
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. STOC17-152--STOC17-188

DECIDING PARITY GAMES IN QUASI-POLYNOMIAL TIME\ast 

CRISTIAN S. CALUDE\dagger , SANJAY JAIN\ddagger , BAKHADYR KHOUSSAINOV\dagger , WEI LI\S , AND

FRANK STEPHAN\ddagger \S 

Abstract. It is shown that the parity game can be solved in quasi-polynomial time. The
parameterized parity game---with n nodes and m distinct values (a.k.a. colors or priorities)---is
proven to be in the class of fixed parameter tractable problems when parameterized over m. Both
results improve known bounds, from runtime nO(

\surd 
n) to O(nlog(m)+6) and from an XP algorithm

with runtime O(n\Theta (m)) for fixed parameter m to a fixed parameter tractable algorithm with runtime
O(n5 + 2m log(m)+6m). As an application, it is proven that colored Muller games with n nodes and
m colors can be decided in time O((mm \cdot n)5); it is also shown that this bound cannot be improved
to 2o(m\cdot log(m)) \cdot nO(1) in the case that the exponential time hypothesis is true. Further investigations
deal with memoryless Muller games and multidimensional parity games.
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1. Introduction. A parity game is given by a directed graph (V,E), a starting
node s \in V , and a function val which attaches to each v \in V an integer value (also
called color) from a set \{ 1, 2, 3, . . . ,m\} ; the main parameter of the game is n, the
number of nodes, and the second parameter is m. Two players, Anke and Boris,
move alternately in the graph, with Anke moving first. A move from a node v to
another node w is valid if (v, w) is an edge in the graph; furthermore, it is required
that from every node one can make at least one valid move. The alternate moves
by Anke and Boris and Anke and Boris and . . . define an infinite sequence of nodes
which is called a play. For the evaluation, it is defined that each value is owned by
one player; without loss of generality one player owns the odd numbers and the other
player owns the even numbers. Anke wins a play through nodes a0, a1, a2, . . . iff the
limit superior (that is, the largest value appearing infinitely often) of the sequence
val(a0), val(a1), val(a2), . . . is a number she owns, that is, a number of her parity. An

\ast Received by the editors August 28, 2017; accepted for publication (in revised form) August 29,
2019; published electronically January 14, 2020. A conference version of this work was presented
at the Symposium on Theory of Computing, STOC 2017 [11]. The authors were invited to give
survey talks on parity games which included the results of this paper at the program Aspects of
Computation 2017 of the Institute of Mathematical Sciences in Singapore, the conference Highlights
of Logic, Games and Automata 2017 in London, the NII Shonan Meeting Logic and Computational
Complexity 2017 in Shonan Village Center in Japan, the conference Developments in Language
Theory DLT 2018 in Tokyo, and the International Workshop on Combinatorial Algorithms IWOCA
2018 in Singapore.

https://doi.org/10.1137/17M1145288
Funding: The work of the second author was supported in part by NUS grant C252-000-087-001.

The work of the third author was supported in part by the Marsden Fund grant of the Royal Society
of New Zealand. The work of the second, third, and fifth authors was supported in part by the
Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 /R146-
000-234-112.

\dagger School of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
(cristian@cs.auckland.ac.nz, bmk@cs.auckland.ac.nz).

\ddagger Department of Computer Science, National University of Singapore, Singapore 117417, Republic
of Singapore (sanjay@comp.nus.edu.sg, fstephan@comp.nus.edu.sg).

\S Department of Mathematics, National University of Singapore, Singapore 119076, Republic of
Singapore (liwei.sg@gmail.com).

STOC17-152

D
ow

nl
oa

de
d 

02
/0

3/
20

 to
 1

30
.2

16
.1

58
.7

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/17M1145288
mailto:cristian@cs.auckland.ac.nz
mailto:bmk@cs.auckland.ac.nz
mailto:sanjay@comp.nus.edu.sg
mailto:fstephan@comp.nus.edu.sg
mailto:liwei.sg@gmail.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARITY GAMES IN QUASI-POLYNOMIAL TIME STOC17-153

example is the following game:

1start 2 3 4 5

Here the nodes are labeled with their values, which are unique (but this is not oblig-
atory); furthermore, Anke has even and Boris has odd parity. Boris now has the
following memoryless (that is, moves are independent of the history) winning strat-
egy for this game: 1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 3, 4 \rightarrow 5, 5 \rightarrow 5. Whenever the play leaves
node 1 and Anke moves to node 2, then Boris will move to node 3. In the case that
Anke moves to node 4, Boris will move to node 5. Hence, whenever the play is in a
node with even value (this only happens after Anke moved it there), in the next step
the play will go into a node with a higher odd value. So the largest infinitely often
visited node value is odd, and therefore the limit superior of these numbers is an odd
number which justifies Boris's win. Hence Boris has a winning strategy for the parity
game given above.

Please see the next section for a more formal definition of the games and com-
plexity classes discussed in this introduction.

It is known that for parity games, in general, the winner can always use amemory-
less winning strategy [6, 29, 30, 32, 61, 62, 80]; see Corollary 21 below. This fact will
be one central point in the results obtained in this paper: the parity game will be
augmented with a special statistics---using polylogarithmic space---which indicates
the winner correctly after a finite time whenever the winner employs a memoryless
winning strategy. By the way, the existence of memoryless winning strategies is also
a convenient tool to prove that solving parity games is in NP \cap coNP---fixing a me-
moryless strategy for one player transforms the parity game into a one-player game
with a parity objective, and one can check in polynomial time whether this game can
be won.

Parity games are a natural class of games which are not only interesting in their
own right, but which are also connected to fundamental notions like \mu -calculus, modal
logics, tree automata, and Muller games [4, 7, 8, 18, 30, 32, 48, 71, 75, 76, 78, 79].
Faster algorithms for solving parity games could be used to improve the algorithms
deciding the theory of certain tree automatic structures [35, 36, 58] and to employ
them to understand these structures better.

For investigating the complexity side of the game, it is assumed that the game is
given by a description in size polynomial in the number n of nodes and that one can
evaluate all relevant parts of the description in logarithmic space. A possibility is to
store the following three items for each game (where Anke moves first and starts from
node 1):
\bullet two numbers m,n with 1 \leq m \leq n and one bit which says whether the values
owned by player Anke are the even or the odd numbers;

\bullet the game graph given by a table, that is, for each pair of nodes, a bit which says
whether there is a directed edge between the two nodes (which can be the same);

\bullet the values of the nodes given by another table which holds, for each node, a binary
number from \{ 1, 2, 3, . . . ,m\} .

An important open problem for parity games is the time complexity for finding the
winner of a parity game when both players play optimally; the first algorithms took
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exponential time [61, 80], and subsequent studies searched for better algorithms [51,
53, 55, 64, 70, 71, 72]. Many researchers, including Emerson and Jutla [32] in 1991,
asked whether the winner of a parity game can be determined in polynomial time.

Emerson, Jutla, and Sistla [33] showed that the problem is in NP \cap coNP and
Jurdzi\'nski [52] improved this bound to UP \cap coUP. This indicates that the problem
is not likely to be hard for NP and might be solvable faster than in exponential time.
Indeed, Petersson and Vorobyov [64] devised a subexponential randomized algorithm
and Jurdzi\'nski, Paterson, and Zwick [55] a deterministic algorithm of similar com-
plexity (more precisely, the subexponential complexity was approximately nO(

\surd 
n)).

Besides this main result, there are also various practical approaches to solving
special cases [4, 26, 41] or testing out and analyzing heuristics [12, 44, 53]; however,
when Friedmann and Lange [39] compared the various parity solving algorithms from
the practical side, they found that Zielonka's recursive algorithm [80] was still the
most useful one in practice.

McNaughton [61] showed that the winner of a parity game can be determined
in time nm+O(1), and this was subsequently improved to nm/2+O(1) [9, 73] and to
nm/3+O(1) [70, 72], where n is the number of nodes and m is the maximum value of
the nodes.

The consideration of the parameter m is quite important for analyzing the al-
gorithmic complexity of solving parity games; it is furthermore also a very natural
choice. Schewe [71, 72] argued that for many applications which are solved using
parity games, the parameter m is much smaller than n, often by an exponential gap.

For example, when translating colored Muller games into parity games in the way
done by McNaughton [61] and Bj\"orklund, Sandberg, and Vorobyov [5], the number of
values is, for all but finitely many games, bounded by the logarithm of the number of
nodes; see the proof of Theorem 23 below. A similar result holds for the translation
of multidimensional parity games into standard parity games.

A further important application of parity games is the area of reactive synthe-
sis. Here one translates linear temporal logic formulas into a B\"uchi automaton which
needs to be determined by translating it into a parity automaton. Building on the
work of Safra [68, 69], Piterman [65] showed that one can translate nondeterministic
B\"uchi automata with n states into parity automata with 2 \cdot nn \cdot n! states and 2n val-
ues. In other words, one can evaluate various conditions on these parity automata by
determining the winner in the corresponding parity game. Also Di Stasio et al. [25]
investigated in their experiments various scenarios where the number m is logarithmic
in n.

The present work therefore takes the parameter m into consideration and im-
proves the time bounds in two ways:
\bullet The overall time complexity is O(n\lceil log(m)\rceil +6) , which provides a quasi-polynomial
bound on the runtime, as one can always choose m \leq n.

\bullet Furthermore, if m < log(n), then the overall time complexity is O(n5), which
shows that the problem is fixed parameter tractable when parameterized bym; the
parity games are therefore in the lowest time complexity class usually considered
in parameterized complexity.

Prior investigations have already established that various other parameterizations of
parity games are fixed parameter tractable, but the parameterization by m was left
open until now. Chatterjee [14] pointed out to the authors that one can also write
the result in product form with parity games being solvable in time O(2m \cdot n4) for all
m,n; the proof uses just the methods of Theorem 16, but keeping m as a parameter
and not using explicitly the bound of m \leq log(n) which, when invoked into the above
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formula, would give the bound O(n5).
An application of the results presented here is that colored Muller games with n

nodes andm colors can be decided in time O((mm \cdot n)5); Theorem 25 below shows that
this bound cannot be improved to 2o(m\cdot log(m)) \cdot nO(1), provided that the Exponential
Time Hypothesis is true.

Subsequent research [34, 42, 54, 74] has provided the additional runtime bound

O(\lceil m/ log(n)\rceil 4 \cdot n3.45+log(\lceil m/ log(n)\rceil +2)),

where the bound cited here stems from Stephan's teaching material [74, Theorem
20.22], while the research papers [34, 42, 54] have obtained slightly better bounds due
to some assumptions they make on the game and due to the usage of better bounds for
binomials. However, the main contribution of the subsequent research [34, 54] is that
the quasi-polynomial time algorithm can be modified such that, in addition to the time
bound, the workspace the algorithm uses is only quasi-linear in the number of nodes n.
This improves upon the algorithm presented here, which uses quasi-polynomial space.
Furthermore, various authors provided their own version of the verification of the
algorithm presented in this paper [34, 42, 54]. Before the presentation of the results,
the next section summarizes the basic definitions and properties of the games and
also provides the basic complexity classes needed. To make the paper self-contained,
proofs of some known results, namely, Propositions 17 and 28 as well as Theorems 20,
22, and 23, have been written in a uniform manner and included in this paper.

2. Basic notions used. This section summarizes the basic properties of the two
games (parity game and colored Muller game) and also explains related games (multi-
dimensional parity game, Rabin game, and Streett game). It furthermore provides
the basic complexity-theoretic notions used in this paper.

Definition 1. A game is given by a directed finite graph of n nodes, a starting
node, and a set G of sets of nodes which are called the winning set of player Anke.
The two players, Anke and Boris, alternately move a marker through the graph, where
Anke starts from the starting node and the players each time move along an outgoing
edge of the current node; here it is required that every node have at least one outgoing
edge (which can go to the node itself). A play is the infinite sequence of nodes visited
by the marker while Anke and Boris are playing. To decide the winner of a play,
one considers the set of infinitely often visited nodes U . Now Anke wins the play iff
U \in G.

In a parity game, each node v carries a value, denoted val(v). In a colored Muller
game, each node v carries a set of colors. Note that the general game mentioned above
is a (colored) Muller game where each node's color is identified with its name.

In a parity game, the set G can be derived from values from 1 to m (where m \leq n)
which are associated with the nodes. For this, one associates with each player Anke
and Boris a parity, and a set U is in G iff the maximum value of nodes in U is of
Anke's parity. Alternatively one can require that G respects the parity; that is, if U
and U \prime satisfy that the maximum values of nodes in U and in U \prime , respectively, have the
same parity, then either U and U \prime are both inside G or U and U \prime are both outside G.

In a colored Muller game, every node is associated with a set of colors. For a
set U of nodes, color(U) is the set of all colors which are associated with at least one
node in U . The set G has to respect the colors; that is, if color(U) = color(U \prime ), then
either both U and U \prime are inside G or both U and U \prime are outside G.

In a k-dimensional parity game, each node is associated with a k-dimensional vec-
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tor of values. Now a set U of nodes is winning for player Anke iff the componentwise
maximum of the value vectors of the nodes in U is a vector of k odd numbers.

Rabin games and Streett games have as additional information a list (V1,W1),
(V2,W2), (V3,W3), . . . , (Vm,Wm) of pairs such that in the Rabin case a set of nodes is
in U iff some pair (Vh,Wh) satisfies Vh \cap U \not = \emptyset and Wh \cap U = \emptyset ; in the Streett case,
U \in G iff all pairs (Vh,Wh) satisfy Vh \cap U \not = \emptyset \Rightarrow Wh \cap U \not = \emptyset .

A strategy for a player, say for Anke, maps, for every situation where Anke has to
move, the current node and history of previous moves to a suggested move for Anke.
A winning strategy for Anke is a strategy for Anke which guarantees that Anke wins
a play whenever she follows the suggested moves. A strategy is called memoryless iff
it only depends on the current node and not on any other aspects of the history of the
play.

The winner of a game is the player who has a winning strategy for this game.

Remark 2. All games considered in this paper (including parity games and colored
Muller games) always have a winner; this winner wins every play in the case that the
winner follows a winning strategy.

The additional structures of parity games, colored Muller games, and other games
enforce that the winning set G is of a certain form; in particular in the case that the
parameter m (number of colors of a colored Muller game or number of values of a
parity game) is small compared to n, the algorithms to solve these games have a better
time bound than in the general case.

As choosing for each node a unique color not shared with any other node does not
impose any restriction on G, one can without loss of generality require that m \leq n.

For parity games, if a value k > 1 does not occur in a game, but k+1 does, then
one can for all nodes v with val(v) > k replace val(v) by val(v) - 2 without changing
the winner of the game. Furthermore, if the value 1 does not occur in the game, then
one can replace val(v) by val(v)  - 1 throughout the game and invert the parity of
the players. For that reason, the maximum value m of a parity game can always be
assumed to satisfy m \leq n.

