
AUTHOR C
OPY

Computability 9 (2020) 155–166 155
DOI 10.3233/COM-190250
IOS Press

A statistical anytime algorithm for the Halting Problem

Cristian S. Calude
Department of Computer, Science, University of Auckland, Auckland, New Zealand
cristian@cs.auckland.ac.nz; www.cs.auckland.ac.nz/~cristian

Monica Dumitrescu
Faculty of Mathematics and Computer Science, Bucharest University, Romania
mdumi@fmi.unibuc.ro; http://goo.gl/txsqpU

Abstract. In a previous paper we used computer running times to define a class of computable probability distributions on the
set of halting programs and developed a probabilistic anytime algorithm for the Halting Problem. The choice of a computable
probability distribution – essential for the algorithm – can be rather subjective and hard to substantiate.

In this paper we propose and study an efficient statistical anytime algorithm for the Halting Problem. The main advantage of
the statistical algorithm is that it can be implemented without any prior information about the running times on the specific model
of computation and the cut-off temporal bound is reasonably small. The algorithm has two parts: the pre-processing which is
done only once (when the parameters of the quality of solutions are fixed) and the main part which is run for any input program.
With a confidence level as large as required, the algorithm produces correct decisions with a probability as large as required.
Three implementations of the algorithm are presented and numerically illustrated.

Keywords: Halting Problem, anytime algorithm, running time, order statistics

1. Introduction
The Halting Problem asks to decide, from a description of an arbitrary program and an input, whether the com-

putation of the program on that input will eventually stop or continue forever. In 1936 A. Church, and independently
A. Turing, proved that there is no algorithm solving the Halting Problem for all possible program-input pairs. The
Halting Problem has many applications in logic and theoretical as well as applied computer science, mathematics,
physics, biology, etc. Due to its practical importance approximate solutions for this problem have been proposed for
quite a long time, see [2,6–10,14,17,20,22,25].

Anytime algorithms trade execution time for quality of results [13]. An anytime algorithm returns a result to-
gether with a “quality measure” which evaluates how close the obtained result is to the result that would be returned
if the algorithm ran until completion (which may be prohibitively long). To improve the quality of the solution,
anytime algorithms can be continued after they have halted if the output is not considered acceptable.

Here we use a more general form of anytime algorithm as an approximation for a computation which may
never stop (see Manin [22]). Running times play an important role in this problem because halting programs are not
uniformly distributed, see [16,27,29,30] for experimental work and [7,9,14,15] for theoretical results. Furthermore,
every program either stops “quickly” or never stops [9]. This result was used in [8] to design an anytime probabilistic
algorithm which simulates the program to be tested up to a threshold stopping time (this cut-off temporal bound is
computed from the a priori accepted decision error and the probability distribution of stoping times of halting pro-
grams): if the computation still has not terminated by then, the algorithm reports (possibly wrongly) ‘The program
does not halt!’. This anytime algorithm uses essentially a computable probability distribution on the set of stopping
times of halting programs “reflecting” the halting behaviour of the chosen universal machine. The quantile of this
probability distribution is utilised to compute the stoping threshold time, hence, the name “anytime probabilistic
algorithm”. The probability of a wrong decision is no larger than the accepted error.

In this paper we propose a statistical anytime algorithm for the Halting Problem which improves the anytime
probabilistic algorithm developed in [8] using a different strategy. In a pre-processing stage we sample sufficiently
many terminating programs in an independent way (see [3,18]), determine their running times and consider the in-
duced empirical cumulative distribution as approximation to the true, but unknown, cumulative distribution. Using
an appropriate statistical framework we construct an anytime statistical algorithm which uses three parameters: the

2211-3568/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved

mailto:cristian@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~cristian
mailto:mdumi@fmi.unibuc.ro
http://goo.gl/txsqpU

AUTHOR C
OPY

156 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

probability of an erroneous decision, the precision of and the confidence level in the estimation. The input program –
tested for termination – is run for up to the largest number of steps made by any of the sampled programs. If the
computation does not terminate by this time threshold (cut-off), then the (possible wrong) decision is that the pro-
gram will never stop. With a confidence level as large as required, the anytime statistical algorithm produces correct
decisions with a probability as large as required. Three implementations of the anytime algorithm are presented;
numerical illustrations show that their time complexities are reasonably small.

The paper is organised as follows. We start with Section 2 on computability and complexity part for the Halting
problem; Section 3 presents the probability framework and the probabilistic anytime algorithm for the Halting
Problem, Section 4 presents the statistical framework, then Section 5 presents the statistical anytime algorithm for the
Halting Problem and the proof of its main properties. Finally, in Section 6 we discuss three possible implementations
of the statistical algorithm and present numerical illustrations; the last section is devoted to conclusions and possible
extensions.

2. The Halting Problem
We denote by Z

+ the set of positive integers {1, 2, . . . }; Z+ = Z
+ ∪ {∞} and R is the set of reals. For α ∈ R,

�α� is the ceiling function that maps α to the least integer greater than or equal to α. The domain of a partial function
F : Z+ −→ Z+ is denoted by dom(F): dom(F) = {x ∈ Z

+ : F(x) < ∞}. We denote by #S the cardinality of the
set S and by P(X) the power set of X. The indicator (or characteristic) function of a set M is denoted by 1M .

