|.

We define the finite-state complexity, or FS-complexity, of a string x ∈ {0, 1}∗ with

respect to encoding S by the formula:

CS(x) = inf
σ∈DS , p∈{0,1}∗

{

| σ | + | p | : T S
σ (p) = x

}

.
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We will be interested in the state-size, that is, the number of states of transducers

used for minimal encodings of arbitrary strings. For m ≥ 1 we define the language

LS
≤m to consist of strings x that have a minimal description using a transducer with

at most m states. Formally, we write

LS
≤m = { x ∈ {0, 1}∗ | (∃σ ∈ DS , p ∈ {0, 1}∗) T S

σ (p) = x,

|σ|+ |p| = CS(x), size(T
S
σ ) ≤ m}.

By setting LS
≤0 = ∅, the set of strings x for which the smallest number of states of

a transducer in a minimal description of x is m can then be denoted as

LS
=m = LS

≤m − LS
≤m−1, m ≥ 1.

Also, we let LS
∃minm

denote the set of strings x that have a minimal description in

terms of a transducer with exactly m states. Note that LS
=m ⊆ LS

∃minm
, but the

converse inclusion need not hold, in general, because strings in LS
∃minm

may have

other minimal descriptions with fewer than m states.

In the following, when dealing with the standard encoding S0 (introduced in

Section 2) we write, for short, Tσ, ||(T, p)||, C and L≤m, L=m, L∃minm, m ≥ 1,

instead of T S0

σ , ||(T, p)||S0
, CS0

and LS0

≤m, LS0

=m, LS0

∃minm
, respectively. The main

result in section 4 is proved using the standard encoding; however, it could easily be

modified for any “naturally defined” encoding of transducers, where each transducer

is described by listing the states and transitions in a uniform way. For example, the

more efficient encoding considered in [6] clearly satisfies this property. On the other

hand, when dealing with arbitrarily defined computable encodings S, the languages

LS
≤m, m ≥ 1, obviously can have very different properties. In section 5 we will

consider properties of the more general computable encodings.

The FS-complexity with respect to an arbitrary computable encoding S is com-

putable [6] because for given x, |σ1| + |x| gives an upper bound for CS(x) where

σ1 ∈ S is an encoding of the one-state identity transducer. An encoding of the iden-

tity transducer can be found from an enumeration of strings in S, and after this we

can simply try all transducer encodings and input strings up to length |σ1| + |x|.

Hence also the infimum could be replaced by minimum in the definition of CS .

Proposition 3. For any computable encoding S, the languages LS
≤m, m ≥ 1, are

decidable.

We conclude this section with an example concerning the FS-complexity with

respect to the standard encoding.

Example 4. Define the sequence of strings

wm = 101021031 · · · · · 0m−110m1, m ≥ 1.

Using the transducer T1 of Figure 2 we produce an encoding of w99. Note that

|w99| = 5050.

With the names of the states indicated in Figure 1, T1 is encoded by a string

σ1 ∈ S0 of length 332. Each number 0 ≤ i ≤ 99 can be represented as a sum of,
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1 111 1000 1001 1010 1011 1100

10 11

100

101

110

1/1 0/0 0/04 0/06 0/021 0/030 0/037

1/ε

0/ε 1/ε

1/ε

0/ε

0/ε
1/ε 0/ε

1/ε

0/ε

0/ε

1/ε

1/ε

1/ε

1/ε

1/ε

1/ε

Fig. 2. The transducer T1 for Example 4.

on average, 2.92 numbers from the multi-set {1, 4, 6, 21, 30, 37} [15]. Thus, when we

represent w99 in the form T1(p99), we need on average at most 6 · 2.92 symbols in

p99 to output each substring 0i, 0 ≤ i ≤ 99. (This is only a very rough estimate

since it assumes that for each element in the sum representing i we need to make a

cycle of length six through the start state, and this is of course not true when the

sum representing i has some element occurring more than once.) Additionally we

need to produce the 100 symbols “1”, which means that the length of p99 can be

chosen to be at most 1852. Our estimate gives that

||(Tσ1
, p99)|| = |σ1|+ |p99| = 2184,

which is a very rough upper bound for C(w99).

