
JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.1 (1-14)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Searching for shortest and least programs ✩

Cristian S. Calude a,∗, Sanjay Jain b, Wolfgang Merkle c, Frank Stephan b,d

a Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
b Department of Computer Science, National University of Singapore, 13 Computing Drive, COM1, Singapore 117417, Republic of Singapore
c Institut für Informatik, Universität Heidelberg, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
d Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, S17, Singapore 119076, Republic of Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2018
Received in revised form 15 August 2019
Accepted 10 October 2019
Available online xxxx

Keywords:
Kolmogorov complexity
Universal Turing machine
Recursive coding function
Shortest program
Least program
Bennett shallow set
Recursion theory
Algorithmic Information Theory

The Kolmogorov complexity of a string x is defined as the length of a shortest program p
of x for some appropriate universal machine U , that is, U (p) = x and p is a shortest string
with this property. Neither the plain nor the prefix-free version of Kolmogorov complexity
are recursive but for both versions it is well-known that there are recursive exact Solovay
functions, that is, recursive upper bounds for Kolmogorov complexity that are infinitely
often tight. Let a coding function for a machine M be a function f such that f (x) is always
a program of x for M . From the existence of exact Solovay functions it follows easily that
for every universal machine there is a recursive coding function that maps infinitely many
strings to a shortest program. Extending a recent line of research, in what follows it is
investigated in which situations there is a coding function for some universal machine that
maps infinitely many strings to the length-lexicographically least program. The main results
which hold in the plain as well as in the prefix-free setting are the following. For every
universal machine there is a recursive coding function that maps infinitely many strings
to their least programs. There is a partial recursive coding function (defined in the natural
way) for some universal machine that for every set maps infinitely many prefixes of the
set to their least programs. Exactly for every set that is Bennett shallow (not deep), there
is a recursive coding function for some universal machine that maps all prefixes of the set
to their least programs. Differences between the plain and the prefix-free frameworks are
obtained by considering effective sequences I1, I2, . . . of mutually disjoint finite sets and
asking for a recursive coding function for some universal machine that maps at least one
string in each set In to its least code. Such coding functions do not exist in the prefix-free
setting but exist in the plain setting in case the sets In are not too small.

© 2019 Elsevier B.V. All rights reserved.

✩ S. Jain was supported in part by NUS grant C252-000-087-001; furthermore, S. Jain and F. Stephan have been supported in part by the Ministry of
Education - Singapore, Academic Research Fund Tier 2 grant MOE2016-T2-1-019/R146-000-234-112. Part of the work was done while F. Stephan was on
Sabbatical Leave to Auckland and, later, when C. S. Calude was on Sabbatical Leave to Singapore. Furthermore, W. Merkle worked on this while he was
visiting the National University of Singapore on invitation for the IMS Programme “Aspects of Computation” in August/September 2017.

* Corresponding author.
E-mail addresses: cristian@cs.auckland.ac.nz (C.S. Calude), sanjay@comp.nus.edu.sg (S. Jain), merkle@math.uni-heidelberg.de (W. Merkle),

fstephan@comp.nus.edu.sg (F. Stephan).
URL: http://www.math.uni-heidelberg.de/logic/merkle/merkle.html (W. Merkle).
https://doi.org/10.1016/j.tcs.2019.10.011
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.10.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:cristian@cs.auckland.ac.nz
mailto:sanjay@comp.nus.edu.sg
mailto:merkle@math.uni-heidelberg.de
mailto:fstephan@comp.nus.edu.sg
http://www.math.uni-heidelberg.de/logic/merkle/merkle.html
https://doi.org/10.1016/j.tcs.2019.10.011

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.2 (1-14)