We assume familiarity with elementary computability theory and algorithmic information theory [5,12,21]. For
a partially computable function F : Z+ −→ Z+ we denote by F(x)[t] < ∞ the statement “the algorithm computing
F has stopped on x exactly in time t”. For t ∈ Z

+ we consider the computable set Stop(F, t) = {x ∈ Z
+ : F(x)[t] <

∞}, and note that

dom(F) =
⋃

t∈Z+
Stop(F, t). (1)

The algorithmic complexity relative to a partially computable function F : Z+ −→ Z+ is the partial function
∇F : Z+ −→ Z+ defined by ∇F (x) = inf{y ∈ Z

+ : F(y) = x}. If F(y) 	= x for every y � 1, then ∇F (x) = ∞.
A partially computable function U is universal if for every partially computable function F : Z+ −→ Z+ there
exists a constant cU,F such that for every x ∈ dom(F) we have ∇U(F (x)) � cU,F · x, see [7].

The set dom(U) (see (1) for U = F) is computably enumerable, but not computable (the undecidability of
the Halting Problem); its complement dom(U) is not computably enumerable, but the sets (Stop(U, t))t�1 are
computable. To solve the Halting Problem means to determine for an arbitrarily pair (F, x), where F is a partially
computable function and x ∈ Z

+, whether F(x) stops or not, or equivalently, whether x ∈ dom(F), that is, x ∈
Stop(F, t), for some t ∈ Z

+. Solving the Halting Problem for a fixed universal U is enough to solve the Halting
Problem. From now on we fix a universal function U and study the Halting Problem “For every x ∈ Z

+, does
U(x) < ∞?”.

3. The probabilistic anytime algorithm for the Halting Problem
A probability space is a triple (�,B(�), Pr), where (�,B(�)) is a measurable space and Pr : B(�) −→ [0, 1]

is a probability measure, see [11,24]. A random variable is a measurable function defined on � with values in a
set of real numbers; its probability distribution is denoted PX. The random variable X has a discrete probability
distribution if A is at most countable. A computable probability distribution PX is a discrete probability distribution
such that the function x ∈ A ↪→ PX({x}) is computable (in particular, PX({x}) is a computable real for each
x ∈ A, see [23,28]). The mean (or expected value) of the discrete random variable X : � −→ A is defined by
E(X) = ∑

x∈A x · Pr({ω ∈ � : X(ω) = x}), if the series converges.
The Cumulative Distribution Function of a random variable X is the function CDFX : R −→ [0, 1] defined by

CDFX(y) = Pr(X � y), y ∈ R. The Inverse Cumulative Distribution Function or Quantile function of the random

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem 157

variable X with a discrete distribution is the function qX : [0, 1] −→ A defined by qX(p) = inf{y ∈ A : p �
CDFX(y)}. For more details see [1].

Next we present the probability framework introduced in [8]. The finite running times of the computations
U(x) are the set of exact stopping times for the halting programs of U: TU = {t ∈ Z

+ : there exists x ∈
Z

+ such that x ∈ Stop(U, t)}. The family of (finite and countable) unions of sets Stop(U, t), t ∈ Z
+, generates the

Borel field B(dom(U)). A computable running time probability space (dom(U),B(dom(U)), PrρU) is defined from
a computable probability distribution ρ on TU by setting Pr = Prρ : B(dom(U)) −→ [0, 1], Pr(Stop(U, t)) = ρ(t),
t ∈ TU.

We introduce a probability structure on the set TU via a random variable. Let B(TU) be the family of all subsets
of TU. The function RT = RTU : dom(U) −→ TU, RT(x) = min{t > 0 : x ∈ Stop(U, t)} has the property
that for every t ∈ TU, RT−1({t}) = Stop(U, t) ∈ B(dom(U)). The random variable RT – called the running time
associated with U – induces the probability space (TU,B(TU), PRT) on TU in which the probability is defined by
PRT({t}) = Pr(RT−1({t})), t ∈ TU. For every t ∈ TU we have: PRT({t}) = Pr(Stop(U, t)) = ρ(t). For more details
see [8].

Inference-based decisions are made using statistical procedures based on sets of observations. An inference-
based decision of a hypothesis results in one of two outcomes: the hypothesis is accepted or rejected. The outcome
can be correct or erroneous. The set of observations leading to the decision “reject the hypothesis” is called the
critical region and its complement is called the acceptance region.

Consider a probability space (A,B(A), PX) induced by a random variable X. Consider an acceptance region
D ⊂ A with D ∈ B(A). For every observed value z ∈ A, a hypothesis Hz is a predicate such that the sets
{z ∈ A : Hz is true} and {z ∈ A : Hz is false} are in B(A).

An inference-based decision has the following form:

If the observed value z ∈ A belongs to A \ D, then decide to reject the hypothesis Hz.

An error occurs if we reject Hx on the basis of A \ D when Hx is true. The probability of error, that is, the
probability of an erroneous decision, is PX({x ∈ A \ D} | {Hx is true}).