In colored Muller games, representations of G as tables might have the size 2m,
and one has several choices of how to handle this situation: (a) one only considers such
colored Muller games where G can be decided by a Boolean circuit not larger than
p(n) size for some polynomial p; (b) the same as (a) with a polynomial time algorithm
instead with program size p(n); (c) one uses the space needed for representing G as a
Boolean circuit as an additional parameter for the game. The approach taken in the
present paper is (a) or (b).

Remark 3. One can also consider games where the player moving depends only on
the current node of the play and players do not necessarily take turns. Both versions
of parity or Muller games can be translated into each other with a potential increase
in the number of nodes by a factor 2.

In the case that one goes from turn-based to position-based Muller games, one
doubles up each node: Instead of the node v, one uses a node (Anke, v) when it is
Anke's turn to move, and a node (Boris, v) when it is Boris's turn to move; the nodes
(Anke, v) and (Boris, v) in the new game have the same values or colors as v in the old
game. For every edge from v to w in the old game, one puts the edges from (Anke, v)
to (Boris, w) and from (Boris, v) to (Anke, w) into the game.

For the other direction, each node w receives a prenode w\prime with exactly one
outgoing edge from w\prime to w. Now, for each edge (v, w) from the original game, if the
same player moves at v and at w in the original game, then one puts the edge (v, w\prime )
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into the new game, else one puts the edge (v, w) into the new game. The rationale
behind this is that the longer path v -- w\prime -- w has even length in the case that the
players moving at v and w should be the same for alternating moves. Furthermore,
if Anke moves at the original starting node s, then s is also the starting node of the
new game, else s\prime is the starting node of the new game. Again, the nodes w and w\prime 

in the new game have the same value or color as the node w in the old game.

Parameterized complexity studies the complexity of solving a problem in depen-
dence of not only the main parameter n (size of input), but also other related param-
eters m, k, . . . which are expected to arise naturally from the problem description. In
the following, let n denote the main parameter and m a natural further parameter.

Definition 4. A problem is called fixed parameter tractable (FPT) iff there is a
polynomial p and a further function f such that all instances of the problem can be
solved in time f(m) + p(n).

The class of all problems in FPT can also be characterized as those problems
which can be solved in g(m) \cdot p(n) for some polynomial p and an arbitrary function g.

For the current work, the main parameter n is the number of nodes, and the
parameter m is the number of values in the parity game or the number of colors in the
colored Muller game. The so chosen second parameter m is a very natural parameter
to the games considered and occurs widely in prior work studying the complexity of
the games [5, 9, 61, 70, 72, 73]. However, in the literature, other parameters and
parameter combinations have also been studied.

The number m of colors used in the game is an important parameter of colored
Muller games; for complexity-theoretic considerations, the exact complexity class of
solving colored Muller games with n nodes and m colors may also depend on how G is
represented, in particular in cases when m is large. The size of this representation can
thus be a further parameter for determining the complexity class of solving colored
Muller games. However, this parameter is not studied in the present work.

Definition 5. A problem is in the class XP if it can be solved in time O(nf(m))
for some function f .

Between FPT at the bottom and XP at the top, there are the levels of the W-
hierarchy W[1], W[2], W[3], . . . ; it is known that FPT is a proper subclass of XP,
and it is widely believed that the levels of theW-hierarchy are all different. The books
of Downey and Fellows [27, 28] and Flum and Grohe [37] give further information on
parameterized complexity.

Given as input a conjunctive normal form Boolean formula, SAT is the problem
of determining whether the formula is satisfiable. 3SAT and 4SAT, respectively,
denote the restriction of SAT to conjunctive normal form formulas where each clause
has at most three (respectively, four) literals.

Definition 6. The Exponential Time Hypothesis says that for the usual satisfi-
ability problems like 3SAT, 4SAT, and SAT, for n being the number of variables in
the formula, any algorithm determining whether the formula is satisfiable needs worst
case time at least cn for some rational number c > 1 and almost all n.

The Exponential Time Hypothesis implies that W[1] differs from FPT, but the
converse is not known. Note that the NP-complete problems are spread out over all
levels of this hierarchy and that even the bottom level FPT also contains sets outside
NP. The level of a problem can depend on the choice of the parameters to describe
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the problem, and therefore one has to justify the choice of the parameters.

Chandra, Kozen and Stockmeyer [13] investigated alternating Turing machines.
Such machines can be defined in an asymmetric and a symmetric way; the latter is in
particular needed for lower complexity bounds in certain settings. Furthermore, Cook
[23] and Levin [60] initiated the systematic study of NP and formalized the question
of whether NP = P.

Definition 7. Alternating Turing machines can be viewed as a game: Besides
the usual Turing machine steps, there are also branching Turing machine steps. In the
case of an existential branching, one player, say Anke, decides which of the possible
steps the Turing machine is taking; in the case of a universal branching, the other
player, here Boris, decides which of the possible steps the Turing machine is taking.
Anke wins iff Anke can always force the game into an accepting state. Boris wins
iff the game never goes into an accepting state. Now for every x as input, one of
the players has a winning strategy; the alternating Turing machine decides L iff the
following holds: For all x \in L, Anke has a winning strategy; for all x /\in L, Boris has
a winning strategy.

A language L is in alternating time/space f(n) iff for every x \in L with | x| = n,
Anke can play such that x is accepted and the play does not violate the resource bound
f(n); for x /\in L, Boris can play such that x is never accepted and, in the case of a
space resource bound, the play does not violate the resource bound.

A language L is in nondeterministic time/space f(n) iff it is in an alternating
time/space f(n) via a Turing machine where Boris always has only one choice. A
language is in NP \cap coNP iff there are a nondeterministic Turing machine and a
polynomial p such that if L(x) = a, then Anke can play such that the input (x, a) is
accepted within time p(| x| ), and if L(x) \not = a, then Anke cannot achieve that (x, a) gets
accepted. A language is in UP \cap coUP iff it is in NP \cap coNP via a machine which
has, for every pair (x, L(x)), exactly one computation path which Anke can choose
such that (x, L(x)) gets accepted.

A language L satisfies L \in \Sigma \bfP 
\bftwo iff there is an alternating Turing machine recog-

nizing L in polynomial time such that on every computation path, all the points where
Anke can branch the computation come before those points where Boris can branch
the computation.

In the case of alternating computation, for small complexity classes where one
cannot check the complexity within the mechanism given, one employs for alternating
computations a symmetric setting where the alternating Turing machine has explicit
accepting and explicit rejecting states and it halts in both. Now L is in the given
time class iff the following holds: For all x \in L, Anke has a winning strategy which
guarantees that, while obeying the given resource bound, the game ends up in an
accepting state; for all x /\in L, Boris has a winning strategy which guarantees that,
while obeying the given resource bound, the game ends up in a rejecting state.

If the space bound or the time bound are constructible within the given complexity
class, then the alternating computation for the standard model can also be equipped
with a counter; then the machine can go to the rejecting state when the runtime
is exhausted; here one uses that if an alternating machine using space f(n) does
not accept within cf(n) steps for a suitable constant c, then one can safely reject
the computation. The first approach to solving the parity games in polylogarithmic
space below also has this symmetric approach implicitly, even without using explicit
counters for the used up time.
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3. The complexity of the parity game. The main result in this section is
an alternating polylogarithmic space algorithm to decide the winner in parity games;
later, more concrete bounds will be shown. The idea is to collect, in polylogarithmic
space, for both players in the game, Anke and Boris, the statistics of their performance
in the play. In particular, these statistics store information about whether the play
has surely gone through a loop where the largest valued node has the parity of the
corresponding player. Though these statistics do not capture all such loops, in the
case that one player plays a memoryless winning strategy, the player's own statistics
will eventually find evidence for such a loop, while the opponent statistics will not
provide false evidence which would lead in the opposite direction.

The following notation will be used throughout the paper. In order to avoid
problems with fractional numbers and log(0), let \lceil log(k)\rceil = min\{ h \in \BbbN : 2h \geq k\} .
Furthermore, a function (or sequence) f is called increasing whenever for all i, j the
implication i \leq j \Rightarrow f(i) \leq f(j) holds.

Theorem 8. There exists an alternating polylogarithmic space algorithm deciding
which player has a winning strategy in a given parity game. When the game has n
nodes with values in the set \{ 1, 2, 3, . . . ,m\} , then the algorithm runs in O(log(n) \cdot 
log(m)) alternating space.

Proof. The idea of the proof is that, in each play of the parity game, one maintains
winning statistics for both players Anke and Boris. These statistics are updated after
every move for both players. In case a player plays according to a memoryless winning
strategy for the parity game, the winning statistics of this player will eventually
indicate the win (in this case one says that the ``winning statistics of the player
mature""), while the opponent's winning statistics will never mature. This will be
explained in more detail below.

The winning statistics of Anke (Boris) has the following goal: to track whether
the play goes through a loop where the largest value of a node in the loop is of Anke's
(Boris's) parity. Note that if Anke follows a memoryless winning strategy, then the
play will eventually go through a loop and the node with the largest value occurring
in any loop the play goes through is always a node of Anke's parity. Otherwise, Boris
can repeat a loop with the largest value being of Boris's parity infinitely often and
thus win, contradicting that Anke is using a memoryless winning strategy.

The na\"{\i}ve method to do the tracking is to archive the last 2n + 1 nodes visited,
to find two identical moves out of the same node by the same player, and to check
whose parity has the largest value between these two moves. This would determine
the winner in case the winner uses a memoryless winning strategy. This tracking
needs O(n \cdot log(n)) space---too much space for the intended result. To save space one
constructs a winning statistics which still leads to an Anke win in case Anke plays a
memoryless winning strategy, but memorizes only partial information.

The winning statistics of the players are used to track whether certain sequences
of nodes have been visited in the play so far, and the largest value of a node visited at
the end or after the sequence is recorded. The definitions are similar for both players.
For simplicity the definition is given here just for player Anke.

Definition 9. In Anke's winning statistics, an i-sequence is a sequence of nodes
a1, a2, , a3, , . . . , a2i which have been visited (not necessarily consecutively, but in order)
during the play so far such that, for each k \in \{ 1, 2, 3, . . . , 2i  - 1\} ,

max\{ val(a) : a = ak \vee a = ak+1 \vee a was visited between ak and ak+1\} 
is of Anke's parity.
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The aim of Anke is to find a sequence of length at least 2n+1, as such a sequence
must contain a loop. So she aims for a (\lceil log(n)\rceil +2)-sequence to occur in her winning
statistics. Such a sequence is built by combining smaller sequences over time in the
winning statistics.

Here a winning statistics (b0, b1, . . . , b\lceil log(n)\rceil +2) of a player consists of \lceil log(n)\rceil +3
numbers between 0 and m, both inclusive, where bi = 0 indicates that currently no
i-sequence is being tracked and bi > 0 indicates the following:

Property-\bfitb \bfiti : an i-sequence is being tracked, and the largest value
of a node visited at the end of or after this i-sequence is bi.

Note that for each i, at most one i-sequence is tracked. The value bi is the only
information of an i-sequence which is kept in the winning statistics.

The following invariants are kept throughout the play and are formulated for
Anke's winning statistics; those for Boris's winning statistics are defined with the
names of Anke and Boris interchanged. In the description below, ``i-sequence"" always
refers to the i-sequence being tracked in the winning statistics.
(I1) Only bi with 0 \leq i \leq \lceil log(n)\rceil +2 are considered, and each such bi is either zero

or a value of a node which has occurred in the play so far.
(I2) An entry bi refers to an i-sequence which has occurred in the play so far iff

bi > 0.
(I3) If bi, bj are both nonzero and i < j, then bi \leq bj .
(I4) If bi, bj are both nonzero and i < j, then in the play of the game so far, the

i-sequence starts only after a node with value bj was visited at or after the end
of the j-sequence.

When a play starts, the winning statistics for both players are initialized with bi = 0
for all i. During the play when a player moves to a node with value b, the winning
statistics of Anke is updated as follows (the same algorithm is used for Boris, with
the names of the players interchanged everywhere):
1. If b is of Anke's parity or b > bi > 0 for some i, then one selects the largest i such

that either
(a) bi is not of Anke's parity---that is, it is either 0 or of Boris' parity---but all

bj with j < i and also b are of Anke's parity, or
(b) 0 < bi < b,

and then one updates bi = b and bj = 0 for all j < i.
2. If this update produces a nonzero bi for any i with 2i > 2n, then the play

terminates with Anke being declared winner.
Note that it is possible that both 1(a) and 1(b) apply to the same largest i. In that
case, it does not matter which case is chosen, as the updated winning statistics is the
same for both cases. However, the tracked i-sequences referred to may be different;
this does not affect the rest of the proof.

Example 10. Here is an example of i-sequences for player Anke. This example
is only for illustrating how the i-sequences and bi's work; in particular this example
does not use memoryless strategy for either of the players. Consider a game where
there is an edge from every node to every node (including itself) and the nodes are
\{ 1, 2, 3, . . . , 7\} and have the same values as names; Anke has odd parity. Consider the
following initial part of a play:

1 6 7 5 1 4 5 3 2 1 3 2 3 1 3 3 1 2 1

The i-sequences and the bi's change over the course of the above play as given in the
following table. In the table, the nodes prefixed by ``i :"" are those of the corresponding
i-sequence.
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Move b4, b3, b2, b1, b0 i-sequences in play so far Rule

1 0,0,0,0,1 0:1 1(a)

6 0,0,0,0,6 0:1 6 1(b)

7 0,0,0,0,7 1 6 0:7 1(a)

5 0,0,0,5,0 1 6 1:7 1:5 1(a)

1 0,0,0,5,1 1 6 1:7 1:5 0:1 1(a)

4 0,0,0,5,4 1 6 1:7 1:5 0:1 4 1(b)

5 0,0,0,5,5 1 6 1:7 1:5 1 4 0:5 1(a)

3 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 1(a)

2 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 2

1 0,0,3,0,1 1 6 2:7 2:5 1 4 2:5 2:3 2 0:1 1(a)

3 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 1(a)

2 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2

3 0,0,3,3,3 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2 0:3 1(a)

1 0,1,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 1(a)

3 0,3,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1(b)

3 0,3,0,0,3 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 0:3 1(a)

1 0,3,0,1,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 1(a)

2 0,3,0,2,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2 1(b)

1 0,3,0,2,1 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2 0:1 1(a)

If at an update of an i-sequence both possible updates 1(a) and 1(b) apply to the
same level i, then it does not matter for the statistics which is chosen. However, for
the i-sequences, one has to commit to one choice, and for simplicity (for the above
table) one assumes that 1(a) has priority. So the formal algorithm for updating the
sequences is as follows:
1. If b is of Anke's parity or b > bi > 0 for some i, then one selects the largest i such

that either
(a) bi is not of Anke's parity---that is, it is either 0 or of Boris's parity---but all

bj with j < i and also b are of Anke's parity, or
(b) 0 < bi < b;

else there is no update and one goes to step 3.
2. For the selected i, one does the following update according to the first of the two

above cases that applies:
(a) Let bi = b.