The above estimate could be improved using more detailed information from the

computation of the average from [15]. These types of constructions can be seen to

hint that computing the value of finite-state complexity may have connections to the

so-called postage stamp problems considered in number theory, with some variants

known to be computationally hard [10, 14]. It remains open whether computing the

function C (corresponding to the standard encoding) is NP-hard, or more generally,

whether for some polynomial-time encoding S, computing CS is NP-hard [6].

4. State-Size Hierarchy

We establish that FS-complexity is a rich complexity measure with respect to the

number of states of the transducers, in the sense that there is no a priori upper
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bound for the number of states used for minimal descriptions of arbitrary strings.

This is in contrast to algorithmic information theory, where the number of states

of a universal Turing machine can be fixed.

We prove the hierarchy result using the standard encoding. The particular choice

of the encoding is not important and the proof could be easily modified for any

encoding that is based on listing the transitions of a transducer in a uniform way.

However, as we will see later, arbitrary computable encodings can yield hierarchies

with very different properties.

In the remainder of this section we use the standard encoding S0 and, following

the convention from the previous section, S0 is dropped as a sub- or superscript in

the notations associated with FS-complexity.

Theorem 5. For any n ∈ IN there exists a string xn such that xn 6∈ L≤n.

Proof. Consider an arbitrary but fixed n ∈ IN. We define 2n+ 1 strings of length

2n+ 3,

ui = 10i12n+2−i, i = 1, . . . , 2n+ 1.

For m ≥ 1, we define

xn(m) = um2

1 um2

2 · · ·um2

2n+1.

Let (Tσ, p) be an arbitrary encoding of xn(m) where size(Tσ) ≤ n. We show that

by choosing m to be sufficiently large as a function of n, we have

||(Tσ, p)|| >
m2

2
. (2)

The set of transitions of Tσ can be written as a disjoint union θ1∪θ2∪θ3, where

• θ1 consists of the transitions where the output contains a unique ui, 1 ≤ i ≤ 2n+1,

as a substring,b that is, for any j 6= i, uj is not a substring of the output;

• θ2 consists of the transitions where for distinct 1 ≤ i < j ≤ 2n + 1, the output

contains both ui and uj as a substring;

• θ3 consists of transitions where the output does not contain any of the ui’s as a

substring, i = 1, . . . , 2n+ 1.

Note that if a transition α ∈ θ3 is used in the computation Tσ(p), the out-

put produced by α cannot completely overlap any of the occurrences of ui’s,

i = 1, . . . , 2n+ 1. Hence

a transition of θ3 used by Tσ on p has output length at most 4n+ 4. (3)

Since Tσ has at most n states, and consequently at most 2n transitions, it follows

by the pigeon-hole principle that there exists 1 ≤ k ≤ 2n + 1 such that uk is not

a substring of any transition of θ1. We consider how the computation of Tσ on

bBy a substring we mean a “contiguous substring”.
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p outputs the substring um2

k of xn(m). Let z1, . . . , zr be the minimal sequence of

outputs that “covers” um2

k . That is, z1 (respectively, zr) is the output of a transition

that overlaps with a prefix (respectively, a suffix) of um2

k and um2

k is a substring of

z1 · · · zr.

Define

Ξi = {1 ≤ j ≤ r | zj is output by a transition of θi}, i = 1, 2, 3.

By the choice of k we know that Ξ1 = ∅. For j ∈ Ξ2, we know that the transition

outputting zj can be applied only once in the computation of Tσ on p because for

i < j all occurrences of ui as substrings of xn(m) occur before all occurrences of uj.

Thus, for j ∈ Ξ2, the use of this transition contributes at least 2 · |zj | to the length

of the encoding ||(Tσ, p)||.