We can reformulate the Halting Problem as an inference-based decision in which we test, for an arbitrary z ∈ Z
+,

the hypothesis Hz = ‘U(z) < ∞′ (remember Hz is a predicate) against the alternative H ′
z = ‘U(z) = ∞′. An

“erroneous decision” means rejecting Hz when U(z) < ∞.
The construction of the anytime algorithm for the Halting Problem is based on a computable acceptance region

D ⊂ dom(U). Accordingly, the algorithm rejects the hypothesis Hz if z /∈ D. This decision is correct if z ∈
Z

+\dom(U) and it is wrong if z ∈ dom(U)\D. In detail, for an arbitrary program z ∈ Z
+ there are three possibilities:

a) z ∈ D, b) z ∈ dom(U) \ D, c) z /∈ dom(U). Condition a) is decidable, but conditions b) and c) are undecidable. If
z ∈ D the anytime algorithm gives the correct decision U(z) < ∞; otherwise z ∈ (dom(U) \ D) ∪ (Z+ \ dom(U)),
so the anytime algorithm decides – rightly or wrongly – that U(z) = ∞. Furthermore, for every z ∈ Z

+,

rejecting Hz on the basis of D is an erroneous decision if and only if z ∈ dom(U) \ D. (2)

As the right-hand side of (2) is a subset of dom(U) we don’t need to work in Z
+ but in dom(U), that is, in

the probability space (dom(U),B(dom(U)), Pr) or, equivalently, in (TU,B(TU), PRT). The goal to minimise the
probability of an erroneous decision can be achieved in this space as long as D and dom(U)\D are measurable sets.
This condition is satisfied by taking the decidable set of the form D = ⋃T

t=1 Stop(U, t), for some appropriate T .
The anytime probabilistic algorithm proposed in [8] is:

Let x be an arbitrary program for U. If the computation U(x) does not stop in time less than or equal to
qRT(1 − ε), then declare that U(x) = ∞.

The acceptance program region of the algorithm is

DU(PRT, ε) = {
x ∈ dom(U) : RT(x) � qRT(1 − ε)

}
, (3)

AUTHOR C
OPY

158 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

where ε ∈ (0, 1) is the decision error and the threshold qRT(1 − ε) is the (1 − ε)-quantile of the probabil-
ity distribution PRT. The correctness of the algorithm comes from the inequality on the critical program region
C(PRT, ε) = dom(U) \ DU(PRT, ε): Pr(C(PRT, ε)) � ε.

Condition (3) can be equivalently stated in terms of running times as:

DTU(PRT, ε) = {
t ∈ TU : t � qRT(1 − ε)

}
). (4)

The critical time region is B(PRT, ε) = {t ∈ TU : t > qRT(1−ε)} and the correctness comes from PRT(B(PRT, ε)) �
ε.

4. Statistical framework
The notions and results discussed in Section 3 are based on the assumption that the computable probability

distribution on the set of finite running times of programs of U and the random variable RT are known. In case this
assumption is not satisfied, can an inferential approach be used to extract information about the true but unknown
probability distribution of the random variable RT from observations of the phenomenon described by RT? More
precisely, instead of working with the theoretical CDFX, can we can we approximate the true, unknown proba-
bility distribution of the random variable RT by means of a (long-enough) sequence X1, . . . , XN of independent,
identically distributed random variables with the same distribution as RT? The answer is affirmative.

The following form of Hoeffding’s inequality (see [26]) is essential in what follows:

Theorem 4.1. Let N > 0 be an integer and a, b ∈ R, a < b. For every X1, . . . , XN independent random variables
defined on (�,B(�), Pr) with values in [a, b] we have:

Pr

({
ω ∈ � : 1

N

N∑
i=1

Xi(ω) − E

(
1

N

N∑
i=1

Xi

)
� λ

})
� 1 − exp

(
− 2Nλ2

(b − a)2

)
.

Consider the probability space (�,B(�), Pr), the random variable X : � −→ A and N replicates X1, . . . , XN

of X. In what follows (x1, . . . , xN) ∈ AN will denote the observed values of a sample of size N corresponding
to the random variables X1, . . . , XN : (x1, . . . , xN) = (X1(ω), . . . , XN(ω)) ∈ AN . The vector (x1, . . . , xN) will
be called an N -dimensional sample and its values x1, . . . , xN data points. The Empirical Cumulative Distribution
Function is defined by

ECDFX,N(y) = #{1 � i � N : xi � y}
N

, y ∈ R. (5)

Suppose that we order increasingly the observed data points and denote the sequence by

x(1) � x(2) � · · · � x(N−1) � x(N). (6)

The order statistics of rank k is the kth smallest value in (6): X(k)(ω) = x(k). See more in [11, Ch. 6]).
The statistical anytime algorithm assumes that the probability distribution of RT is unknown. Therefore, the

cumulative distribution function of RT, CDFRT(t) = Pr({x ∈ dom(U) : RT(x) � t}), is also unknown and has
to be estimated. For evaluating the quality of the approximation we fix a positive integer N and consider the true,
unknown N -dimensional program sampling space (dom(U)N ,B(dom(U)N)).