Let the new i-sequence contain all the nodes of the old j-sequences, with
j < i, plus the new node with value b.
Let bj = 0 for all j < i as the corresponding j-sequences are merged into
the new i-sequence.

(b) Let bi = b, and let the i-sequence be unchanged except for the update of
the associated value bi, and all j-sequences with j < i are made void by
setting bj = 0 for all j < i.

Furthermore, all j-sequences with j > i are maintained as they are.
3. If this update produces a nonzero bi for any i with 2i > 2n, then the play

terminates with Anke being declared winner and no further tracking of i-sequen-
ces is needed.

The 3-sequence in the above table already has a loop, as there are three occurrences of
``3 : 3"" and the second and third of these have that the same player moves. However,
as the sequences are not stored but only the bi, Anke's winning statistics only surely
indicates a win for player Anke when there is an i \geq log(2n+ 1) with bi > 0; this i is
4 as 24 > 2 \cdot 7 + 1.
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Before proceeding to the verification of the algorithm correctness, an outline of
the strategy is given.

Remark 11. The winning statistics of both players are maintained via a determin-
istic algorithm which updates each statistic based on the prior value and the current
node visited---more precisely, the value of the node visited. These statistics use only
O(log(m)\cdot log(n)) bits of memory. If a player, during a play, follows a memoryless win-
ning strategy, then the player's winning statistics will eventually indicate a win, while
the opponent's winning statistics never will. However, if neither of the players follows
a memoryless winning strategy, then no guarantees on the outcome of the evolution
of the statistics are made. Furthermore, if one identifies ``Anke's winning strategy
indicates a win"" with ``accept"" and ``Boris's winning strategy indicates a win"" with
``reject,"" then one can view the game as a run of an alternating O(log(n) \cdot log(m))
space Turing machine which keeps in its memory only the statistics, the current node,
and the player to move and which explicitly accepts a computation in the case that
Anke can win the game and explicitly rejects a computation in the case that Boris
can win the game. For the case of checking whether Anke can win, the existential
branchings are the choice of the next move by Anke, and the universal branchings are
the choice of the next move by Boris. The obtained characterization is heavily based
on the fact that in every parity game one of the players has a memoryless winning
strategy; see Corollary 21 below. One can approximately halve the space usage by
maintaining only Anke's winning statistics. If the winning player plays a memoryless
winning strategy, then the alternating Turing machine would explicitly accept if Anke
can win and will reject by ``running forever"" without ever visiting an accepting state
in the case that Boris can win.

An anonymous referee suggested that such an algorithm---which maintains the
winning statistics---might be called a ``space-efficient one-pass streaming algorithm
inspecting the play.""

Verification that the algorithm is correct. Note that, in the updating al-
gorithm for Anke's winning statistics, if b is of Anke's parity, then there is an i that
satisfies 1(a), as otherwise the algorithm would have terminated earlier. Initially, the
invariants clearly hold as all bi's are 0. Now it is shown that the invariants are pre-
served at updates of the bi's according to case 1(a) or 1(b).

It is easy to verify that the invariants are maintained if the update is due to 1(b),
and it also ensures that Property-bi is maintained for the i-sequences being tracked.
In case the update is done due to 1(a), then Property-bi\prime is maintained for all i\prime -
sequences being tracked for i\prime > i (with bi\prime \geq b in these cases). For i\prime < i, bi\prime is
made 0 by the update algorithm. The next paragraph argues about an appropriate
i-sequence being formed. Thus, it is easy to verify that (I1) to (I4) are maintained by
the update algorithm. Note that (I1) implies that the space bound needed is at most
O(log n logm), (I2) is used implicitly to indicate which i-sequences are being tracked,
and (I3), (I4) give the order of the i-sequences tracked: a (j + 1)-sequence appears
earlier in the play than a j-sequence. This is used implicitly when one combines the
smaller j-sequences into a larger one as mentioned below.

When updating Anke's winning statistics by case 1(a), one forms a new i-sequence
of length 2i by putting the older j-sequences for j = i - 1, i - 2, . . . , 1, 0 together and
appending the newly visited one-node sequence with value b; when i = 0, one forms
a new 0-sequence of length 20 consisting of just the newly visited node with value b.
Note that in case i > 0 both b and b0 are of Anke's parity, and therefore the highest
valued node between the last member a of the older 0-sequence and the last node in
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the new i-sequence (both inclusive) has the value max\{ b0, b\} (by (I4) and Property-b0
for the older 0-sequence). Furthermore, for every j < i  - 1, for the last node a of
the older (j + 1)-sequence and the first node a\prime of the older j-sequence, in the new
i-sequence a highest valued node in the play between these two nodes a, a\prime (both
inclusive) has value bj+1 (by (I4) and Property-bj+1 of the older (j + 1)-sequence)
which, by choice, has Anke's parity. Thus the overall combined new sequence indeed
satisfies the properties needed for an i-sequence, and b is the value of the last node of
this sequence and thus, currently, also the largest value of a node visited at or after
the end of the sequence. All older j-sequences with j < i are discarded, and thus
their entries are set back to bj = 0.

The same rules apply to the updates of Boris's winning statistics with the roles
of Anke and Boris interchanged everywhere.

Claim 12. If a player is declared a winner by the algorithm, then the play contains
a loop, with its maximum valued node being a node of the player.

To prove the claim, it is assumed without loss of generality that Anke is de-
clared the winner by the algorithm. The play is won by an i-sequence being observed
in Anke's winning statistics with 2i > 2n; thus some node occurs at least three
times in the i-sequence and there are h, \ell \in \{ 1, 2, 3, . . . , 2i\} with h < \ell such that
the same player moves at ah and a\ell and furthermore ah = a\ell with respect to the
nodes a1, a2, a3, . . . , a2i of the observed i-sequence. The maximum value b\prime of a node
between ah and a\ell in the play is occurring between some ak and ak+1 (both inclusive)
for a k with h \leq k < \ell . Now, by the definition of an i-sequence, b\prime has Anke's parity.
Thus a loop has been observed for which the maximum value of a node in the loop
has Anke's parity.

Claim 13. If a player follows a memoryless winning strategy, then the opponent
is never declared a winner.

To prove the claim, suppose that a player follows a memoryless winning strategy
but the opponent is declared a winner. Then the opponent, by Claim 12, goes into
a loop with the maximum node of the opponent's parity. Hence, the opponent can
cycle in that loop forever and win the play, a contradiction.

Claim 14. If a player follows a memoryless winning strategy, then the player is
eventually declared a winner.

To prove the claim, it is assumed that the player is Anke, as the case of Boris is
symmetric. The values bi analyzed below refer to Anke's winning statistics. Assume
that the sequence of values of the nodes in an infinite play of the game has the limit
superior c which, by assumption, is a value of Anke's parity. To prove the claim one
needs to argue that eventually bi becomes nonzero for an i with 2i > 2n. For this
purpose it will be argued that a counter to be defined, associated with the values
of bi's, eventually keeps increasing (except for some initial part of the play, where it
may oscillate). This is argued by using count(c, t) below, which gives the value of the
counter after t steps of the play.

Consider a step as making a move and updating of the statistics. For each step t
let bk(t) refer to the value of bk at the end of step t (that is, after the updates in the
statistics following the tth move in the play). Let Bc(t) be the set of all k such that
bk(t) has Anke's parity and bk(t) \geq c. Let

count(c, t) =
\sum 

k\in Bc(t)
2k.

Now it is shown that whenever at steps t, t\prime with t < t\prime a move to a node with value c
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was made and no move, strictly between steps t, t\prime , was made to any node with value
c\prime \geq c, then count(c, t) < count(c, t\prime ). To see this, let i be the largest index for which
there is a step t\prime \prime with t < t\prime \prime \leq t\prime such that bi is updated at step t\prime \prime .

Note that this implies [bi(t) < c or bi(t) is of Boris's parity], and [0 < bi(t
\prime \prime ) \leq c].

Now, in the case that bi(t
\prime \prime ) < c, it holds that t\prime \prime < t\prime and at time t\prime , condition 1(b)

of the update algorithm will ensure that an update (either 1(a) or 1(b)) is done to
enforce bi(t

\prime ) = c. Thus

count(c, t\prime ) - count(c, t) \geq 2i  - 
\sum 

j\in Bc(t):j<i 2
j \geq 1.

Accordingly, once all moves involving nodes larger than c in value have been done in
the play, there will still be infinitely many moves to nodes of value c, and for each two
subsequent such moves at t, t\prime the inequality count(c, t) + 1 \leq count(c, t\prime ) will hold.
Consequently, the number count(c, t), for sufficiently large t where a move to a node
with value c is made at step t, needs to have, for some i, bi(t) \geq c and 2i > 2n; thus
the termination condition of Anke will terminate the play with a win.

The above arguments show that an alternating Turing machine can simulate both
players and, taking the winning statistics into account, will accept the computation
whenever Anke has a winning strategy for the game.

Recall that an alternating Turing machine can be viewed as a game between two
players, Anke (existential) and Boris (universal), who perform in turns part of the
computations and can branch in the part they do; when the game terminates, it says
which player has won; if Anke wins, it means ``accept,"" and if Boris wins, it means
``reject""; if it never terminates, it means ``undecided.""

An alternating Turing machine can decide a set iff for every input x, if x \in L,
then Anke has a winning strategy for the alternating Turing machine and can force
an ``accept,"" else Boris has a winning strategy for the alternating Turing machine and
can avoid that it comes to an ``accept""; in the case of the above game, Boris can even
enforce an explicit ``reject."" For the alternating Turing machine, in order to simulate
the game, one has to keep track of the following pieces of information: the winning
statistics of the players; the current node in the play and the player who is to move
next. Thus, the alternating Turing machine uses only O(log(n) \cdot log(m)) space to
decide whether the parity game, from some given starting point, will be won by Anke
(or Boris), provided the winner plays a memoryless winning strategy (which always
exists when the player can win the parity game).

Chandra, Kozen, and Stockmeyer [13] showed how to simulate an alternating
Turing machine working in polylogarithmic space by a deterministic Turing machine
working in quasi-polynomial time. Their simulation bounds for the alternating Turing
machine described in Theorem 8 give a deterministic Turing machine working in time
O(nc log(m)) for some constant c. As mentioned above, one can always assume that in
a parity game with n nodes and values from \{ 1, 2, 3, . . . ,m\} , one can choose m \leq n,
so using this result one gets the following parameterized version of the main results
that parity games can be solved in quasi-polynomial time.

Theorem 15. There is an algorithm which finds the winner of a parity game with
n nodes and values from \{ 1, 2, 3, . . . ,m\} in time O(nc log(m)).

For some special choices of m with respect to n, one can obtain even a polynomial
time bound. McNaughton [61] showed that for every constant m, one can solve a
parity game with n nodes having values from \{ 1, 2, 3, . . . ,m\} in time polynomial in n;
however, in all prior works the degree of this polynomial depends onm [40]; subsequent
improvements were made to bring the dependence from approximately nm+O(1) first
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down to nm/2+O(1) [9, 73] and then to approximately nm/3+O(1) [53, 72]. The following
theorem shows that one can bound the computation time by a fixed-degree polynomial
in n for all pairs (m,n) with m < log(n).

Theorem 16. If m \leq log(n), then one can solve the parity game with n nodes
and values from \{ 1, 2, 3, . . . ,m\} in time O(n5).

Proof. Note that Theorem 8 actually shows that the following conditions are
equivalent:
\bullet Anke can win the parity game.
\bullet Anke can play the parity game such that her winning statistics matures while
Boris's winning statistics does not mature.

Thus one can simplify the second condition and show that it is equivalent to the
following two games [57, 74]:
\bullet One only maintains Anke's winning statistics and a play terminates with a win
for Anke iff she is eventually declared a winner, and the play is a win for Boris iff
it runs forever.

\bullet One only maintains Boris's winning statistics and a play is a win for Anke iff it
never happens that the winning statistics of Boris declare him a winner.

The first game is called a reachability game [57] and the second game a survival
game [74, Chapter 9]. Both games are isomorphic, as they are obtained from each
other only by switching the player who is supposed to win. Such types of reductions,
though not with good complexity bounds, were also considered by Bernet, Janin, and
Walukiewicz [3]. The reachability game to which one reduces the parity game can
now be described as follows:
\bullet The set Q of nodes of the reachability game consists of nodes of the form (a, p,\~b),
where a is a node of the parity game, the player p \in \{ Anke,Boris\} moves next,
and \~b represents the winning statistics of Anke.

\bullet The starting node is (s, p, \~0), where \~0 is the vector of all bi with value 0, s is the
starting node of the parity game, and p is the player who moves first.

\bullet Anke can move from (a,Anke,\~b) to (a\prime ,Boris,\~b\prime ) iff she can move from a to a\prime 

in the parity game and this move causes Anke's winning statistics to be updated
from \~b to \~b\prime and \~b does not yet indicate a win for Anke.

\bullet Boris can move from (a,Boris,\~b) to (a\prime ,Anke,\~b\prime ) iff he can move from a to a\prime in
the parity game and this move causes Anke's winning statistics to be updated
from \~b to \~b\prime and \~b does not yet indicate a win for Anke.

The number of elements of Q can be bounded by O(n4). First note that the number
of increasing functions from \{ 0, 1, 2, . . . , \lceil log(n)\rceil +2\} to \{ 1, 2, 3, . . . , \lceil log(n)\rceil \} can be
bounded by O(n2), as any such sequence (b\prime 0, b

\prime 
1, b

\prime 
2 . . . , b

\prime 
\lceil log(n)\rceil +2) can be represented

by the subset \{ b\prime k+k : 0 \leq k \leq \lceil log(n)\rceil +2\} of \{ 1, 2, 3, . . . , 2\lceil log(n)\rceil +2\} and that there
are at most O(n2) such sets. Further, note that b\prime k \leq b\prime k+1 implies b\prime k+k < b\prime k+1+k+1,

and thus all b\prime k can be reconstructed from the set. Given a winning statistics \~b =
(b0, b1, b2, . . . , b\lceil log(n)\rceil +2), one defines b\prime 0 = max\{ 1, b0\} and b\prime k+1 = max\{ b\prime k, bk+1\} and
notes that only those bk with bk = 0 differ from b\prime k. Thus one needs at most \lceil log(n)\rceil +3
additional bits to indicate which bk is 0. The overall winning statistics can then be
represented by 3\lceil log(n)\rceil +5 bits. Furthermore, one needs 1 bit to represent the player
and \lceil log(n)\rceil bits to represent the current node in the play. Accordingly, each node
in Q can be represented with 4\lceil log(n)\rceil + 6 bits, resulting in O(n4) nodes in Q. The
set Q itself can be represented by using a set of such representations of nodes.