Finally, by (3), for any j ∈ Ξ3 we have |zj | ≤ 4n+4 < 2|uk|. Such transitions may

naturally be applied multiple times, however, the use of each transition outputting

zj , j ∈ Ξ3, contributes at least one symbol to p.

Thus, we get the following estimate:

||(Tσ, p)|| ≥
∑

j∈Ξ2

2 · |zj |+ |Ξ3| >
|um2

k |

2|uk|
=

m2

2
.

To complete the proof it is sufficient to show that, with a suitable choice of m,

C(xn(m)) < m2

2
. The string xn(m) can be represented by the pair (T1, p1) where

T1 is the 2n-state transducer from Figure 3 and p1 = (0m1)2n−10m1m.

1 2 2n−1 2n

0/um
1

1/ε

0/um
2

. . .

0/um
2n−1

1/ε

0/um
2n

1/um
2n+1

Fig. 3. The transducer T1 from the proof of Theorem 5.

Each state of T1 can be encoded by a string of length at most ⌈log2(2n)⌉, so

(recalling that in the standard encoding each transition output v contributes |v⋄| =

2|v|+ 2 to the length of the encoding and each binary encoding u of a state name

that is the target of a transition that is not a self-loop contributes 2|u| to the length

of the encoding) we get the following upper bound for the length of a string σ1 ∈ S0

encoding T1:

|σ1| ≤ (8n2 + 16n+ 8)m+ (4n− 2)(⌈log2(2n)⌉+ 1).
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Noting that |p1| = (2n+ 1)m+ 2n− 1 we observe that

C(xn(m)) ≤ ||(Tσ1
, p1)|| = |σ1|+ |p1| <

m2

2
, (4)

for example, if we choose m = 16n2 + 36n+ 19. This completes the proof.

As a corollary we obtain that the sets of strings with minimal descriptions using

a transducer with at most m states, m ≥ 1, form an infinite hierarchy.

Corollary 6. For any n ≥ 1, there exists effectively kn ≥ 1 such that L≤n ⊂

L≤n+kn
.c

We do not know whether all levels of the state-size hierarchy with respect to

the standard encoding are strict. Note that the proof of Theorem 5 constructs

strings xn(m) that have a smaller description using a transducer with 2n states

than any description using a transducer with n states. We believe that (with m

chosen as in the proof of Theorem 5) the minimal description of xn(m), in fact,

has 2n states, but do not have a complete proof for this claim. The claim would

imply that L≤n is strictly included in L≤2n, n ≥ 1. In any case, the construction

used in the proof of Theorem 5 gives an effective upper bound for the size of kn
such that L≤n ⊂ L≤n+kn

, because the estimation (4) (with the particular choice

for m) implies also an upper bound for the number of states of a transducer used

in a minimal description of xn(m).

The standard encoding is monotonic in the sense that adding states to a trans-

ducer or increasing the lengths of the outputs, always increases the length of an

encoding. This leads us to believe that for any n there exist strings where the

minimal transducer has exactly n states, that is, for any n ≥ 1, L=n 6= ∅.

Conjecture 7. L≤n ⊂ L≤n+1, for all n ≥ 1.

By Proposition 3 we know that the languages L≤n are decidable. Thus, for n ≥ 1

such that L=n 6= ∅, in principle, it would be possible to compute the length ℓn of

shortest words in L=n. However, we do not know how ℓn behaves as a function of

n. Using a brute-force search we have established [6] that all strings of length at

most 23 have a minimal description using a single state transducer.

Open problem 1. What is the asymptotic behavior of the length of the shortest

words in L=n as a function of n?