The elements of dom(U)N will be denoted by x = (x1, . . . , xN). Projections {pr1, . . . , prN }, pri : dom(U)N

−→ dom(U), pri (x) = xi , i = 1, . . . , N , are independent random variables. If we denote by RTi =
RT ◦pri : dom(U)N −→ TU, RTi (x) = RT(xi), i = 1, . . . , N , then {RT1, . . . , RTN } are independent, identical

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem 159

distributed random variables. Furthermore, for every 1 � i � N , we have:

CDFRTi
(t) = PrN

({
x ∈(

dom(U)
)N : RT(xi) � t, 1 � i � N

})
= PrN

(
dom(U) × · · · × {

xi ∈ dom(U) : RT(xi) � t
} × dom(U) × · · · × dom(U)

)
= Pr

(
dom(U)

) · · · Pr
({

xi ∈ dom(U) : RT(xi) � t
}) · Pr

(
dom(U)

) · · · Pr
(
dom(U)

)
= CDFRT(t).

For every x ∈ dom(U)N we put RTi (x) = ti (x), 1 � i � N and denote the N -dimensional time sampling space
by (TN

U ,B(TN
U), P N

RT).
In the following Lemma 4.2, CDFRT(t) is estimated by the Empirical Cumulative Distribution Function (5)

ECDFRT,N

((
RT1(x), . . . , RTN(x)

); t
) = #{1 � i � N : RTi (x) � t}

N

= #{1 � i � N : ti (x) � t}
N

. (7)

Lemma 4.2. For every positive integer N , t ∈ TU and λ ∈ (0, 1), we have:

PrN
({

x ∈ dom(U)N : ECDFRT,N

((
RT1(x), . . . , RTN(x)

); t
) − CDFRT(t) � λ

})
� 1 − exp

(−2N · λ2). (8)

Proof. On one hand, from (7) we have:

ECDFRT,N

((
RT1(x), . . . , RTN(x)

); t
) = 1

N

N∑
i=1

1{x∈dom UN :RTi (x)�t}.

On the other hand, using the linearity of the operator E we have:

E

(
1

N

N∑
i=1

1{x∈dom(U)N :RTi (x)�t}

)
= 1

N

N∑
i=1

E(1{x∈dom(U)N :RTi (x)�t})

= 1

N

N∑
i=1

PrN
({

x ∈ dom(U)N : RTi (x) � t
})

= CDFRT(t).

As RTi : dom(U)N −→ TU, RTi (x) = RT(xi), i = 1, . . . , N are independent random variables, for every
t ∈ TU, 1{x∈dom(U)N :RTi (x)�t}: dom(U)N −→ [0, 1], i = 1, . . . , N are also independent random variables. Con-
sequently, the inequality (8) follows from Theorem 4.1 applied to the random variables {1{x∈dom(U)N :RTi (x)�t}, i =
1, . . . , N}. �

If we define the set of “good program samples” by

GN,λ,t = {
x ∈ dom(U)N : ECDFRT,N

((
RT1(x), . . . , RTN(x)

); t
) − λ � CDFRT(t)

}
,

then by Lemma 4.2 we have

PrN(GN,λ,t) � 1 − exp
(−2Nλ2),

AUTHOR C
OPY

160 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

were λ is the precision parameter and (1 − exp(−2Nλ2)) can be interpreted as the confidence level that a program
is in GN,λ,t , i.e. it is a good program sample.

With this interpretation, Lemma 4.2 says that the probability PrN of the set of programs x ∈ dom(U)N on which
ECDFRT,N ((RT1(x), . . . , RTN(x)); t) estimates CDFRT(t) with precision at least λ can be made as “large” as one
wishes. To measure the size of this set (according to PrN) we introduce the confidence level (1 − δ) by the condition(

1 − exp
(−2N · λ2)) � (1 − δ), (9)

which is equivalent to

N � N(λ, δ) =
⌈

1

2λ2
· ln

1

δ

⌉
. (10)

The following result shows that for every N � N(λ, δ) the set of good program samples GN,λ,t can be made as
“large” as required in probability PrN :

Corollary 4.3. For every t ∈ TU, λ ∈ (0, 1), δ ∈ (0, 1) and N � � 1
2λ2 · ln 1

δ
� we have

PrN(GN,λ,t) � 1 − δ. (11)

5. A statistical anytime algorithm for the Halting Problem
For a fixed confidence level (1 − δ), precision parameter λ and good program sample x (which produces a

“reliable” estimate of CDFRT) we use the critical time region (see (4)) to reject the hypothesis Hz and to measure
the probability of an erroneous decision of the anytime algorithm. Accordingly, for ε, λ ∈ (0, 1), the critical time
region should satisfy the following two conditions:

B(RT, x; ε, λ) = {
t ∈ TU : t > threshold(x, ε, λ)

}
, PRT

(
B(RT, x; ε, λ)

)
� ε. (12)

For a sample of programs x we use the notation t(x) = (t1(x), . . . , tN (x)), where ti = RTi (x), 1 � i � N . We
increasingly order the observed running times ti and get the values of the corresponding order statistics t(1)(x) �
· · · � t(N)(x). As one of these order statistics will be the choice for the threshold, threshold(x, ε, λ), we must find
the smallest number 1 � K � N such that x ∈ GN,λ,t(K)(x). In terms of order statistics, t(K)(x) generates a statistical
threshold(x, ε, λ) which must satisfy (12). Explicitly these two requirements are:

ECDFRT,N

((
t1(x), . . . , tN (x)