2 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
1. Introduction

Algorithmic Information Theory investigates among other topics the notion of an universal machine and the degree to
which extent it can be inverted. It is well-known that neither the plain variant C nor the prefix-free variant H of description
complexity can be effectively computed; indeed, it is even impossible that there is a partial recursive function with an
infinite domain such that whenever this function is defined it coincides with the description complexity of the input [9,15,
24,30]. Closely related to determining the description complexity of a string is the question of whether and how one may
find a shortest program for a given string, that is, a program for the string that witnesses its description complexity. The
set of shortest programs has been studied in recursion theory for quite a long time [8,12,20,26,35,37,38]. In a recent line of
research the focus has been shifted to obtaining lists of programs that comprise the length-lexicographically least program,
or least program, for short, of a given string with respect to a given universal machine U . For enumerating a list containing
the least program of x, a list of size O (|x|) is sufficient [7]; for each constant c ∈ {1, 2, . . .} there is a universal machine
where the list size is bounded by |x|/c + 1. Recently it was shown that if one allows slightly larger lists of size polynomial
in the length |x| of x, instead of just enumerating one can actually compute a list of candidates which includes a program
of x that has shortest length up to an additive constant [4–6,39–43]. However it depends on the universal machine whether
it is possible to include the least program in such a list [4].

This paper studies a weaker approach: The aim is to provide a program for input x such that for infinitely many x the
program is actually a shortest or the least program of x. The exact constraints vary for different theorems; for example,
the programs may be provided via recursive function(s); we investigate when such constraints can be satisfied and when
they cannot. While in some areas of Algorithmic Information Theory the choice of the universal machine does not mat-
ter, as for example, in studies of the growth behaviour of initial segment complexities of sets [24,25], other results are
machine-dependent [4,10,13,18]. In the present work several results depend heavily on the choice of the universal machine,
as one aims for least programs and not just for shortest programs or even for programs which are shortest up to an additive
constant. Furthermore, some notable differences between plain complexity C and prefix-free complexity H are proved, in
particular when dealing with the question whether one can obtain least programs for at least one string in an effectively
given sequence of finite sets of strings.

2. Notation

In this section we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .} we denote the set of natural
numbers; its elements will be usually denoted by letters i, j, k, l, m, n. A string is a word over the binary alphabet {0, 1},
the set of all strings is denoted by {0, 1}∗ and the empty string is denoted by ε. The letters x, y, z stand for strings and |x|
denotes the length of the string x; if a letter denotes a program, that is, an input to a machine, it may also be denoted by
p or q.

As usual, natural numbers are identified with strings via the order-preserving one-one and onto map from N equipped
with the usual strict order to {0, 1}∗ equipped with the length-lexicographical order. Unless explicitly specified otherwise, a
set is either a set of natural numbers or, equivalently, a set of strings. Furthermore, a set A is identified with its characteristic
sequence A(0)A(1) . . . where A(n) = 1 if n ∈ A else A(n) = 0. Let x � y denote that x is a prefix of the string y and for a
set A, let x � A denote that x = A(0)A(1) . . . A(|x| − 1). A set of strings is prefix-free in case for every string y in the set,
the set does not contain any string x � y different from y.

The term machine refers to a Turing machine that computes a partial mapping from strings to strings. Machines are
denoted by letters U , V and W . The domain of a machine U , denoted by dom(U), is the set of programs on which U halts.
A machine U is prefix-free if and only if its domain is a prefix-free set. Occasionally, machines may be attributed as being
plain in order to emphasise that the machine is not necessarily prefix-free.

In the sense of Algorithmic Information Theory, a plain universal machine U is a plain machine such that for every
other machine V there is a constant c, depending only on U and V , such that for every p in the domain of V there is
a q such that U (q) = V (p) and |q| ≤ |p| + c. A plain machine U is universal by adjunction for plain machines if for every
machine V there exists a string q depending only on U and V such that for every program p in the domain of V it holds
that U (qp) = V (p), whereas in case V (p) is undefined then so is U (qp). The notions prefix-free universal and universal by
adjunction for prefix-free machines are defined likewise, with plain replaced by prefix-free.

For a machine V , the value of plain complexity of a string x with respect to V is defined as

CV (x) = min({|p| : V (p) = x}),
where we let the value be infinite in case the minimisation is over the empty set. In case of a prefix-free machine V , we
denote CV by HV and call the latter the prefix-free complexity with respect to V (the notation HV was used in some earlier
papers [7,13,16,25], in the literature also the notation KV is used in place of HV). The plain complexity C(x) of a string x is
just CUplain (x) for some fixed plain universal machine Uplain, and the prefix-free complexity H(x) of x is CUpref (x) for some
fixed prefix-free universal machine Upref.