Note that one can compute the set Q of vertices and determine a list of nodes
Q\prime \subseteq Q where Anke's winning statistics indicate a win in time O(| Q| \cdot n); the set Q\prime 
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is the set of target nodes in the reachability game.
Proposition 17 shows that the such constructed reachability game can be decided

in time O(| Q| \cdot n) by a well-known algorithm. For the general case of a reachability
game, the time complexity is linear in the number of vertices plus number of edges
of the game graph; note that the reachability game constructed has | Q| nodes and at
most | Q| \cdot n edges. This completes the proof.

The algorithm below is listed explicitly by Khaliq and Imran [56] and appeared
much earlier in the literature, though sometimes in different or only related contexts
[1, 22, 43, 45, 50]. The algorithm is now included for the reader's convenience.

Proposition 17 (Beeri [1], Cook [22], Gurevich and Harrington [45], Immerman
[50]). In a reachability game with a set Q of nodes, a subset Q\prime \subseteq Q of target nodes
Q\prime , out degree up to n per node, and start node s, one can decide in time O(| Q| \cdot n)
which player can win the game.

Proof. One computes for each node q \in Q a linked list of q's successors (which
are at most n in number) and a linked list of q's predecessors. Note that the collection
of all the successor and predecessor lists for different nodes in Q taken together has
length at most | Q| \cdot n. These lists can also be generated in time O(| Q| \cdot n).

Note that a node q is a winning node for Anke if q \in Q\prime or either Anke moves
from q and one successor node of q is a winning node for Anke or Boris moves from
q and all successor nodes of q are winning nodes for Anke. This idea leads to the
algorithm below.

Next, for each node q, a tracking number kq is introduced and maintained such
that the winning nodes for Anke will eventually all have kq = 0, where kq indicates
how many further times one has to visit the node until it can be declared a winning
node for Anke. The numbers kq are initialized by the following rules:
\bullet On nodes q \in Q\prime the number kq is 1.

\bullet On nodes q = (a,Anke,\~b) /\in Q\prime , the number kq is initialized as 1.

\bullet On nodes q = (a,Boris,\~b) /\in Q\prime , the number kq is initialized as the number of
nodes q\prime such that Boris can move from q to q\prime .

These numbers can be computed from the length of the list of successors of q for each
q \in Q. Now one calls the following recursive procedure, initially for all q \in Q\prime such
that each call updates the number kq. The recursive call does the following:
\bullet If kq = 0, then return without any further action, else update kq = kq  - 1.
\bullet If after this update it still holds that kq > 0, then return without further action.
\bullet Otherwise, that is, when kq originally was 1 when entering the call, recursively
call all predecessors q\prime of q with the same recursive call.

After the termination of all these recursive calls, one looks at kq for the start node q
of the reachability game. If kq = 0, then Anke wins, else Boris wins.

In the above algorithm, the predecessors of each node q \in Q are called at most
once from a call in q, namely, when kq goes down from 1 to 0; furthermore, this is the
time where it is determined that the node is a winning node for Anke. Thus there are
at most O(| Q| \cdot n) recursive calls and the overall complexity is O(| Q| \cdot n).

For the verification, the main invariant is that, for nodes q \in Q - Q\prime , kq indicates
how many more successors of q one still has to find which are winning nodes for Anke
until q can be declared a winning node for Anke. In the case that Anke's winning
statistics has matured in the node q, the value kq is taken to be 1 so that the node is
processed once in all the recursive calls in the algorithm. For nodes where it is Anke's
turn to move, only one outgoing move which produces a win for Anke is needed.
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Consequently, one initializes kq to 1, and as soon as this outgoing node is found, kq
goes to 0, which means that the node is declared a winning node for Anke. In case
the node q is a node where Boris moves, then one has to enforce that Boris has no
choice but to go to a winning node for Anke. Thus kq is initialized to the number
of moves which Boris can make in this node; each time one of these successor nodes
is declared a winning node for Anke, kq goes down by one. Observe that once the
algorithm is completed, the nodes with kq = 0 are exactly the winning nodes for Anke
in the reachability game.

The next result carries over the methods of Theorem 16 to the general case, that
is, it uses everything except those parts which make use of m \leq log(n). So the size of
the code representing a winning statistic for Anke is given by \lceil log(n)\rceil +3 \leq log(n)+4
numbers of \lceil log(m + 1)\rceil \leq log(m) + 1 bits. As log(m) \leq log(n), the overall size of
representation of a node in the set Q of nodes of the reachability game can be bounded
by log(n) \cdot (log(m) + 5) + c. Hence, the size of | Q| is O(nlog(m)+5) and the number of
edges in the reachability game is O(nlog(m)+6).

For many decision problems in NP, in particular for the NP-complete ones, one
can find solutions witnessing the given answer (like the winning strategy for the winner
of the parity game) by solving several variants of the decision problem where more
and more parameters of the problem are fixed by constants [2]. This is now outlined
for finding the memoryless winning strategy of the winner of a parity game using an
algorithm which decides who is the winner. For ease of notation, assume that Anke
can win the game on a graph (V,E). Now one does the following steps to retrieve the
winning strategy:
1. Maintain, for each node a \in V , a list of possible successors Va which is initialized

as \{ b : (a, b) \in E\} at the beginning.
2. If there is no node a \in V with, currently, | Va| > 1, then one terminates, with a

winning strategy for Anke in the parity game being to move from every node a
to the unique node in Va, else one selects a node a \in V with | Va| > 1.

3. Now one splits Va into two nearly equal sized subsets V \prime 
a and V \prime \prime 

a with | V \prime 
a| \leq 

| V \prime \prime 
a | \leq | V \prime 

a| + 1.
4. One replaces Va by V \prime 

a and permits, in the derived reachability game, moves from
(\~a,Anke,\~b) to (\~a\prime ,Boris,\~b\prime ) only when \~a\prime \in V\~a for all nodes \~a.

5. If Anke does not win this game, then one replaces Va = V \prime \prime 
a , else one keeps

Va = V \prime 
a.

6. Go to step 2.
The above algorithm works since whenever Anke has a winning strategy for the parity
game, then there is a memoryless one, and therefore when splitting the options at node
a, some memoryless winning strategy either always takes a node from V \prime 

a or always
takes a node from V \prime \prime 

a . It is straightforward to verify that the above loop runs n log(n)
rounds and each round involves O(| Q| \cdot n) time plus one solving of the reachability
game, which can also be solved in time O(| Q| \cdot n). Thus one can derive the following
result.

Theorem 18. There is an algorithm which finds the winner of a parity game
with n nodes and values from \{ 1, 2, 3, . . . ,m\} in time O(nlog(m)+6). Furthermore,
the algorithm can compute a memoryless winning strategy for the winner in time
O(nlog(m)+7 \cdot log(n)).

Thus, as shown, when m \leq log(n) the runtime is O(n5); if m > log(n), then
2m > n and one can bound nlog(m)+6 from above by 2m\cdot (log(m)+6). Thus one has the
bound O(n5 + 2m\cdot (log(m)+6)) for the runtime of solving a parity game with n nodes
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and values from \{ 1, 2, 3, . . . ,m\} . In other words, parity games are fixed-parameter
tractable for their main parameter m.

Corollary 19. Parity games are in the class FPT and can be solved in time
O(n5 + 2m(log(m)+6)).

Followup work obtained better bounds on the runtime by using that the transla-
tion into the reachability game provides a game with the number of edges bounded
by \biggl( 

m+ 2 \cdot (\lceil log(n)\rceil + 3)

\lceil log(n)\rceil + 3

\biggr) 
\cdot n2.

The above formula led to the bound O(2m \cdot n4) [14], which is based on the fact that\bigl( 
i
j

\bigr) 
\leq 2i for all i, j. A further estimate can be obtained by slightly increasing the

binomial upper bound to\biggl( 
(\lceil m/ log(n)\rceil + 2) \cdot (\lceil log(n)\rceil + 3)

\lceil log(n)\rceil + 3

\biggr) 
\cdot n2

and then using common estimates on binomials, where the upper number is a multiple
of the lower number. The calculations provide a runtime bound of

O(\lceil m/ log(n)\rceil 4 \cdot n3.45+log(\lceil m/ log(n)\rceil +2));

this and similar bounds of this type were obtained by several researchers [34, 42, 54,
74]. Subsequent improvements included replacing the term n2 in the above formulas
by the number of edges in the parity game [34, 42, 54].

The main improvement over the current algorithm by followup work is, however,
the usage of space. The current algorithm uses quasi-polynomial time and quasi-
polynomial space. Subsequent work has brought down this complexity from quasi-
polynomial to quasi-linear [34, 54]; more precisely Jurdzi\'nski and Lazi\'c have the
space bound O(n \cdot log(n) \cdot log(m)) and Fearnley et al. [34] have the space bound
O(n \cdot log(n) \cdot log(m) + \ell \cdot log log(n)), where \ell is the number of edges in the parity
game and thus \ell \leq n2; the time bounds of both algorithms are approximately the
same as those of the algorithm presented here, but due to the better space bound an
additional overhead from managing large space can be avoided in an implementation.

Lehtinen [59] introduced the notion of the register index complexity of a parity
game and showed that every parity game has register index complexity of at most
log(n) + 1. She then gave an algorithm to translate the given parity game of register
index k into a usual parity game of size O(mk \cdot n) with 2k+1 values on the edges. This
game can then be solved in polynomial time (with respect to mk \cdot n), as the number
2k + 1 of values is bounded logarithmically in the number of nodes; furthermore,
results prior to the current work would also have already shown that the translated
game can be solved in quasi-polynomial time, and thus Lehtinen [59] has supplied
a quasi-polynomial time algorithm for solving parity games which can be verified
without making reference to the present work.

4. Parity games versus Muller games. Muller games are a well-studied topic
[7, 8, 61, 76, 80] and had already been investigated as a general case before researchers
aimed for the more specific parity games. A Muller game (V,E, s,G) consists of a
directed graph (V,E), a starting node s, and a set G \subseteq \{ 0, 1\} V . For every infinite
play starting in s, one determines the set U of nodes visited infinitely often during
the play: if U \in G, then Anke wins the play, else Boris wins the play. In a Muller
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game the complement of G is closed under union iff for all U,U \prime /\in G the set (U \cup U \prime )
is not in G.

For complexity assumptions, it is natural to consider the case where G is not
given as an explicit list, but as an algorithm, which is polynomial in size, which runs
in polynomial time, and which computes the membership of a set U (given by its
explicit list) in the set G or some similar equivalent effective representation. The
reason for considering such a representation for G is that Horn [47] showed that if G
is given as an explicit list of all possible sets of nodes infinitely visited when Anke
wins, then the resulting game is solvable in polynomial time in the sum of the number
of nodes and the number of explicitly listed sets. Hence, only more flexible ways of
formulating winning conditions lead to interesting cases of Muller games.

For Muller games, Bj\"orklund, Sandberg, and Vorobyov [5] considered a parameter
which is given by the number of colors. For this, they assign to every node a color
from \{ 1, 2, 3, . . . ,m\} and take G to be some set of subsets of \{ 1, 2, 3, . . . ,m\} . Then
U is not the set of infinitely often visited nodes, but instead the set of colors of the
infinitely often visited nodes. Again, if U \in G, then Anke wins the play, else Boris wins
the play. Colored Muller games permit more compact representations of the winning
conditions. In the worst case there is a 2m-bit vector, where m is the number of
colors; however, one also considers the case where this compressed winning condition
is given in a more compact form, say, by a polynomial-sized algorithm or formula.

In the following, the interactions between Muller games, memoryless winning
strategies, and parity games are presented. The first result is due to Emerson [30]
and Zielonka [80, Corollary 11], and the second one is in Hunter's thesis [48].

Theorem 20 (Emerson [30], Zielonka [80]). Consider a Muller game (V,E, s,G)
in which the complement of the set G of winning conditions is closed under union. If
Anke has a winning strategy, then Anke also has a memoryless winning strategy.

Proof. The possible choices for Anke at any node will be progressively constrained.
The proof is by induction on the number of possible moves of Anke in the constrained
game. The result holds when, for each node, Anke has only one movement choice. For
the induction step, suppose some node v for Anke's move has more than one choice. It
is now shown that for some fixed Anke move at node v, Anke has a winning strategy;
thus one can constrain the move of Anke at node v, and by induction this case is
done. Suppose, by way of contradiction, that for every Anke move w at v, Boris has
a winning strategy Sw. This allows Boris to have a winning strategy for the whole
game as follows.

Assume without loss of generality that the play starts with Anke's move at v.
Intuitively, think of Boris playing several parallel plays against Anke (each play in
which Anke moves w at node v for different w) which are interleaved. For ease of
notation, consider the individual play with Anke using move w at node v as play Hw,
and the interleaved full play as H.

Initially H and all the plays Hw are at the starting point. At any time in the
play H, if it is Anke's move at v and Anke makes the move w\prime , then Boris continues
as if it is playing the play Hw\prime (and suspends the previous play Hw if w \not = w\prime ). Thus
the nodes visited in H can be seen as the merger of the nodes visited in the plays
Hw for each choice w of Anke at node v. This implies that the set of nodes visited
infinitely often in H is equal to the union of the sets of nodes visited infinitely often
in the various Hw. As Boris wins each play Hw which is played for infinitely many
moves, by closure of the complement of G under union, Boris wins the play H.

As a parity game is also a Muller game in which G is closed under union for both

D
ow

nl
oa

de
d 

02
/0

3/
20

 to
 1

30
.2

16
.1

58
.7

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC17-170 CALUDE, JAIN, KHOUSSAINOV, LI, STEPHAN

Anke and Boris, the following corollary holds.

Corollary 21 (Emerson and Jutla [32], Mostowski [62]). The winners in parity
games have memoryless winning strategies.

Hunter [48, p. 23] showed the following characterization for Muller games. Note
that McNaughton [61] also investigated Muller games with memoryless strategies and
characterized them through the concept of splitting [61], which is just another way of
stating that both G and its complement are union-closed. However, his paper does
not connect these Muller games with parity games explicitly.

Theorem 22 (Hunter [48]). Every Muller game (V,E, s,G) in which both G and
its complement are closed under the union operation is a parity game, and the trans-
lation can be done in polynomial time whenever the winning set G can be decided in
polynomial time.