); t(K)(x)
) − λ � CDFRT

(
t(K)(x)

)
, (13)

PRT
({

t ∈ TU : t > t(K)(x)
})

� ε. (14)

As from (7),

ECDFRT,N

((
t1(x), . . . , tN (x)

); t(K)(x)
) = K

N
,

both conditions are satisfied if

1 − ε � K

N
− λ � CDFRT

(
t(K)(x)

)
. (15)

Indeed, from the definition of CDFRT, if x ∈ GN,λ,t(K)
, then

K

N
− λ � CDFRT

(
t(K)(x)

)
,

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem 161

so (13) is satisfied. Furthermore, as

PRT
({

t ∈ TU : t > t(K)(x)
}) = 1 − CDFRT

(
t(K)(x)

)
,

if x ∈ GN,λ,t(K)(x) and 1 − ε � K
N

− λ, then (14) is satisfied.
From the first inequality in (15) we get K � N(1 − ε + λ). As we must have 0 < 1 − ε + λ < 1, we get λ < ε.

For N = N(λ, δ) as in (10) we can take K = K(ε, λ, δ) = �N(1 − ε + λ)� – the minimum integer 1 � K � N

satisfying (15) – hence

threshold(x, ε, λ) = tK(ε,λ,δ)(x) = t�N(1−ε+λ)�(x). (16)

From (15) we have

1 − ε � CDFRT
(
t(�N(1−ε+λ)�)(x)

)
. (17)

The statistical anytime algorithm for the Halting Problem will operate with three parameters: a) a bound ε ∈
(0, 1) for the decision error, b) a precision parameter 1 < λ < ε which is a bound on the approximation of CDFRT
with ECDFRT,N , and c) a confidence parameter 1 − δ ∈ (0, 1) which is a probabilistic bound on the confidence
in the precision parameter. In detail, the approximation parameter and confidence level control the quality of the
approximation of CDFRT by ECDFRT: a) the precision parameter λ is the numerical difference between the values
of the two functions in a given point, b) the confidence level is the probability that the N sampled programs produce
an approximation of CDFRT with a requested precision, c) the decision error is the probability that the decision
‘U(z) = ∞′ is returned when, in reality, U(z) < ∞.

We sample N independent halting programs x1, . . . , xN ∈ dom(U) (see [3,18]) and, by running them till
they stop, calculate their respective running times t1(x), . . . , tN (x) ∈ TU. Let x = (x1, . . . , xN) and t(x) =
(t1(x), . . . , tN (x)). Randomisation is done according to the probability distribution induced by an injective com-
putable enumeration of the halting programs.

The statistical anytime algorithm is:

Pre-processing.
Fix three rational numbers ε, λ, δ ∈ (0, 1) with λ < ε.
Compute N = N(λ, δ) = � 1

2λ2 · ln 1
δ
�.

Sample N independent programs x = (x1, . . . , xN) ∈ dom(U)N and calculate their respective running
times t(x) = (t1(x), . . . , tN (x)).
Increasingly order the observed running times ti and compute the threshold
T = t(�N(1−ε+λ)�)(x).
Main part.
Let z be an arbitrary program for U.
If the computation U(z) does not stop in time less than or equal to T, then declare that U(z) = ∞.

We now evaluate the error the statistical anytime algorithm can make by deciding that U(z) does not stop when
in fact it stops. To this aim we use the threshold t(�N(1−ε+λ)�) and the critical regions

B(RT, x; ε, λ) = {
t ∈ TU : t > t(�N(1−ε+λ)�)(x)

}
,

C(RT, x; ε, λ) = {
y ∈ dom(U) : RT(y) > t(�N(1−ε+λ)�)(x)

}
.

Lemma 5.1. For every x ∈ dom(U)N , ε, λ ∈ (0, 1) with λ < ε, we have:

Pr
(
C(RT, x; ε, λ)

) = PRT
(
B(RT, x; ε, λ)

)
. (18)

AUTHOR C
OPY

162 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

Proof. We have:

Pr
(
C(RT, x; ε, λ)

) = PRT
({

t ∈ TU : t > t(�N(1−ε+λ)�)(x)
}) = PRT

(
B(RT, x; ε, λ)

)
. �

Lemma 5.2. For every integer N > 0, ε, λ ∈ (0, 1) with λ < ε, we have:

PrN
({

x ∈ dom(U)N : PRT
(
B(RT, x; ε, λ)

)
� ε

})
� PrN

({
x ∈ dom(U)N : CDFRT

(
t(�N(1−ε+λ)�)(x)

)
� 1 − ε

})
. (19)

Proof. We only need to prove the implication:

CDFRT
(
t(�N(1−ε+λ)�)(x)

)
� 1 − ε =⇒ PRT

(
B(RT, x; ε, λ)

)
� ε.

If T1 = {k ∈ TU : 1 � k � t(�N(1−ε+λ)�)(x)} and T2 = {j ∈ TU : j > t(�N(1−ε+λ)�)(x)}, then T1 ∩ T2 = ∅,
CDFRT(t(�N(1−ε+λ)�)(x)) = PRT(T1) and PRT(B(RT, x; ε, λ)) = PRT(T2).