More details can be found in the textbooks and introductory texts on algorithmic randomness by Calude [9], Chaitin
[14], Downey and Hirschfeldt [15], Kolmogorov [23], Li and Vitányi [24] and Nies [30] as well as in the books on recursion
theory by Odifreddi [31,32], Rogers [34] and Soare [36].

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.3 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 3
3. Solovay functions

We start this section with the definition of Solovay functions [3,15,19,30].

Definition 1. Let g and h be functions from {0, 1}∗ to N . Then g is a Solovay function for h in case g is an infinitely often
tight upper bound for h up to an additive constant c, that is,

∀x (h(x) ≤ g(x) + c) and ∃∞x (g(x) ≤ h(x) + c), (1)

and we say g is exact at x in case g(x) = h(x). In case (1) holds with c = 0, the function g is said to be an exact Solovay
function for h. The function g is a Solovay function if g is a Solovay function for prefix-free complexity. The notion exact
Solovay function as well as the notion Solovay function for plain complexity and its exact variant are defined likewise.

Let M be a machine. Then g is a Solovay function for M in case g is a Solovay function for the function CM , and the
notion of an exact Solovay function is extended to machines in a similar fashion.

Note that in some published literature, a Solovay function has not only to satisfy the above requirements, but has also
to be recursive. Observe that by definition, a function g is a Solovay function if and only if it is a Solovay function for
the prefix-free universal machine used to define prefix-free complexity, and that this equivalence extends to exact Solovay
functions. Furthermore, similar equivalences hold for plain complexity.

The next two remarks review the facts that there are recursive Solovay functions for plain as well as for prefix-free
complexity [15].

Remark 2. The function that maps a string to its length is a Solovay function for plain complexity. This holds because for
some constant c and all n the plain complexity of all strings of length n is at most n + c but is at least n for some of these
strings. The latter holds because there are strictly less than 2n programs of length strictly less than n.

Remark 3. The function g defined by

g(x) =
{

|p|, in case x = 〈p, y, t〉 and Upref(p) = y in exactly t steps,

2|x|, otherwise,

is a recursive Solovay function, where 〈·, ·, ·〉 denotes as usual an effective and effectively invertible tupling function. We
prove first that g is an upper bound for H up to an additive constant. This is obvious for all strings x for which the second
case in the definition of g applies. For all strings x for which the first case applies, the corresponding string p satisfies

H(x) = H(p) ≤ |p| up to an additive constant. (2)

The two relations hold, first, because the strings x and p can be mutually computed from each other and, second, be-
cause p is in the domain of Upref. For the infinitely many such x and p where p is a shortest program for Upref(p), the
less-than-or-equal sign in (2) can be replaced by equality up to an additive constant, consequently g is Solovay function.

By a similar argument, for any superlinear time-bound t , the time-bounded version Ht of prefix-free Kolmogorov com-
plexity is a recursive Solovay function [19].

By the following remark, as far as computational difficulty is concerned, there is not much difference between Solovay
functions and exact Solovay functions. In particular, any function h that has a recursive Solovay function also has a recursive
exact Solovay function.

Remark 4. Let g be a Solovay function for some function h. Then there are natural numbers n0 and integers c0 and c1 such
that the function g̃ defined by

g̃(n) =
{

max{g(n) − c0,0}, in case n ≤ n0,

max{g(n) − c1,0}, otherwise,

is an exact Solovay function for h. For a proof, let the integers c0 and c1 be equal to the minimum and the limit inferior,
respectively, of the differences g(n) − h(n). Finally, choose n0 so large that for all n strictly larger than n0 the corresponding
difference is at least c1.