Also, we do not know whether there exists x ∈ {0, 1}∗ that has two minimal

descriptions (in the standard encoding) where the respective transducers have dif-

ferent numbers of states. This amounts to the following:

Open problem 2. Does there exist n ≥ 1 such that L=n 6= L∃minn?

cNote that here “⊂” stands for strict inclusion.
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5. General Computable Encodings

While the proof of Theorem 5 can be easily modified for any encoding that, roughly

speaking, is based on listing the transitions of a transducer, the proof breaks down

if we consider arbitrary computable encodings S. Note that the number of trans-

ducers with n states is infinite and, for arbitrary computable S, it does not seem

easy, analogously as in the proof of Theorem 5, to get upper and lower bounds for

CS(xn(m)) for suitably chosen strings xn(m). We do not know whether there exist

computable encodings for which the state-size hierarchy collapses to a finite level.

Open problem 3. Does there exist n ≥ 1 and a computable encoding Sn such that

that, for all k ≥ 1, LSn

≤n = LSn

≤n+k?

On the other hand, it is possible to construct particular encodings for which

every level of the state-size hierarchy is strict.

Theorem 8. There exists a computable encoding S1 such that

LS1

≤n−1
⊂ LS1

≤n, for each n ≥ 1.

Proof. Let pi, i = 1, 2, . . ., be the ith prime. We define an n-state (n ≥ 1) trans-

ducer Tn = ({1, . . . , n}, 1,∆n) by setting by ∆n(1, 0) = (1, 0pn), ∆n(i, 0) = (i, ε),

2 ≤ i ≤ n, ∆n(j, 1) = (j + 1, ε), 1 ≤ j ≤ n− 1, and ∆n(n, 1) = (n, ε).

In the encoding S1 we use the string σn = bin(n) to encode the transducer Tn,

n ≥ 1. Any transducer T that is not one of the above transducers Tn, n ≥ 1, is

encoded in S1 by a string 0 · e, e ∈ {0, 1}∗, where |e| is at least the sum of the

lengths of outputs of all transitions in T . This condition is satisfied, for example by

choosing the encoding of T in S1 to be simply 0 concatenated with the standard

encoding of T .

Let m ≥ 1 be arbitrary but fixed. The string 0pm has a description (T S1

σm
, 0) of

size ⌈logm⌉+ 1, where σm ∈ S1 encodes Tm and the transducer T S1

σm
has m states.

We show that CS1
(0pm) = ⌈logm⌉+ 1.

By the definition of the transducers Tn, for any w ∈ {0, 1}∗, Tn(w) is of the form

0k·pn , k ≥ 0. Thus, 0pm cannot be the output of any transducer Tn, n 6= m.

On the other hand, consider an arbitrary description (T S1

σ , w) of the string 0pm

where T S1

σ is not any of the transducers Tn, n ≥ 1. Let x be the length of the longest

output of a transition of T S1

σ . Thus, x · |w| ≥ pm. By the definition of S1 we know

that |σ| ≥ x+ 1, and we conclude that

||(T S1

σ , w)||S1
= |σ|+ |w| > ⌈logm⌉+ 1.

We have shown that, in the encoding S1, the unique minimal description of 0pm

uses a transducer with m states, which implies 0pm ∈ LS1

=m, m ≥ 1.

The encoding S1 constructed in the proof of Theorem 8 is not a polynomial-time

encoding because Tn has an encoding of length O(log n), whereas the description

of the transition function of Tn (in the format specified in Section 2) has length
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Ω(n · logn). Besides the above problem S1 is otherwise efficiently computable

and using standard “padding techniques” we can simply increase the length of all

encodings of transducers in S1.

Corollary 9. There exists a polynomial time encoding S′
1 such that

L
S′
1

≤n−1
⊂ L

S′
1

≤n, for each n ≥ 1.

Proof. The encoding S′
1 is obtained by modifying the encoding S1 of the proof of

Theorem 8 as follows. For n ≥ 1, Tn is encoded by the string σn = bin(n)† ·1n. Any

transducer T that is not one of the transducers Tn, n ≥ 1, is encoded by a string

0 ·w where |w| ≥ 2x and x is the sum of the lengths of outputs of all transitions of

T . If σ is the standard encoding of T , for example, we can choose w = σ† · 12
|σ|

.