Proof. In this proof a parity game isomorphic to the given Muller game will be
constructed. In this parity game player Anke owns the nodes with even value and
Boris owns the nodes with odd value. Given V , let

V1 = \{ a \in V : \{ a\} \in G\} and V2 = \{ b \in V : \{ b\} /\in G\} .

Obviously V is the disjoint union of V1 and V2. By the closure under union, any
subset V \prime \subseteq V1 is in G and no subset V \prime \subseteq V2 is in G.

To prove the theorem, values will be inductively assigned to the nodes one by
one.

Suppose values have already been assigned to all nodes in V  - V \prime , where V \prime is
initially V . Then assign the value to one node in V \prime as follows. Let V \prime 

1 = V \prime \cap V1 and
V \prime 
2 = V \prime \cap V2.

Case 1: Suppose V \prime \in G. Now, there is a node a \in V \prime 
1 such that \{ a\} \cup V \prime 

2 \in G,
as otherwise V \prime /\in G since the complement of G is closed under the union operation.
Now let V \prime \prime 

1 \subseteq V \prime 
1 and V \prime \prime 

2 \subseteq V \prime 
2 . The set \{ a\} \cup V \prime \prime 

2 is in G, as otherwise (\{ a\} \cup V \prime \prime 
2 )\cup V \prime 

2

is not in G, in contradiction to the choice of a. Furthermore, as V \prime \prime 
1 \cup \{ a\} \in G,

(V \prime \prime 
1 \cup \{ a\} ) \cup (\{ a\} \cup V \prime \prime 

2 ) = \{ a\} \cup V \prime \prime 
1 \cup V \prime \prime 

2 is in G. Thus whenever V \prime \prime \subseteq V \prime and
a \in V \prime \prime , V \prime \prime \in G. Hence, the value 2| V \prime | is assigned to a accordingly.

Case 2: Suppose V \prime /\in G. Then there exists a node b \in V \prime 
2 such that \{ b\} \cup V \prime 

1 /\in G,
by reasons similar to those given in Case 1. Note that this implies that whenever
V \prime \prime \subseteq V \prime and b \in V \prime \prime , then V \prime \prime /\in G. Hence, the value 2| V \prime | + 1 is assigned to b.

The above process of assigning values to nodes is clearly consistent, since for
V \prime \prime \subseteq V \prime being the set of infinitely visited nodes, in Case 1 if a is in V \prime \prime , then Anke
wins, and in Case 2 if b is in V \prime \prime , then Boris wins. It follows that this Muller game is
a parity game.

Besides the standard colored Muller game of Bj\"orklund, Sandberg, and Vorobyov
[5], one can also consider the memoryless colored Muller game. These are considered
in order to see whether the game is easier to solve if one permits Anke only to win
when she follows a memoryless strategy; otherwise she loses by the rules of the game.
The main finding comparing memoryless colored Muller games with standard colored
Muller games is as follows: On one hand, memoryless colored Muller games are easier
in terms of the best known complexity class to which they belong: memoryless colored
Muller games are in \Sigma P

2 , while the decision complexity of standard colored Muller
games is in PSPACE. On the other hand, the time complexity of memoryless colored
Muller games is worse, as one cannot exploit a small number of colors to bring the
problem into P ; already four colors make it NP-hard to find the winner in memoryless
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colored Muller games; see Theorem 27.
Bj\"orklund, Sandberg, and Vorobyov [5] proved that the colored Muller game is

fixed parameter tractable iff the parity game is fixed parameter tractable (with respect
to the number of values m of the parity game). It follows from Theorem 16 that also
the colored Muller game is fixed parameter tractable. More precisely, McNaughton
[61] and Bj\"orklund, Sandberg, and Vorobyov [5] showed the following result.

Theorem 23 (Bj\"orklund, Sandberg, and Vorobyov [5], McNaughton [61]). One
can translate a colored Muller game with m colors and n nodes in time polynomial in
m! \cdot n into an equivalent parity game with 2m colors and m! \cdot n nodes.

Proof. In this proof, one considers Muller games with nodes possibly having mul-
tiple colors. The idea is based on the last appearance record of the colors.

Each node v from the original game will be replaced by all nodes of the form
(v, r) in the new game, where r denotes an ordered list of colors as to how recently
they were observed in the nodes visited before the current node.

One lets Anke have the odd and Boris the even numbers. The value of the node
(v, r) is computed in two steps. First one computes the set U of colors in r which are
at least as recent as one of the colors of v in the Muller game; that is, U is the set of
colors whose position might be affected by an update of r when leaving the current
node for the next node. For example, if the game has four colors which were observed
in the order (c1, c2, c3, c4) (c1 is the most recent color) and if the node v in the Muller
game carries the colors c2 and c3, then U = \{ c1, c2, c3\} , and when passing to the next
node r will be updated to r\prime = (c2, c3, c1, c4). Second, one lets the value of the node
(v, r) be 2 \cdot | U | + 1 in the case that U is a winning set for Anke in the Muller game
and 2 \cdot | U | + 2 in the case that U is a winning set for Boris in the Muller game.

If a player can move from v to w in the original Muller game, then the player can
now move from (v, r) to (w, r\prime ) in the constructed parity game where r\prime is obtained
from r by moving all the colors belonging to v to the front, as they are most recent
when arriving in w, and by keeping the other colors in their order behind the new
recent colors; other moves than those derived ones are not possible. Furthermore,
when s is the starting node in the original colored Muller game, then the new starting
node in the parity game is of the form (s, r) for some arbitrary but fixed record r.

Given now a play (v0, r0), (v1, r1), (v2, r2), . . . in the parity game, it defines a play
v0, v1, v2, . . . in the original Muller game and a set U which consists of the colors of
the infinitely often visited nodes. For almost all k, these colors in U are in the front
of the last appearance record rk. As each of them is occurring infinitely often, there
are infinitely many nodes (vk, rk) in the run where one of the colors of vk is the last
member of U in the current record rk. It follows that U is the set of selected colors
for (vk, rk) and the node (vk, rk) has Anke's parity iff U is a winning set for Anke.
Furthermore, only the nodes where all colors of U are taken into account have the
maximal value of the run. For that reason, Anke wins the run in the parity game iff
she wins the corresponding run in the original Muller game.

Assume now that Anke has a winning strategy for the parity game. Then, when
playing the original Muller game, in her memory Anke can keep track of the appear-
ance record rk for the current node vk and then, in the case that it is her turn, move
to that vk+1 such that in the parity game she would have made a move to a node of
the form (vk+1, rk+1). As it is a winning strategy, the derived play in the parity game
would be winning for Anke and thus also winning in the original play in the Muller
game. The situation when Boris has a winning strategy for the parity game is similar,
as he can then translate by the same method his winning strategy into one for the
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colored Muller game. Thus the winner of the original Muller game is the same as the
winner of the translated parity game; that is, the original game is equivalent to the
translated game.

The bound on the number of nodes is n \cdot m!; the number of values in the game is
2m+2 in the case that one allows nodes without colors so that the set U of the colors
of the infinitely often visited nodes can be empty. It is 2m if every node needs to have
at least one color, as then one can cut out the case of no color and would assign to
the set U computed for a node (v, r) a value of either 2| U |  - 1 or 2| U | , depending on
the parity of the player who wins when U is the set of colors of the infinitely often
visited nodes.

Now one uses this result in order to prove the bounds on the algorithm to solve
the colored Muller games. Note that log(m! \cdot n) \geq 2m for all m \geq 24 and n \geq m:
log(m!) \geq log(8m - 8) \geq 3 \cdot (m  - 8) = 3m  - 24. For m \geq 24, 3m  - 24 \geq 2m. Thus,
the remaining cases can be reduced to finite ones by observing that for all m and
n \geq max\{ m, 248\} , log(m!\cdot n) \geq 2m. So, for almost all pairs of (m,n), log(m!\cdot n) \geq 2m,
and therefore one can use the polynomial time algorithm of Theorem 16 to get the
following explicit bounds.

Theorem 24. One can decide in time O(m5m \cdot n5) which player has a winning
strategy in a colored Muller game with m colors and n nodes.

For the special case of m = log(n), the corresponding number of nodes in the
translated parity game is approximately nlog(log(n))+2 and the polynomial time algo-
rithm of Theorem 16 becomes an O(n5 log log(n)+10) algorithm. The algorithm is good
for this special case, but the problem is in general hard and the algorithm is slow.

One might ask whether this bound can be improved. Bj\"orklund, Sandberg, and
Vorobyov [5] showed that under the Exponential Time Hypothesis it is impossible to
improve the above algorithm to 2o(m) \cdot Poly(n); see Definition 6 above for the Ex-
ponential Time Hypothesis. The following result enables us to get a slightly better
lower bound.

Theorem 25. A Muller game with m colors and n nodes and 1 \leq m \leq n cannot
be solved in time 2o(m\cdot log(m)) \cdot Poly(n), provided that the Exponential Time Hypothesis
is true.

Proof. Note that for this result, multiple colors per node are allowed. However,
one can translate a colored Muller game with multiple colors per node into one with
one color per node and m\prime = m+1 colors and n\prime = n \cdot m nodes. As it is required that
m \leq n, the expressions 2o(m\cdot log(m)) \cdot Poly(n) and 2o(m

\prime \cdot log(m\prime )) \cdot Poly(n\prime ) contain the
same runtimes of algorithms.

Theorem 30 provides as a special case a translation of k-dimensional parity games
with n nodes and 3 values per dimension into colored Muller games with n nodes and
m = 2k colors without changing the winner; the underlying game is not changed,
but the way the plays are evaluated by the auxiliary structure of multidimensional
parities is replaced by colors for the nodes. Furthermore, Theorem 31 shows that
if a k-dimensional parity game with 3 values per dimension can be solved in time
2o(k\cdot log(k)) \cdot Poly(n), then the Exponential Time Hypothesis would fail. The proof of
the current theorem then follows from the fact that if m = 2k, then 2o(k\cdot log(k)) =
2o(m\cdot log(m)), which is based on the equations o(m \cdot log(m)) = o(2k \cdot log(2k)) = o(k \cdot 
log(2k)) = o(k \cdot log(k) + k \cdot 2) = o(k \cdot log(k)). This completes the proof.

Memoryless games are games where Anke wins iff she (a) plays a memoryless strat-
egy, and (b) wins the game according to the specification of the game. If she does
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not do (a), this is counted as a loss for her. This was already defined by Bj\"orklund,
Sandberg, and Vorobyov [5, section 5] for Streett games, and it can also be defined
for Muller games.

The complexity of the memoryless games differs from those of normal games.
Bj\"orklund, Sandberg, and Vorobyov [5, section 5] considered memoryless Streett
games (called Quasi-Streett games in their paper) and showed that these are W[1]-
hard in a suitable parameterization.

The next theorem establishes the complexity of finding memoryless strategies for
player Anke for Muller games. For this one needs some effective way of representing
the winning conditions on the colors, and here it is assumed that they are given by a
Boolean formula or circuit of size polynomial in the game (one has to fix such a poly-
nomial, and any polynomial which is at least cubic in the number of colors would be
sufficient for the hardness). The hardness part in (b) slightly extends what is known
in the literature.

Dawar, Horn, and Hunter [24] extended a conference publication of Horn [46]
in which it is shown that Muller games, where the winning condition is given as an
explicit list of all sets of infinitely often visited nodes which are winning, is decidable
in polynomial time; here the polynomial time algorithm, for input size, also takes into
account the length of the explicit list. Dziembowski, Jurdzi\'nski, and Walukiewicz [29]
investigated mainly the space complexity needed to implement strategies and provided
some applications towards the complexity of solving the problem. Zielonka [80] used
similar methods to show NP-hardness of the Muller games, even in the special case of
games where player Anke, in case she wins, also has a memoryless winning strategy.

Theorem 26 (see also Dawar, Horn, and Hunter [24], Dziembowski, Jurdzi\'nski,
and Walukiewicz [29], Horn [46], Zielonka [80]).
(a) The problem of whether Anke can win a memoryless colored Muller game is \Sigma \bfP 

\bftwo -
complete.

(b) Suppose A is a polynomial time computable set of instances of formulas F (x1, . . . ,
xi, y1, . . . , yj) in conjunctive normal form with two types of variables which satisfy
that for each choice of (x1, . . . , xi) there is at most one choice of (y1, . . . , yj) which
makes F (x1, . . . , xi, y1, . . . , yj) true. Let B be the set of all such formulas F for
which the statement (\ast ) given as

\exists x1 . . . \exists xi \forall y1 . . . \forall yj [F (x1, . . . , xi, y1, . . . , yj) is not satisfied ]

is true. Then there is a polynomial time many-one reduction from A \cap B to the
set of all colored Muller games in which the winning conditions of Boris are closed
under union such that F \in A \cap B iff Anke is the winner of the game constructed
for F . Furthermore, the problem of whether Anke can win such a game is in \Sigma \bfP 

\bftwo .

Proof. First, to see the membership in \Sigma \bfP 
\bftwo , consider the following well-known

method: One guesses the memoryless winning strategy of Anke and then fixes Anke's
moves to be always based on this strategy. This basically results in a one-player game
where Boris always moves and successors of a node are not the original ones, but
those which can be reached if in the original graph one first follows one step of Anke's
strategy to a neighbor and then considers all moves of Boris from that neighbor. In
this new graph, only Boris is moving, so it is effectively a one-player-game. Now Boris
can only win this new game iff there is the corresponding periodic path which leads
to Boris's win. That is, one guesses a path of up to length n from the starting node to
this period as well as the periodic part of the path and verifies that the periodic part
produces a set of colors on which Boris wins. Here, a period is not longer than the
number n of nodes times the number of colors. Thus, if such a path does not exist,
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then Anke has a winning strategy, and this verification is in coNP; hence the overall
complexity is in \Sigma \bfP 

\bftwo .

The set of formulas F which satisfy (\ast ) is in general \Sigma \bfP 
\bftwo -complete. However, in

the case of (b) one will enforce a promise, that is, take only those formulas which are
members of a certain polynomial time computable set A satisfying the promise from
the statement of the theorem; this makes the set A \cap B incomplete for \Sigma \bfP 

\bftwo .

To show hardness, one reduces in both cases (a) and (b), the given formulas of
the form F (x1, . . . , xi, y1, . . . , yj) to Muller games. First one adds additional variables
\~x1, . . . , \~xi and modifies the formula (\ast ) to the following formula (@):

\exists x1 . . . \exists xi \forall \~x1 . . . \forall \~xi \forall y1 . . . \forall yj [x1 \not = \~x1 \vee \cdot \cdot \cdot \vee xi \not = \~xi \vee F (\~x1, . . . , \~xi,
y1, . . . , yj) is not satisfied ].