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.4 (1-14)

4 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
4. Least programs and coding functions

Definition 5. Let x and p be strings. For a given machine M ,

– p is a program of x for M in case M(p) = x;
– p is a shortest program of x for M in case p is a program for x that has minimum length among all programs for x;
– p is the canonical shortest program of x for M in case p is a shortest program of x for M that occurs first among all

shortest programs of x for M in some fixed enumeration of the domain of M;
– p is the least program of x for M in case p is a program for x that is minimum with respect to length-lexicographical

order among all programs for x.

The notions just defined are extended to plain and prefix-free complexity in the natural way. For example, a string p is
a shortest program for a string x with respect to prefix-free complexity H in case p is a shortest program of x for the
universal machine Upref that was used to define H.

Definition 6. Let M be a machine. A partial function f from {0, 1}∗ to {0, 1}∗ is a partial coding function for M in
case M(f (x)) is defined and equal to x for all x where f is defined. A coding function for M is a partial coding function
for M that is total.

A partial coding function f for M maps a string x to its least program in case f (x) is defined and is the least program
of x for M . Related notions such as mapping a string to the shortest program are defined likewise.

In what follows, we will focus on effectively given partial and total coding functions for plain and prefix-free universal
machines.

Convention 7. By definition, a coding function is a coding function with respect to some specific machine, called the machine
associated with f . Whenever we refer to a coding function f without explicitly mentioning the associated machine, the
latter will either be not relevant or understood from the context. For example, we have already introduced the notation
of f mapping a string to the least program, which is meant as an abbreviation for f mapping a string to the least program
for the associated machine.

By the following remark, Solovay functions and coding functions that map infinitely many strings to their least programs
are closely related.

Remark 8. In case f is a coding function for some machine M that maps infinitely many strings to a shortest program, by
definition the function x �→ | f (x)| is an exact Solovay function for M .

Conversely, let g be an exact Solovay function for some machine M , and let p0, p1, . . . be an enumeration of the domain
of M . Then a coding function that maps infinitely many strings to a shortest program is obtained by mapping x to pi
where i is minimum such that M(pi) = x and |pi | ≤ g(x) hold.

In what follows negative results about the existence of coding function will often be stated in terms of Solovay functions.
For example, by Remark 8, in case for a certain machine there is no recursive exact Solovay function, then a fortiori any
recursive coding function for this machine cannot map infinitely many strings to neither shortest nor least programs.

For further use, the next remark introduces universal machines with unique program lengths; such universal machines
were also considered by Figueira, Stephan and Wu [18]. For such machines, every shortest program is already the least
program.

Remark 9. There is a plain as well as a prefix-free universal machine that has unique program lengths in the sense that
for every string x there is at most one program of each length, that is, for all p and p′ in the domain of the considered
universal machine U , it holds that

U (p) = U (p′) = x and |p| = |p′| implies p = p′. (3)

For a proof, let V be either a plain or a prefix-free universal machine and let p0, p1, . . . be an enumeration of its domain.
Transform V into a universal machine U as required of the same type by declaring U undefined on all programs pi where
for some index j < i the strings V (p j) and V (pi) and the lengths of pi and p j are the same.

5. Computing least programs for arbitrary universal machines

In this section it is demonstrated that for all plain or prefix-free universal machines there is a recursive coding function that
maps infinitely many strings to their least program.

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.5 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 5
Theorem 10. Let U be a plain universal machine. Then there is a recursive coding function f for U that maps infinitely many strings
to their least programs.

Given any partial recursive and unbounded function h, it can be arranged that in addition there are infinitely many x with f (x)
being the least program of x for U such that h(x) is defined and | f (x)| ≤ h(x).

Proof. Let V (p) be the first string x found, different from all other V (p′) with p′ length-lexicographically smaller than
p, with |p| ≤ |x| and h(x) ≥ 2 · |p|; as for every length there exist infinitely many such strings x, V (p) is defined for all
p. Furthermore, as U is universal, there is a least constant c such that for infinitely many n, all p ∈ {0, 1}n satisfy that
C(V (p)) ≤ |p| + c; note that c ≥ 0, as otherwise there would be 2|p| strings being generated by 2|p| − 1 programs of U . Now
let n be so large that n ≥ c and there is no length m ≥ n such that, for all p ∈ {0, 1}m , C(V (p)) < m + c. Now one can search
iteratively for values m0, m1, . . . satisfying the following conditions for all k and all p ∈ {0, 1}mk :

– n ≤ mk < mk+1;
– h(V (p)) < mk+1;
– |V (p)| < mk+1;
– C(V (p)) ≤ mk + c.