Consequently, if PRT(T1) � 1 − ε, then

1 − ε + PRT(T2) � PRT(T1) + PRT(T2) � PRT(T1 ∪ T2) � 1,

so PRT(B(RT, x; ε, λ)) = PRT(T2) � ε. �

Theorem 5.3. For every ε, λ, δ ∈ (0, 1) with λ < ε and N = N(λ, δ) we have:

PrN
({

x ∈ dom(U)N : Pr
(
C(RT, x; ε, λ)

)
� ε

})
� 1 − δ. (20)

Proof. From the definition (7) and the choice of the statistical threshold (16) we have

ECDFRT,N

((
RT1(x), . . . , RTN(x)

); t
) = �N(1 − ε + λ)�

N
.

In view of (17), (18) and (19) and (11) we have

PrN
({

x ∈ dom(U)N : Pr
(
C(RT, x; ε, λ)

)
� ε

})
= PrN

({
x ∈ dom(U)N : PRT

(
B(RT, x; ε, λ)

)
� ε

})
� PrN

({
x ∈ dom(U)N : CDFRT

(
t(�N(1−ε+λ)�)(x)

)
� 1 − ε

})
� PrN

({
x ∈ dom(U)N : CDFRT

(
t(�N(1−ε+λ)�)(x)

)
� �N(1 − ε + λ)�

N

}
− λ

)
� 1 − δ. �

According to (20), the probability PrN of the event that the statistical anytime algorithm gives a wrong decision,
that is, it declares U(z) = ∞ when there exists t > t(�N(1−ε+λ)�)(x) such that U(z) stops in time t , is smaller or
equal than ε, is larger than 1 − δ, i.e. the probability of error is smaller than or equal than ε with confidence larger
than 1 − δ.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem 163

Table 1

Numerical illustration of the first implementation of the anytime algorithm

δ ε λ (< ε) N(λ, δ) �N(λ, δ) · (1 − ε + λ)�
1

100
5

1000
1

1000 2.3026 × 106 2.2934 × 106

1
100

1
1000

5
10000 9.2103 × 106 9.2057 × 106

5
1000

5
1000

1
1000 2.6492 × 106 2.6386 × 106

5
1000

1
1000

5
10000 1.0597 × 107 1.0592 × 107

1
1000

5
1000

1
1000 3.4539 × 106 3.4401 × 106

1
1000

1
1000

5
10000 1.3816 × 107 1.3809 × 107

6. Implementations of the statistical anytime algorithm
In this section we present three implementations of the anytime algorithm; numerical illustrations show that their

time complexities are reasonably small.
The standard implementation of the statistical anytime algorithm is as follows. Given three rational numbers

ε, λ, δ ∈ (0, 1) with λ < ε, first compute the sample size from (10), N = � 1
2λ2 · ln 1

δ
�; this positive integer is fixed

as long as λ, δ are fixed. Then use an algorithm to generate a random injective computable enumeration of dom(U)

till N programs x1, . . . , xN and their running times t1, . . . , tN are obtained; again, these programs are fixed with ε,
λ, δ. Then, for every program z ∈ Z

+, if the computation U(z) does not stop in time t(�N(1−ε+λ)�)(x), then declare
that U(z) = ∞. In the latter case the probability of error is smaller than or equal to ε with confidence larger than
1 − δ.

In Table 1 we illustrate numerically N(λ, δ) and �N(λ, δ) · (1 − ε + λ)� for the first implementation with fixed
parameters ε, λ, δ having a few statistically standard values.

In a second implementation we start with two rational numbers ε, λ ∈ (0, 1) with λ < ε and an “affordable” size
Ñ of samples (programs and running times), then compute the rational δ(Ñ, λ) ∈ (0, 1) satisfying the inequality
(9). We continue with the standard implementation of the statistical anytime algorithm with parameters ε, λ (λ < ε)
and

δ(Ñ, λ) = exp
(−2Ñ · λ2) (21)

to calculate the size sample N(λ, δ(Ñ, λ)) = Ñ . However, the value δ(Ñ, λ) in (21) is not rational, so to preserve
the inequality (9) we need to calculate a rational approximation

δ(Ñ, λ) � exp
(−2Ñ · λ2),

which implies the inequality N(λ, δ(Ñ, λ)) < Ñ + 1.
The “price” paid working with an affordable, smaller sample size Ñ is a (possibly sharp) decrease in the confi-

dence level; below is a numerical illustration of the second implementation with fixed parameters ε, λ, Ñ . Table 2
illustrates the second implementation.

In a third implementation we start with two rational numbers ε, λ ∈ (0, 1) with λ < ε and an “affordable” upper
bound T on the running time of the computation U(z) in the statistical anytime algorithm. We then use an injective
dovetailing algorithm to generate as many elements of dom(U) as possible in time T . In this way we will obtain
a sample of N(T) programs x1, . . . , xN(T) and their respective running times t1, . . . , tN(T) such that each program
stops in time at least (in fact, much smaller than) T : ti � T , for all 1 � i � N(T). We then continue with the second
implementation with parameters ε, λ, Ñ = N(T).

Both second and third implementations can be improved by increasing the sample size or the time bound,
respectively.