Now |σn| is polynomially related to the length of the description of the transition

function of Tn, n ≥ 1, and given σn the transition function of Tn can be output in

quadratic time. For transducers not of the form Tn, n ≥ 1, the same holds trivially.

Essentially in the same way as in the proof of Theorem 8, we verify that for any

m ≥ 1, the string 0pm has a unique minimal description (T
S′
1

σ′
m
, 0), where σ′

m ∈ S′
1 is

the description of the m-state transducer Tm. The same argument works because,

the encoding of any transducer T in S′
1 is, roughly speaking, obtained from the

encoding σ of T in S1 by appending 2|σ| symbols 1.

There exist computable encodings that allow distinct minimal descriptions of

strings based on transducers with different numbers of states. Furthermore, the

gap between the numbers of states of the transducers used for different minimal

descriptions of the same string can be made arbitrarily large, that is, for any n < m

we can construct an encoding where some string has minimal descriptions both

using transducers with either n or m states. The proof uses an idea similar to the

proof of Theorem 8.

Theorem 10. For any 1 ≤ n < m, there exists a computable encoding Sn,m such

that L
Sn,m

∃minm
∩ L

Sn,m

=n 6= ∅.

Proof. Let pi, i = 1, 2, . . ., be the ith prime. Let Ti, i ≥ 1, be the particular

transducers defined in the proof of Theorem 8 and let S1 be the encoding defined

there.

Let 1 ≤ n < m be arbitrary but fixed. We denote by T ′
n = ({1, . . . ,m}, 1,∆′)

an m-state transducer where ∆′(1, 0) = (1, 0pn), ∆′(i, 0) = (1, ε), 2 ≤ i ≤ m,

∆′(j, 1) = (j + 1, ε), 1 ≤ j ≤ m − 1, and ∆′(m, 1) = (m, ε). The transducer T ′
n is

obtained from Tn simply by adding m− n “useless” states.

Let S2 be defined as S1 except that the transducer Ti, i ≥ 1, is encoded by the

string σi = bin(i)·0. In the encoding S2 the unique minimal description of the string

0pi is (T S2

σi
, 0). Note that the encoding of Ti in S2 has one additional bit compared

to the encoding of Ti in S1, however, the same estimation as used in the proof of

Theorem 8 goes through.
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Now we can choose Sn,m to be as S2 except that the transducer T ′
n is encoded

as τn = bin(n) · 1. In the encoding Sn,m the minimal description of 0pn using

a transducer with the smallest number of states is (T
Sn,m

σn , 0). However, 0pn has

another minimal description (T
Sn,m

τn , 0) where the transducer has m states.

Note that the statement of Theorem 10 implies that L
Sn,m
=m 6= L

Sn,m

∃minm
. Again, by

padding the encodings as in Corollary 9, the result of Theorem 10 can be established

using a polynomial-time encoding.

6. Conclusion

As perhaps expected, the properties of the state-size hierarchy with respect to the

specific computable encodings considered in section 5 could be established using

constructions where we added to transducers additional states without changing the

size of the encoding. In a similar way various other properties can be established for

the state-size hierarchy corresponding to specific (artificially defined) computable

encodings. The main open problem concerning general computable encodings is

whether or not it is possible to construct an encoding for which the state-size

hierarchy collapses to some finite level, see Open problem 3.

As our main result we have established that the state-size hierarchy with re-

spect to the standard encoding is infinite. Almost the same proof implies that the

hierarchy is infinite with respect to any “natural” encoding that is based on list-

ing the transitions of the transducer in some uniform way. Many interesting open

problems dealing with the hierarchy with respect to the standard encoding remain.

In addition to the problems discussed in section 4, we can consider various types of

questions related to combinatorics on words. For example, assuming that a minimal

description of a string w needs a transducer with at least m states, is it possible

that w2 has a minimal description based on a transducer with less than m states?

We conjecture a negative answer to this question.

Conjecture 11. If w ∈ L=m (m ≥ 1), then for any k ≥ 1, wk 6∈ L≤m−1.
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