The intuition behind the reduction is that Anke chooses the truth values x1, . . . , xi and
copies them to \~x1, . . . , \~xi. Boris is then responsible for finding a satisfying assignment,
and this assignment is valid iff it does not produce any inconsistencies in the variables
\~x1, . . . , \~xi, y1, . . . , yj . This will make it easier to detect which player is responsible for
an inconsistent situation in the game, and the evaluation of a winner of a play takes
this into account.

Formally, for the reduction from a formula F (x1, . . . , xi, y1, . . . , yj), having m
clauses, where the rth clause has nr literals, the Muller game constructed is the
following. The colors used by the game are of the form pos(xh), pos(\~xh), neg(xh),
neg(\~xh), pos(yh),neg(yh).

(a) Vertices: \{ Eh, Ph, Nh : 1 \leq h \leq i\} .
Colors on Ph are pos(xh) and pos(\~xh). Colors on Nh are neg(xh) and neg(\~xh).
There is no color on Eh.
E1 is the starting node, where Anke starts the play.

(b) Vertices: \{ Ch, X
r
h : 1 \leq h \leq m, 1 \leq r \leq nh\} , where m is the number of

clauses in F and nh is the number of literals in the hth clause of F .
No color on Ch.
If the rth literal in the hth clause of F is xk (respectively, \neg xk), then the
color on Xr

h is pos(\~xk) (respectively, neg(\~xk)).
If the rth literal in the hth clause is yk (respectively, \neg yk), then the color on
Xr

h is pos(yk) (respectively, neg(yk)).
(c) There are two dummy nodes Z1, Z2 with no colors.
(d) There is an edge from Eh to Ph and Nh if 1 \leq h \leq i.

There is an edge from each of Ph, Nh to Eh+1 if 1 \leq h < i.
There is an edge from each of Pi and Ni to Z1.
There is an edge from Z1 to C1.
There is an edge from Ch to Xr

h if 1 \leq h \leq m and 1 \leq r \leq nh.
There is an edge from Xr

h to Ch+1 if 1 \leq h < m and 1 \leq r \leq nh.
There is an edge from Xr

m to Z2 if 1 \leq r \leq nm.
There is an edge from Z2 to E1.

(e) Winning condition for Boris: For a set U of colors of the infinitely often
visited nodes of a play, Boris wins if either there is a z \in \{ x1, . . . , xi\} where
both pos(z),neg(z) are in U or there is no z \in \{ \~x1, . . . , \~xi, y1, . . . , yj\} where
both pos(z),neg(z) are in U . In other words, Anke wins iff \{ z : pos(z) \in 
U \wedge neg(z) \in U\} is a nonempty subset of \{ \~x1, . . . , \~xi, y1, . . . , yj\} .

Intuitively, the Muller game graph consists of a list of subunits (Eh, Ph, Nh), where
each subunit consists of Anke choosing an option to assign the truth value to xh and
\~xh (pos(xh) denotes that xh, and thus \~xh, is true; neg(xh) denotes that xh, and thus

D
ow

nl
oa

de
d 

02
/0

3/
20

 to
 1

30
.2

16
.1

58
.7

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARITY GAMES IN QUASI-POLYNOMIAL TIME STOC17-175

\~xh, is false). After each subunit, the corresponding nodes Ph, Nh lead to the entry
node Eh+1 of the next subunit, except for the last subunit Pi, Ni, where (through a
dummy node Z1) it leads to the clauses. There are subunits (Ch, X

r
h) for each clause

in F , and Boris has to choose between nodes representing the literals with the corre-
sponding colors. So if the clause is \~x3\vee y1\vee neg(y5), then Boris can move from Ch into
one of three nodes with colors \{ pos(\~x3)\} , \{ pos(y1)\} , and \{ neg(y5)\} based on which
literal Boris takes to be true. Each clause leads to the subunit of the next clause,
except for the last mth clause, which, via a dummy node Z2, leads back to the start
node E1. Note that every time in Eh it is Anke's turn to move, and in Ch it is Boris's
turn to move.

Now given a set U of colors of the infinitely often visited nodes of a play, the win-
ning condition for Boris is that either there is a z \in \{ x1, . . . , xi\} where both pos(z),
neg(z) are in U or there is no z \in \{ \~x1, . . . , \~xi, y1, . . . , yj\} where both pos(z), neg(z)
are in U . In other words, Anke wins iff \{ z : pos(z) \in U \wedge neg(z) \in U\} is a nonempty
subset of \{ \~x1, . . . , \~xi, y1, . . . , yj\} .

For the set of colors U on the infinitely often visited nodes in a play, if the con-
dition on U is winning for Boris, then either Anke has played inconsistently (that
is, she has made two different choices of x1, x2, . . . , xi), as witnessed by the colors
\{ pos(z),neg(z)\} for some z \in \{ x1, . . . , xi\} , or Boris has played in a way that all
variables are always instantiated the same way in the literals selected by Boris to
witness the veracity of the clauses; furthermore, those z which are in \{ \~x1, . . . , \~xi\} 
coincide with Anke's choice. Thus U witnesses that the formula F can be satisfied
with Anke's choice of x1, . . . , xi. Therefore, if Boris has a winning strategy, then all
choices of (x1, . . . , xi) can be extended to a satisfying assignment for F .

Note that Anke can win playing consistently whenever there exists (x1, . . . , xi)
witnessing that F \in B; indeed she can only win when she plays memorylessly. On the
other hand, if each choice of (x1, . . . , xi) can be extended to a satisfying assignment
for F , then whatever Anke does, Boris can win the game: If Anke plays inconsis-
tently, she loses; if Anke commits to some choice for (x1, . . . , xi) and always moves
accordingly, then Boris can also always choose the literal witnessing of the truth of
clauses and the resulting colors do not give an inconsistent choice for any variable;
those variables with neither pos(z) nor neg(z) appearing in the colors of Xr

h are not
relevant for making the formula F true and can be ignored.

The argument above directly proves the result (a), and therefore the problem
whether Anke can win a memoryless colored Muller game is \Sigma \bfP 

\bftwo -complete.
For (b), assume that A and B are as in the theorem. As the nonmembers of A can

be detected in polynomial time, without loss of generality, for the following analysis
it is always assumed that the formulas F are from A. Furthermore, as above, Anke
wins the constructed parity game iff the modified F satisfies (@) iff F satisfies (\ast ).
Thus one only has to prove that the winning condition for Boris is closed under union
when the promise is satisfied.

Thus consider two sets of colors V,W where Boris wins and let U = V \cup W .
If there is a z \in \{ x1, . . . , xi\} such that both pos(z),neg(z) \in U , then Boris wins.
If such a z does not exist, then U and thus V,W encode a fixed choice of the
truth values of \{ x1, . . . , xi\} . By the winning condition on the game, the variables
\{ \~x1, . . . , \~xi, y1, . . . , yj\} all have at most one truth assignment in the colors for both V
and W , as otherwise Boris would lose. Due to the promise of F , this truth assignment
depends uniquely on the choice of the truth values of \{ x1, . . . , xi\} and is thus the same
for both V and W ; furthermore, both V and W have, for every z \in \{ y1, . . . , yj\} , at
least one of the colors pos(z),neg(z), as otherwise there would be at least two sat-
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isfying assignments (as no value of z is enforced). Thus the union U equals both V
and W ; it follows that U is a set of colors which is winning for Boris. So the winning
conditions of Boris are closed under union.

Note that one can reduce sets in NP \cup coUP to sets A (with corresponding
B) satisfying the promise condition in part (b). To see this, consider sets in NP
of the form X = \{ z : (\exists x1, x2, . . . , xi)[G(z, x1, x2, . . . , xi)]\} , where G(z, x1, . . . , xi)
can be solved in deterministic polynomial time. Then, for each z, one can con-
struct a formula in conjunctive normal form Fz(x1, x2, . . . , xi, y1, . . . , yj) such that
Fz(x1, x2, . . . , xi, y1, . . . , yj) is true iff y1, . . . , yj codes the deterministic computation
of G(z, x1, . . . , xi) and G(z, x1, . . . , xi) is false. Here A would be the set of all formu-
las Fz. As there is only one deterministic computation of G(z, x1, . . . , xi), for each
x1, . . . , xi, there is at most one satisfying assignment for Fz(x1, x2, . . . , xi). Further-
more, if z \in X, then for some appropriate choice of x1, x2, . . . , xi, G(z, x1, x2, . . . , xi)
is true, and thus Fz(x1, x2, . . . , xi, y1, . . . , yj) is not satisfied for at least one possible
value of y1, . . . , yj (the one which codes the deterministic computation of G(z, x1, x2,
. . . , xi)). In the case z /\in X, for all x1, x2, . . . , xi, G(z, x1, x2, . . . , xi) is false, and
thus, for all x1, x2, . . . , xi, for y1, . . . , yj coding the deterministic computation of
G(z, x1, . . . , xi), Fz(x1, x2, . . . , xi, y1, . . . , yj) is satisfiable. Thus, the requirements
as in part (b) are satisfied.

Similar reductions can be done for problems X in coUP by using i = 0 (and thus
no xi's are used) and using y1, . . . , yj to code the computations of the UP machine.
This would give that Fz satisfies (\ast ) iff z \in X.

The result that memoryless colored Muller games can be solved in \Sigma \bfP 
\bftwo stands

in contrast to the fact that Dawar, Horn, and Hunter [24] showed that deciding the
winner of a Muller game is a PSPACE-complete problem.

The next result shows that unless NP can be solved in quasi-polynomial time
there is no analogue of the translation of Bj\"orklund, Sandberg, and Vorobyov [5] from
memoryless colored Muller games into parity games. In contrast, solving memory-
less colored Muller games with four colors is already NP-complete and thus solving
memoryless colored Muller games is not in XP, unless P = NP.

Theorem 27. Solving memoryless colored Muller games with four colors is NP-
complete.

Proof. For seeing that the game is in NP, one guesses the strategy and translates
the original game into a new colored Muller game with 2n nodes: (i) each original
node v is represented by two nodes (Anke, v) and (Boris, v) in the new game, (ii) the
unique edge from (Anke, v) to (Boris, w) is picked as given by the memoryless winning
strategy, and (iii) the move from (Boris, v) to (Anke, w) is there iff there is an edge
from v to w in the original Muller game. By Theorem 23 mentioned above, one can
first translate this intermediate colored Muller game into a parity game with 8 values
and 24 \cdot n nodes [5, 61] and then solve the parity game in polynomial time O(n5), as
log(24 \cdot n) \geq 8 whenever n \geq 11.

For NP-hardness, SAT is reduced to memoryless colored Muller game as follows.
For ease of writing the proof, Muller games where nodes determine the player moving
are considered. This could be easily converted to a game where the moves of Anke
and Boris alternate by inserting intermediate nodes if needed.

Suppose x1, x2, x3, . . . , xk are the variables and y1, y2, y3, . . . , yh are the clauses
in a SAT instance. Without loss of generality assume that no variable appears both
as a positive and a negative literal in the same clause. Then the above SAT instance
is reduced to the following Muller game (where the graph is an undirected graph and
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we interpret any edge as having both directions):
1. V = \{ s\} \cup \{ u1, u2, u3, . . . , uk\} \cup \{ v1, v2, v3, . . . , vh\} \cup \{ wi,j : [1 \leq i \leq h] and

[1 \leq j \leq k] and [xj or \neg xj appears in the clause yi]\} .
Boris moves at nodes s and uj with 1 \leq j \leq k. Anke moves at all other nodes.

2. E = \{ (vi, wi,j), (wi,j , uj), (wi,j , vi), (uj , wi,j) : xj or \neg xj appears in yi\} \cup \{ (s, uj),
(uj , s) : 1 \leq j \leq k\} .

3. The colors are \{ x, y,+, - \} ; s has the color y; all nodes uj have the color x; all
nodes vi have the color y; for every node wi,j in the graph, if xj appears in the
clause yi positively, then the color is +, else \neg xj appears in yi and the color is  - .

4. The winning sets for Boris are \{ x,+, - \} and all subsets of \{ y,+, - \} ; the winning
sets for Anke are \{ x,+\} , \{ x, - \} , \{ x\} , and all supersets of \{ x, y\} .

Now it is shown that the SAT instance is satisfiable iff the Muller game is a win for
Anke playing in a memoryless way.

Suppose the instance is satisfiable. Then fix a satisfying assignment f(xj) for
the variables, and let g(yi) = j such that xj (or \neg xj) makes the clause yi true. Now
Anke has the following winning strategy: At node vi, move to wi,g(yi). At node wi,j ,
if g(yi) = j, then move to uj , else move to vi. Intuitively, at nodes vi, Anke directs
the play to the node ug(yi) (via wi,g(yi)). Similarly, for the nodes wi,j , Anke directs
the play to ug(yi) either directly or via nodes vi and wi,g(yi).

Thus, clearly, if an infinite play goes through color y infinitely often, then it also
goes through color x infinitely often; thus Anke wins. On the other hand, if an infinite
play does not go through color y infinitely often, then the set of nodes the play goes
through infinitely often is, for some fixed j, uj and some of the nodes of the form wi,j .
But then, by the definition of Anke's strategy, the play can only go through nodes of
color  - finitely often (if f(xj) is true) and through nodes of color + finitely often (if
f(xj) is false). Thus, Anke wins the play.

Now suppose Anke has a winning strategy. If there is an i such that Anke moves
from wi,j to uj , then do the following: If xj appears positively in the clause, then let
f(xj) be true, else let f(xj) be false. If there is no i such that Anke moves from wi,j

to uj , then the truth value of f(xj) does not matter (and can be assigned either true
of false).

To see that the above defines a satisfying assignment, first note that for each
clause yi, there exists a wi,j such that Anke moves from wi,j to uj . Otherwise, Boris
can first move from the start node to uj and then to wi,j such that xj appears in
clause yi; afterwards the play will go infinitely often only through a subset of the
nodes of the form vi, wi,j , and thus the colors which appear infinitely often in the
above play are a subset of \{ y,+, - \} .

Furthermore, for no j and two nodes wi,j and wi\prime ,j such that xj appears in yi and
\neg xj appears in yi\prime , does Anke move from wi,j and wi\prime ,j to node uj . Otherwise, Boris
could win by first moving from s to uj and then alternately going to nodes wi,j and
wi\prime ,j . It follows that f gives a satisfying assignment for the given SAT instance.

5. Multidimensional parity games. Point [67] considered a generalization of
parity games where each node has a vector of k values and each value is a number
from 1 to m. To evaluate a play, one determines for each coordinate of the vector the
largest infinitely often occurring value in the play and calls the so obtained vector of k
values the limit superior of the sequence of the play. The same idea has recently also
been applied to mean payoff games, Rabin and Streett games, as well as combinations
of these games with parity games [10, 16, 17, 19, 20, 77]. The winner of a play is
determined as follows: If all values of the limit superior vector are odd, then Anke
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wins the play, else Boris wins the play. The approach in which the first player Anke
has a conjunction and the second player Boris a disjunction of the player's winning
conditions in each dimension is quite common in the field [16, 19, 20, 77]. In this
section, it is assumed that n \geq 2, m \geq 2, and k \geq 2.