AUTHOR C
OPY

164 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

Table 2

Numerical illustration of the second implementation of the anytime algorithm

ε λ (< ε) Ñ δ(Ñ, λ) �Ñ(1 − ε + λ)�
1

100
5

1000 105 6.7379 × 10−3 (very good) 9.95 × 104

1
100

4
1000 105 4.0762 × 10−2 (good) 9.94 × 104

1
100

5
1000 2 · 105 4.54 × 10−5 (excellent) 1.99 × 105

1
100

4
1000 2 · 105 1.6616 × 10−3 (very good) 1.988 × 105

1
100

1
1000 106 1.3534 × 10−1 (hardly acceptable) 9.91 × 105

1
1000

5
10000 106 6.0653 × 10−1 (unacceptable) 9.995 × 105

Approximations in algorithmic information theory [4], for example, the approximations of Solomonoff universal
distribution1 [19], involve constants; in contrast, all implementations of the statistical anytime algorithm are free
from such uncertainty.

7. Final comments
The anytime probabilistic algorithm for the Halting Problem proposed in [8] uses essentially a computable

probability distribution on the set of stopping times of halting programs which reflects the halting behaviour of the
chosen universal machine. The quantile of this probability distribution is used to compute the stopping threshold
time. The probability of a wrong decision is no larger than the accepted error.

The statistical anytime algorithm for the Halting Problem – which is inspired by the probabilistic one – does not
make any assumption on the probability distribution on the halting programs and uses an order statistics to compute
the stopping threshold time (the cut-off temporal bound). In a nutshell, this anytime algorithm works on an arbitrary
program as follows:

1. “Sample” sufficiently many halting programs independently at random.
2. Determine their running times and consider the induced empirical distribution as approximation to the true

but unknown distribution.
3. Simulate the given program for the largest number of steps made by any of the sampled programs: if it still

has not terminated by then, report (possibly wrongly) ‘The program does not halt!’.

In detail, the statistical algorithm uses three parameters for evaluating the quality of solutions, namely the prob-
ability of an erroneous decision ε, the precision λ and the confidence level δ of the statistical approximation. The
sample size and critical regions are constructed based on these parameters. The main advantage of the statistical
algorithm is that it can be implemented without any prior information about the distribution of running times. An-
other advantage is that the threshold (cut-off) temporal bound �N(λ, δ) · (1 − ε + λ)� is calculated only once (when
ε, λ, δ ∈ (0, 1) with λ < ε are fixed) and then used for running the algorithm on any input. We proved that with a
confidence level as large as required, the algorithm produces correct decisions with a probability as large as required.

The main advantage of the anytime statistical algorithm is that it can be implemented without any prior in-
formation about the running times on the specific model of computation – the choice of a computable probability
distribution for the anytime probabilistic algorithm can be rather subjective and hard to substantiate; also, the cut-off
temporal bound is reasonably small.

Finally, three implementations of the algorithm have been presented and numerically illustrated. Recent exper-
imental work with Turing machines in [16] shows that “the halting probability of a TM decreases with time and
will have a smaller chance of halting at every step it progresses”, reflecting the behaviour discovered in [9] which
is at the core of both anytime probabilistic and statistic algorithms for the Halting Problem. It will be interesting
to experiment these algorithms, particularly the statistical one, with different models of computations in order to
understand their practical utility.

1Solomonoff universal distribution [19] is an priori incomputable probability distribution over the set of finite binary strings which is different
from the computable probability distribution on the set of stopping times discussed in Section 3.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem 165

Acknowledgements
We thank Dr. Ned Allen for discussions and comments and for motivating one author (CC) to study practical

approximate solutions to the Halting Problem. We thank the anonymous referees for useful comments that improved
the presentation; we distinctly thank the referee who made many excellent proposals including the description of the
statistical anytime algorithm presented in Section 7. This work was supported in part by the Quantum Computing
Research Initiatives at Lockheed Martin.

References
[1] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, A First Course in Order Statistics, John Wiley, New York,

2008.
[2] L. Bienvenu, D. Desfontaines and A. Shen, What percentage of programs halt?, in: Automata, Languages,

and Programming I, M.M. Halldórsson, K. Iwama, N. Kobayashi and B. Speckmann, eds, LNCS, Vol. 9134,
Springer, 2015, pp. 219–230. doi:10.1007/978-3-662-47672-7_18.

[3] K. Bringmann and K. Panagiotou, Efficient sampling methods for discrete distributions, Algorithmica (2016),
1–25.

[4] C. Calude, Theories of Computational Complexity, North Holland, Amsterdam, 1988.
[5] C.S. Calude, Information and Randomness: An Algorithmic Perspective, 2nd edn, Springer, Berlin, 2002.
[6] C.S. Calude and D. Desfontaines, Universality and almost decidability, Fundamenta Informaticae 138(1–2)

(2015), 77–84. doi:10.3233/FI-2015-1199.
[7] C.S. Calude and D. Desfontaines, Anytime algorithms for non-ending computations, International Journal of

Foundations of Computer Science 26(4) (2015), 465–475. doi:10.1142/S0129054115500252.
[8] C.S. Calude and M. Dumitrescu, A probabilistic anytime algorithm for the Halting Problem, Computability 7

(2018), 259–271. doi:10.3233/COM-170073.
[9] C.S. Calude and M.A. Stay, Most programs stop quickly or never halt, Advances in Applied Mathematics 40