Rabin games and Streett games are games where the winner of a play is deter-
mined by a list of pairs of sets of nodes (V1,W1), (V2,W2), (V3,W3), . . . , (Vm,Wm).
Now, in the Rabin case, Anke wins a play iff there is an i such that the set of in-
finitely often visited nodes U intersects Vi and is disjoint to Wi; in the Streett case,
Anke wins a play iff all i satisfy that U intersects Wi or U is disjoint to Vi.

Proposition 28 (Chatterjee, Henzinger, and Piterman [17]). One can trans-
late k-dimensional parity games with values from \{ 1, 2, 3, . . . ,m\} in each dimension
into Streett games with k \cdot \lceil (m  - 1)/2\rceil pairs and Streett games with k pairs into
k-dimensional parity games with values from \{ 1, 2, 3\} .

Proof. Both directions do not change the graph of the game; they only replace
the value vectors by conditions in the Streett pair, and vice versa. Recall that each
Streett pair is a pair (V,W ) of two subsets of the set of nodes, and a winning play
for Anke satisfies the pair if whenever a node in V is infinitely often visited, then also
some node in W is infinitely often visited.

For the direction from k-dimensional parity games to Streett games, one generates
for every even value i \in \{ 1, 2, 3, . . . ,m\} and every dimension j \in \{ 1, 2, 3, . . . , k\} a pair
(V,W ), where V consists of all nodes where the jth component of the value vector is
i, and W consists of all nodes where the jth component of the value vector is strictly
larger than i. Now the limit superior of the values in each dimension of the given play
is odd iff the play of the game satisfies all these Streett pairs.

For the direction from a game with k Streett pairs to the k-dimensional parity
game, one assigns to the hth Streett pair (V,W ) the hth dimension where every node
outside V \cup W has the hth value 1, every node in V  - W has the hth value 2, and
every node in W has the hth value 3.

The following corollary is due to previously known results on Streett games like
the coNP-completeness by Emerson and Jutla [31]; note that Chatterjee, Henzinger,
and Piterman [17] showed that the coNP-hardness part can even be achieved when
only considering two-dimensional parity games.

Corollary 29. If Boris has a winning strategy for a multidimensional parity
game, then he has a memoryless winning strategy. Furthermore, the problem of
whether Anke can win a multidimensional parity game is coNP-complete.

The following result provides an algorithm with runtime O((2k\cdot log(k)\cdot m \cdot n)5.45) for
multidimensional parity games which translates into a bound of (23\cdot k\cdot log(k) \cdot n)5 for
solving Streett games and Rabin games with n nodes and k conditions, where k \geq 4.
For a comparison, a direct solution without translating into other games by Piterman
and Pnueli [66] has a runtime O(nk+1 \cdot k!).

Theorem 30. The winner of a multidimensional parity game with k values from
\{ 1, 2, 3, . . . ,m\} per node and n nodes can be determined in time O((2k\cdot log(k)\cdot m \cdot n)5.45).
If k \geq 4, then the formula can be improved to O((2k\cdot log(k)\cdot m \cdot n)5).

Proof. The algorithm is based on ideas of Point [67] and also later by Chatterjee,
Henzinger, and Piterman [17], who observed that the algorithm of Bj\"orklund, Sand-
berg, and Vorobyov [5] for translating Muller games into parity games can be adjusted
to translate multidimensional parity games into normal parity games. The idea is to
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use colors cm\prime ,k\prime with m\prime \in \{ 2, 3, 4, . . . ,m\} and k\prime \in \{ 1, 2, 3, . . . , k\} . Now, a node has
a color cm\prime ,k\prime iff its value vector ( \~m1, \~m2, \~m3, . . . , \~mk) satisfies that m\prime \leq \~mk\prime (note
that a node may have multiple colors). Note that it is not needed to use c1,k\prime as
always 1 \leq \~mk\prime , and therefore the color c1,k\prime would not carry any information. Now
one tweaks the translation of the last appearance records in Theorem 23. Recall from
the proof of Theorem 23 that the translation was realized by mapping each node v
to a collection of nodes (v, r), where r is the record of colors in the order of their last
appearance in prior visited nodes; those never visited can be in any order at the end
of r. As every node which contains a color cm\prime ,k\prime also contains all colors cm\prime \prime ,k\prime with
m\prime \prime < m\prime , one can assume the tiebreaker rule that whenever m\prime \prime < m\prime , then the color
cm\prime \prime ,k\prime comes in the record r before the color cm\prime ,k\prime . This permits one to consider and
update only vectors where, for each fixed coordinate k\prime , the colors are in their natural
order. Thus one can describe the last appearance records by giving a k \cdot m-vector
which gives, for each entry of a color cm\prime ,k\prime , only the value k\prime , as m\prime is just equal to
the number of k\prime in this record up to the position of the current entry. As a result,
the overall number of last appearance records per node can be bounded by kk\cdot (m - 1),
and thus a k-dimensional parity game with each coordinate having a range from 1 to
m and with n nodes can be translated into a parity game with 2log(k)\cdot k\cdot (m - 1) \cdot n nodes
and 2 \cdot k \cdot (m - 1) values.

One computes as before from v and r the set U of current colors and then assigns
to the node (v, r) in the parity game the value as follows: If U is winning for Anke,
then the value is 2| U | +1, else it is 2| U | +2, where one defines that Anke has the odd
and Boris the even numbers. Note that | U | \leq 2 \cdot k \cdot (m - 1) and the number of values
is bounded by 2 \cdot k \cdot (m - 1) + 2 \leq 2 \cdot k \cdot m. In the resulting parity game the number
of values divided by the logarithm of the number of nodes is at most 2.

Thus the parity game can be solved in O((2log(k)\cdot k\cdot m \cdot n)5.45) time, and the time
for computing the translation is also bounded by this term; see the formulas after
Corollary 19. So the same bound applies for the overall running time, as summarized
in the theorem, which makes use of the observation of Point [67]. Furthermore, if
k \geq 4, then

log(2log(k)\cdot k\cdot m \cdot n) \geq 2 \cdot k \cdot m,

as log(k) \geq 2, and one can therefore apply the better bound O((2log(k)\cdot k\cdot m \cdot n)5) on
the runtime.

Now it is shown that the result is optimal in the following sense: There is no sub-
linear function f such that the runtime of an algorithm solving the multidimensional
parity game with the parameters m, k, n as above is 2f(k\cdot log(k)\cdot m) \cdot Poly(n), unless the
Exponential Time Hypothesis fails. To see this, one either fixes m to a constant which
is at least 3 or fixes k to a constant which is at least 2, but one does not fix both
variables. Then one obtains either a runtime bound 2o(k\cdot log(k)) or 2o(m), respectively.
It will be shown in the following that both cannot happen unless the Exponential
Time Hypothesis fails.

Both results are based on reducing the dominating set problem into the respective
decision problem. Here a dominating set of a graph is a set of nodes such that from
every node in the graph there is an edge to one of the nodes in the dominating set; for
this property one deviates from the usual convention of the nonexistence of self-edges
and assumes that every node has an edge to itself.

Theorem 31. Assume that one can solve k-dimensional parity games with values
from \{ 1, 2, 3\} and n\prime nodes in time 2o(k\cdot log(k)) \cdot Poly(n\prime ). Then there is an algorithm
which solves the dominating set problem for graphs with n nodes and a target size of
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m for the dominating set in time no(m), and thus the Exponential Time Hypothesis
fails.

Proof. Assume that one can solve the k-dimensional parity game problem as in
the hypothesis. Suppose a graph H with n nodes \{ 1, 2, 3, . . . , n\} and a target size
m of the dominating set are given. Now one chooses k to be the least even integer
satisfying k \geq 2 and

m \cdot \lceil log(n)\rceil \leq k/2 \cdot \lfloor log(k/2)\rfloor .

Note that the dominating set can be described by listing the m nodes using \lceil log(n)\rceil 
bits each. Now one reinterprets these bits as k/2 numbers of log(k/2) bits each for the
above chosen k. The idea is to represent them\cdot \lceil log(n)\rceil bits to describe the dominating
set by a sequence of k/2 numbers a1, a2, a3, . . . , ak/2 from \{ 1, 2, 3, . . . , k\} with the
additional requirement that ai is among the first k/2 members of \{ 1, 2, 3, . . . , k\}  - 
\{ aj : j < i\} for all i. This requirement is assumed on ai's throughout the proof,
without explicitly stating so.

Boris has in mind a dominating set, and Anke tries to check Boris's answers in
order to make sure that the set in mind is correct. For this, one needs to check whether
the m\cdot \lceil log(n)\rceil bits representing the dominating set are consistent with k/2\lfloor log(k/2)\rfloor 
bits of ai's. To check this, the statement ``choice (j, r) is consistent with (w, \~m)"" means
the following condition: the binary representations d1d2d3 . . . d\lfloor log(k/2)\rfloor of (r  - 1)
and w1w2w3 . . . w\lceil log(n)\rceil of w satisfy that for all i, h with 1 \leq i \leq log(k/2) and
1 \leq h \leq \lceil log(n)\rceil , if (j  - 1) \cdot \lfloor log(k/2)\rfloor + i = ( \~m - 1) \cdot \lceil log(n)\rceil + h, then di = wh.

The game graph will be given below. The game goes infinitely often through the
following rounds where in each round the game goes through steps 1 and 2 and then
a finite number of repetitions of steps 3 and 4, where the number of repetitions is
bounded by k/2, followed by step 5, which takes the game back to step 1.

The following descriptions of a round also give the nodes which are in the game,
along with edges, values of the nodes, and the players to move. All the nodes, except
the nodes of the form (0, b, B) described in step 5, have value vector (1, 1, 1, . . . , 1).
Below B is always a subset of \{ 1, 2, 3, . . . , k\} , a1, a2, a3, . . . , ak/2 \in \{ 1, 2, 3, . . . , k\} , and
v, w are vertices of H. Intuitively, B gives the choices a1, a2, . . . , used by Boris, to
describe the dominating set as mentioned above; here the ordering of members of B
is based on the order they entered set B in the play.

1. In each round, the game starts in a node called (0). There are edges from
node (0) to nodes (v) for each vertex v in H.
Thus, at node (0) Anke chooses a node v of the graph, for which it is asking
Boris to give a neighbor from the dominating set, and moves to node (v).

2. The nodes (v), for vertices v inH, have edges to nodes of the form ( \~m,w, ai, B),
where i = 1, B = \emptyset , w is a neighbor of v in H, 1 \leq \~m \leq m, and the
choice (1, a1) is consistent with (w, \~m) (note that a1 is the a1th member of
\{ 1, 2, 3, . . . , k\} ). Boris moves in the nodes (v) for v being a vertex in H.
Intuitively, the intention of Boris moving from (v) to ( \~m,w, ai, B), with i = 1,
B = \emptyset , and w being a neighbor of v, is that w is the \~mth vertex in the
dominating set chosen by Boris.

3. For \~m \in \{ 1, 2, 3, . . . ,m\} , w a vertex of H, ai \in \{ 1, 2, 3, . . . , k\}  - B, and
the cardinality of B being less than k/2, there exists a node ( \~m,w, ai, B).
The node ( \~m,w, ai, B) with ai /\in B has edges to ( \~m,w, ai, B \cup \{ ai\} ) and to
(0, b, B \cup \{ ai\} ), where b \in \{ 1, 2, 3, . . . , k\}  - (B \cup \{ ai\} ).
Anke moves in nodes of the form ( \~m,w, ai, B), with ai /\in B.
Intuitively, Anke can move from ( \~m,w, ai, B), where ai /\in B, either to ( \~m,w,
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ai, B \cup \{ ai\} ) and indicate that Boris should reveal more information (only
possible when | B \cup \{ ai\} | < k/2) or move to a node (0, b, B \cup \{ ai\} ) where
b \in \{ 1, 2, 3, . . . , k\}  - \{ ai\}  - B, which indicates visiting a node with certain
value; see item 5 below.

4. For \~m \in \{ 1, 2, 3, . . . ,m\} , w a vertex of H, ai - 1 \in B, and the cardinality of
B being less than k/2, there is a node ( \~m,w, ai - 1, B), and this has edges to
nodes of the form ( \~m,w, ai, B), where ai /\in B and the choice (i, r) is consistent
with (w, \~m), where ai is the rth member of \{ 1, 2, 3, . . . , k\}  - B. Boris moves
in nodes of the form ( \~m,w, ai - 1, B) with ai - 1 \in B.
Intuitively, Boris has to select ai and move to ( \~m,w, ai, B) where ai /\in B; at
that node it is then Anke's turn to move as described in step 3.

5. There are nodes of the form (0, b, B) with B \subset \{ 1, 2, 3, . . . , k\} and b \in 
\{ 1, 2, 3, . . . , k\}  - B. There is exactly one edge from such a node, and it
goes to (0). Boris moves in the nodes of the form (0, b, B).
The nodes (0, b, B) are the only nodes with a value vector different from
(1, 1, 1, . . . , 1). Here the value vector (m1,m2,m3, . . . ,mk) of a node (0, b, B)
is defined by the equation

mh =

\left\{     
1 if h /\in B \cup \{ b\} ,
2 if h = b,

3 if h \in B.

Intuitively, Boris moves from this node to (0), and the next round of the game
starts in step 1.

In the case that there is a dominating set of size m, Boris can always choose in the
game nodes (. . . , B) such that the sets B of the form \{ aj : j < i\} occurring there
are ordered under inclusion, and these sets can be computed from a fixed sequence
a1, a2, a3, . . . , ak/2 derived from a binary representation describing the dominating
set. In a play, whenever it is Boris's turn to move, the sets B in the last component
of the names of the nodes would be derived using a1, a2, . . . , ak/2 as above. Thus,
in any particular play there is a largest set B such that nodes of the form (\cdot , \cdot , \cdot , B)
are visited infinitely often in the play, and all other sets B\prime , with node (\cdot , \cdot , \cdot , B\prime )
occurring in the play, satisfy B\prime \subseteq B. Thus for this largest set B, player Anke has
to choose b, when going to node (0, b, B), to be nonmember of B, and so the vectors
(m1,m2,m3, . . . ,mk) when moving to (0, b, B) will have that mb = 2 and mh = 3 for
all h \in B; furthermore, mb will never be 3. It follows that Anke cannot satisfy the
condition that the limit superior of each mh over the play is odd, and thus Boris is
winning the game.

In the case that there is no dominating set of size m, Boris cannot achieve that
all the sets B occurring in nodes of the form (. . . , B) are comparable. To see this,
one can assume without loss of generality that the strategy of Boris is fixed, that
Anke knows the strategy, and that she exploits its weakness. Now, as there is no
dominating set of size m, Boris has selected two different nodes w, \~w at the same
position \~m when Anke asks for the node in the dominating set that are neighbors of
suitable nodes v and \~v. As w, \~w get coded into different witnesses (a1, a2, a3, . . . , ak/2)
and (\~a1, \~a2, \~a3, . . . , \~ak/2), there is a first i where ai \not = \~ai. Thus Anke can go alternately
from (0) to (v) and (\~v) and then run through the cycles of building up the witnesses
until she reaches the nodes ( \~m,w, ai, B) and ( \~m, \~w, \~ai, B), respectively, where B =
\{ aj : j < i\} = \{ \~aj : j < i\} . From these nodes, Anke goes to (0, \~ai, B \cup \{ ai\} ) and
(0, ai, B \cup \{ \~ai\} ), respectively, and the game returns from them to (0). Thus the limit
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superior (m1,m2,m3, . . . ,mk) of the value vectors of the play will satisfy that mh = 3
for all h \in B \cup \{ ai, \~ai\} and mh = 1 for all h /\in B \cup \{ ai, \~ai\} . So the mh are odd for all
h \in \{ 1, 2, 3, . . . , k\} , and Anke wins the game.

In summary, Boris can win the so constructed multidimensional parity game iff
the given graph has a dominating set of size m.

One can bound the number n\prime of nodes in this game by the formula 1 + n +
m\cdot n\cdot k\cdot 2k+k\cdot 2k \leq 4n2k2k, asm \leq n. Thus, 2o(k log(k))poly(n\prime ) is in 2o(k log(k))poly(n),
which in turn is in 2o(m log(n))poly(n) and thus in no(m). Thus, if there is an algorithm
which solves k-dimensional parity games with n\prime nodes in time 2o(k\cdot log(k)) \cdot Poly(n\prime ),
then one can solve the dominating set problem in time no(m).

Now one can use the following result of Chen et al. [21, Theorem 5.8]: If one can
solve the problem of determining whether a graph of n nodes has a dominating set of
size m in time no(m), then the Exponential Time Hypothesis fails. This connection
then translates into the following bound: If k-dimensional parity games with n\prime nodes
and values from \{ 1, 2, 3\} can, uniformly in n\prime , k, be decided in time 2o(k\cdot log(k))\cdot Poly(n\prime ),
then the Exponential Time Hypothesis fails.

The next result is again a translation of the dominating set problem. One needs
dimension two, and the main technique is to compare the bits in the witnesses for a
dominating set. Note that dimension one is equivalent to the normal parity games;
thus requiring dimension two is unavoidable.

Theorem 32. Given a graph H with n nodes and a number m with the constraint
that 2 \leq m \leq n, one can compute in time polynomial in n a two-dimensional parity
game with n\prime nodes and m\prime colors such that the following conditions hold:
\bullet m\prime = 2m \cdot \lceil log(n)\rceil + 1;
\bullet n\prime = 1 + (m+ 1) \cdot n+ 2m \cdot \lceil log(n)\rceil ; and
\bullet the given graph H has a dominating set of size up to m iff player Boris has a
winning strategy in the resulting two-dimensional parity game.

Furthermore, the so obtained two-dimensional parity games cannot be solved in time
2o(m

\prime ) \cdot Poly(n\prime ), provided that the Exponential Time Hypothesis holds.

Proof. Consider the nodes of graph H, and let them have as names the first
n strings from \{ 0, 1\} \lceil logn\rceil . Without loss of generality assume n \geq 4. The proof
is similar to the proof of Theorem 31 except that the graph construction and the
checking of consistency of the dominating set are modified to have a constant bound
on the dimension rather than on the number of values. The basic idea of the game is
to go through following rounds:
1. Anke selects a vertex v in the graph H.
2. Boris selects a neighboring vertex w of v in the graph H and a number \~m to

indicate that w is the \~mth member of the dominating set.
3. Anke selects a bit position o \in \{ 1, 2, 3, . . . , \lceil log n\rceil \} ; if the oth bit of the name of

w is 1, then Anke moves in the game to a node with value (2( \~m - 1) \cdot \lceil log(n)\rceil +
2o+1, 2( \~m - 1) \cdot \lceil log(n)\rceil +2o), else Anke moves to a node with value (2( \~m - 1)
\cdot \lceil log(n)\rceil + 2o, 2( \~m - 1) \cdot \lceil log(n)\rceil + 2o+ 1).

4. Boris moves back to the start of the game, where Anke selects a node in graph H.
The values of all nodes except those at step 3 above in the game will be ``small."" In
the case that there is a dominating set of size m, Boris can play a memoryless winning
strategy for the game by always selecting the right node in the second step; this will
ensure that the limit superior of the values in the two dimensions are of different
parity. In the case in which there is no dominating set, when playing memoryless,
Boris has to be inconsistent and choose, for two different vertices v, v\prime chosen by Anke
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in step 1 above, two different vertices w,w\prime at the same position \~m of the candidate
for the dominating set. These w,w\prime will differ in some bit position o; thus Anke can
then force the game to go through the nodes with values (2( \~m  - 1) \cdot \lceil log(n)\rceil + 2o,
2( \~m - 1) \cdot \lceil log(n)\rceil +2o+1) and (2( \~m - 1) \cdot \lceil log(n)\rceil +2o+1, 2( \~m - 1) \cdot \lceil log(n)\rceil +2o)
infinitely often to win the game.

Based on the above motivation, the nodes and edges of the game are described
as follows. Note that 0 is not a name of any vertex in H.
1. The node (0, 0) has the value (1, 1). The node (0, 0) is the starting node, and

Anke moves in this node. There is an edge from (0, 0) to (v, 0) for all vertices v
in H.

2. There are nodes (v, 0) for v being a vertex in H. The values of these nodes are
(1, 1). Boris moves in these nodes. For any w such that (v, w) is an edge in H,
there is an edge from (v, 0) to (w, \~m) for \~m with 1 \leq \~m \leq m.
Intuitively, a move from (v, 0) to (w, \~m) denotes that Boris is specifying the
neighbor w of v as being the \~mth element of the dominating set chosen by it.

3. There are nodes (w, \~m) for w, \~m, with w being a vertex in H and 1 \leq \~m \leq m;
the values of these nodes are (1, 1), and Anke moves in these nodes.
For each o \in \{ 1, 2, 3, . . . , \lceil log n\rceil \} , there is an edge from (w, \~m) to node (0, 2( \~m - 
1) \cdot \lceil log(n)\rceil + 2o  - b), where b is the oth bit of w, that is, b = bo where w =
b1b2b3 . . . b\lceil logn\rceil .
Intuitively, Anke chooses o to ask Boris to prove that the oth bit of the \~mth
vertex in the dominating set is always consistent.

4. There are nodes (0, h) for all h \in \{ 1, 2, 3, . . . , 2m\lceil log n\rceil \} . The value of the node
(0, h) is (h, h + 1) when h is even, and its value is (h + 2, h + 1) when h is odd.
Boris moves in these nodes. There is an edge from (0, h) to (0, 0).

In the case in which there is a dominating set \{ w1, w2, w3, . . . , wm\} , Boris moves in
step 2 above always from a node (v, 0) to a node (w \~m, \~m) such that there is an edge
in H from v to w \~m. This is a winning strategy, as then for all positions o in a w \~m,
as chosen by Anke in step 3 above, the bit b is always the same, and thus the limit
superior of the values attained in a play is of the form (2( \~m  - 1) \cdot \lceil log(n)\rceil + 2o +
b, 2( \~m - 1) \cdot \lceil log(n)\rceil + 2o+ 1 - b) for some \~m and o, with b being the oth bit of w \~m.

If there is no dominating set of size m and Boris plays a memoryless winning
strategy, then he will on two nodes (0, v) and (0, v\prime ) move to two different nodes (w, \~m)
and (w\prime , \~m), as otherwise Boris would have a consistent dominating set contradicting
the assumption. Now there is a position o such that the bits b and b\prime of w and w\prime at
this position differ. Without loss of generality assume b = 0 and b\prime = 1. Therefore
Anke can move to nodes with value (2( \~m - 1) \cdot \lceil log(n)\rceil +2o+ b, 2( \~m - 1) \cdot \lceil log(n)\rceil +
2o+ 1 - b) and (2( \~m - 1) \cdot \lceil log(n)\rceil + 2o+ b\prime , 2( \~m - 1) \cdot \lceil log(n)\rceil + 2o+ 1 - b\prime ) which
are of the form (h, h + 1) and (h + 1, h) for some even h. That is, by alternately
moving to the nodes (0, v) and (0, v\prime ) when in node (0, 0), and moving to the node
(0, 2( \~m - 1) \cdot \lceil log n\rceil +2o - b) when in node (w, \~m), where b is the oth bit of w, Anke
will achieve that the limit superior of a play is (h + 1, h + 1) for some even h, and
therefore the game is won by Anke. It follows that Boris's memoryless strategy is
not a winning strategy, and therefore he does not have a winning strategy at all. In
summary, Boris wins the two-dimensional parity game iff there is a dominating set of
size m in H.

The number n\prime of nodes is the sum of 1 (for node (0, 0)) and n (for nodes (v, 0),
with v being a vertex in H) and n \cdot m (for nodes (w, \~m), with w being a vertex in H
and \~m \in \{ 1, 2, 3, . . . ,m\} ) and 2m \cdot \lceil log(n)\rceil (for nodes (0, h)). The number m\prime is just
2m \cdot \lceil log(n)\rceil + 1, as h is bounded by 2m\lceil log n\rceil .
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Now assume that there would be an algorithm for this problem which runs in time
2o(m

\prime ) \cdot Poly(n\prime ). Let f(m\prime ) be a function in o(m\prime ) such that the runtime is in 2f(m
\prime ) \cdot 

Poly(n\prime ). Now, one can replace f(m\prime ) by g(m\prime ) \cdot m\prime , where g(m\prime ) = sup\{ f(m\prime \prime )/m\prime \prime :
m\prime \prime \geq m\prime \} , noting that g is monotonically nonincreasing. As g is monotonically
nonincreasing, one can also obtain that

2f(2m\cdot \lceil log(n)\rceil +1) \leq 2g(2m)\cdot (2m\cdot \lceil log(n)\rceil +1) = no(m).

As n\prime \leq n2 \cdot \lceil log(n)\rceil , one can conclude that the runtime for finding a solution to
the existence of a dominating set is no(m) \cdot Poly(n), which is no(m). However, Chen
et al. [21, Theorem 5.8] showed that under these hypotheses, the Exponential Time
Hypothesis fails. This completes the proof.

Recall that the question of whether a problem is in FPT depends on which param-
eters are considered constants and which are running parameters. The dependence of
the algorithm runtime on the constant parameters can be arbitrary, but that on the
running parameters has to be a polynomial of fixed degree which is independent of
the constant parameters. Theorem 30 shows that if one fixes both parameters m and
k as constants, then multidimensional parity games are in FPT. Theorems 31 and 32
show that, unless the Exponential Time Hypothesis is wrong, multidimensional parity
games are not fixed parameter tractable in the case that only one of the parameters
m and k is fixed as a constant. Bruy\`ere, Hautem, and Raskin [10] investigate the
fixed parameter tractability of generalizations of multidimensional parity games and
related games in detail.

There is some connection between parity games and mean payoff games; for the
latter, Velner et al. [77] studied the computational complexity of the multidimensional
analogue of mean payoff games and discovered that one has to distinguish the cases
of evaluation by limit superior and evaluation by limit inferior in the multidimen-
sional game. For the case of evaluation by limit superior, they are in NP \cap coNP;
for the case of evaluation by limit inferior, they are coNP-complete. In light of the
above result, multidimensional parity games are more related to the evaluation of
limit inferior.

6. Conclusion. The progress reported in this paper shows that solving parity
games is not as difficult as it was widely believed. Indeed, parity games can be solved
in quasi-polynomial time---the previous bounds were roughly nO(

\surd 
n)---and they are

fixed parameter tractable with respect to the number m of values (a.k.a. colors or
priorities)---the previously known algorithms were roughly O(nm/3). These results
are in agreement with earlier results stating that parity games can be solved in UP
\cap coUP [52] and that there are subexponential algorithms to solve the problem [55].

In spite of current progress, the original question, asked by Emerson and Jutla
[32] in 1991 and others, of whether parity games can be decided in polynomial time
still remains an important open question.

The above results on parity games are then used to give an algorithm of runtime
O((mm \cdot n)5) for colored Muller games with n nodes and m colors; this upper bound
is almost optimal, since an algorithm with runtime O((2m \cdot n)c), for some constant c,
only exists in the case that the Exponential Time Hypothesis fails.

One might ask whether the results obtained for parity games permit further trans-
fers to Muller games, for example, in special cases where (a) player Anke can employ
a memoryless winning strategy due to the special type of game, or (b) one does not
permit player Anke to use strategies other than memoryless ones. Note that case (b)
differs from case (a), as in case (b) the condition on using memoryless strategies can
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be restrictive, while case (a) applies to Muller games where one knows that ``if Anke
has a winning strategy, then she has a memoryless winning strategy."" Case (a) was
analyzed by Emerson [30], McNaughton [61], and Zielonka [80]; it applies to Muller
games where the winning condition of player Boris is closed under union [30, 80].

The above-mentioned lower bound directly also applies to case (a). For case (b),
the complexity class of the general problem is also in the polynomial hierarchy but
not PSPACE-complete (unless PSPACE = \Sigma P

2 ) as the decision problem for col-
ored Muller games; however, the algorithmic bounds are much worse, as one can code
NP-hard problems into instances with four colors.

Another variant of parity games is to consider vectors of values where in the de-
fault case player Anke wins if the limit superior of all of each of these values is odd
and player Boris wins if the limit superior of at least one of the values is even. For this
type of game, the k-dimensional parity game with values from 1 to m and n nodes can
be decided in time O((2k\cdot log(k)\cdot m \cdot n)5.45) and slight improvements of the exponent 5.45
might be possible. However, much better algorithms, even for the special case where
either k or m is constant, would imply that the Exponential Time Hypothesis fails,
which seems unlikely. More precisely, under the assumption that the Exponential
Time Hypothesis is true, there are no algorithms which solve k-dimensional parity
games with m values and n nodes in time 2f(k\cdot log(k)\cdot m) \cdot Poly(n) for any sublinear
function f ; this even holds when either m is fixed to be a constant at least 3 or k is
fixed to be a constant which is at least 2, but not both are fixed. This shows that the
multidimensional parity games are very similar to colored Muller games with respect
to the runtime behavior of algorithms to solve them.
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