(2008), 295–308. doi:10.1016/j.aam.2007.01.001.
[10] B. Cook, A. Podelski and A. Rybalchenko, Proving program termination, Communications ACM 54(5) (2011),

88–98. doi:10.1145/1941487.1941509.
[11] A. DasGupta, Probability for Statistics and Machine Learning, Springer, New York, 2011.
[12] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Heidelberg, 2010.
[13] J. Grass, Reasoning about computational resource allocation. An introduction to anytime algorithms, Magazine

Crossroads 3(1) (1996), 16–20. doi:10.1145/332148.332154.
[14] J.D. Hamkins and A. Miasnikov, The halting problem is decidable on a set of asymptotic probability one, Notre

Dame Journal of Formal Logic 47(4) (2006), 515–524. doi:10.1305/ndjfl/1168352664.
[15] S. Köhler, C. Schindelhauer and M. Ziegler, On approximating real-world halting problems, in: Fundamentals

of Computation Theory 2005, M. Liskiewicz and R. Reischuk, eds, LNCS, Vol. 3623, Springer, 2005, pp. 454–
466. doi:10.1007/11537311_40.

[16] K. Krzyzanska, Exploring halting times for unconventional halting schemes, Complex Systems 27(1) (2018),
85–99. doi:10.25088/ComplexSystems.27.1.85.

[17] R.H. Lathrop, On the learnability of the uncomputable, in: Proceedings International Conference on Machine
Learning, L. Saitta, ed., Morgan Kaufmann, 1996, pp. 302–309.

[18] P.S. Levy and S. Lemeshow, Sampling of Populations. Methods and Applications, 3rd edn, John Wiley, 1999.
[19] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn, Springer

Verlag, New York, 2008.
[20] N. Lynch, Approximations to the Halting Problem, Journal of Computer and System Sciences 9 (1974), 143–

150. doi:10.1016/S0022-0000(74)80003-6.
[21] Yu.I. Manin, A Course in Mathematical Logic for Mathematicians, 2nd edn, Springer, Berlin, 2010.
[22] Yu.I. Manin, Renormalisation and computation II: Time cut-off and the Halting Problem, Mathematical Struc-

tures in Computer Science 22 (2012), 729–751. doi:10.1017/S0960129511000508.

https://doi.org/10.1007/978-3-662-47672-7_18
https://doi.org/10.3233/FI-2015-1199
https://doi.org/10.1142/S0129054115500252
https://doi.org/10.3233/COM-170073
https://doi.org/10.1016/j.aam.2007.01.001
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1145/332148.332154
https://doi.org/10.1305/ndjfl/1168352664
https://doi.org/10.1007/11537311_40
https://doi.org/10.25088/ComplexSystems.27.1.85
https://doi.org/10.1016/S0022-0000(74)80003-6
https://doi.org/10.1017/S0960129511000508

AUTHOR C
OPY

166 C.S. Calude and M. Dumitrescu / A statistical anytime algorithm for the Halting Problem

[23] T. Mori, Y. Tsujii and M. Yasugi, Computability of probability distributions and distribution functions, in: 6th
International Conference on Computability and Complexity in Analysis, Schloss Dagstuhl–Leibniz-Zentrum
Für Informatik, A. Bauer, P. Hertling and K.-I Ko, eds, Dagstuhl, 2009, pp. 185–196.

[24] P. Olofsson, Probability, Statistics, and Stochastic Processes, Wiley-Interscience, New York, 2005.
[25] A. Rybalov, On the generic undecidability of the halting problem for normalized Turing machines, Theory of

Computing Systems (2016), 1–6.
[26] C. Scott, Statistical learning theory, topic 3: Hoeffding’s inequality, University of Toronto, 2014, https://

www.coursehero.com/file/18068309/03-hoeffding, retrieved 4 June 2019.
[27] F. Soler-Toscano, H. Zenil, J.-P. Delahaye and N. Gauvrit, Calculating Kolmogorov complexity from the output

frequency distributions of small Turing machines, PLoS ONE 9(5) (2014), e96223.
[28] K. Weihrauch, Computable Analysis. An Introduction, Springer, Berlin, 2000.
[29] H. Zenil, Computer runtimes and the length of proofs, in: Computation, Physics and Beyond, M.J. Dinneen,

B. Khoussainov and A. Nies, eds, LNCS, Vol. 7160, Springer, 2012, pp. 224–240. doi:10.1007/978-3-
642-27654-5_17.

[30] H. Zenil and J.-P. Delahaye, On the algorithmic nature of the world, in: Information and Computation. Essays
on Scientific and Philosophical Understanding of Foundations of Information and Computation, G. Dodig-
Crnkovic and M. Burgin, eds, World Scientific, Singapore, 2010, pp. 477–499.

https://www.coursehero.com/file/18068309/03-hoeffding
https://www.coursehero.com/file/18068309/03-hoeffding
https://doi.org/10.1007/978-3-642-27654-5_17
https://doi.org/10.1007/978-3-642-27654-5_17

	Introduction
	The Halting Problem
	The probabilistic anytime algorithm for the Halting Problem
	Statistical framework
	A statistical anytime algorithm for the Halting Problem
	Implementations of the statistical anytime algorithm
	Final comments
	Acknowledgements
	References