Note that the last condition together with the definition of V implies that mk ≤ |V (p)| < mk+1 for all p ∈ {0, 1}mk . Note that
for each k one of the p ∈ {0, 1}mk satisfies C(V (p)) = mk + c, by the choice of c. Now let c′ be the largest number such
that, for almost all k, each p ∈ {0, 1}mk satisfies either C(V (p)) < mk + c or there are at least c′ programs q of length mk + c
with U (q) = V (p); note that c′ exists, as for all x, the number of q with U (q) = x ∧ C(x) = |q| is bounded by a constant.
Now there is a k′ such that all k ≥ k′ satisfy this above condition. Let X be the set of all x such that there is a k ≥ k′ and a
p ∈ {0, 1}mk with V (p) = x.

The set X is recursive, as one can search for the k ≥ k′ with mk ≤ |x| < mk+1 and, if it exists, check for all p ∈ {0, 1}mk

whether V (p) = x. For the x ∈ X one can then enumerate the programs q with U (q) = x and |x| ≤ mk + c until (1) c′ pro-
grams q with |q| = mk +c are found or (2) one program q with |q| < mk +c is found. In case (1), f (x) is the lexicographically
least of the c′ programs; in case (2), f (x) = q for the program q found (note that in these cases, | f (x)| ≤ mk +c ≤ 2mk ≤ h(x),
by the definition of V). If x /∈ X , f (x) is the first program q found such that U (q) = x.

The so defined function f is a coding function for U and it satisfies for infinitely many k that there is a p ∈ {0, 1}mk

such that C(V (p)) = mk + c and there are only c′ many programs q with |q| = mk + c ∧ U (q) = V (p). For these strings V (p),
f (V (p)) is the least program. �
Theorem 11. Let U be a prefix-free universal machine. Then there is a recursive coding function f for U that maps infinitely many
strings to their least programs.

Given any partial recursive and unbounded function h, it can be arranged that in addition there are infinitely many x with f (x)
being the least program of x for U such that h(x) is defined and | f (x)| ≤ h(x).

Proof. By arguments as in Remarks 3 and 4, let g be a recursive exact Solovay function g for the given machine U . Let E(x)
be the set of programs of x for U that have length bounded by g(x), that is,

E(x) = {p : U (p) = x and |p| ≤ g(x)}.
Consider the sizes of the sets E(x) for strings x at which g is exact. By the coding theorem [15] there is a constant upper
bound on these sizes, hence the limit inferior of these sizes is a natural number d. Fix n0 such that E(x) has size at least d
for all strings of length at least n0 at which g is exact.

For all x of length strictly less than n0, let f (x) be any program for x, say, the first one in some fixed enumeration
of the domain of U . For all other x, enumerate the set E(x) until at least d arbitrary or at least one member of length
strictly less than g(x) have been enumerated, then let f (x) be equal to the length-lexicographically least string that has
been enumerated so far. This way f is a recursive coding function for U . Furthermore, for the infinitely many x of length at
least n0 at which g is exact and E(x) has size d, the string f (x) is indeed the least program for x.

In order to demonstrate the second assertion, fix some arbitrary partial recursive unbounded function h. Let � be a
recursive and strictly monotonic function on strings such that for all x

h is defined at �(x) and H(�(x)) ≤ h(�(x)). (4)

Such a function can be constructed inductively. In order to define �(x), assume that for all z length-lexicographically strictly
smaller than x the strings �(z) are already defined and have all length strictly less than n. Search for a string z of length at
least n that satisfies condition (4) with �(x) replaced by z. There are infinitely many such strings because the function H has
no partial recursive unbounded lower bound. Furthermore, such a string can be found effectively by simulating computations
of h(z) and approximating H(z) from above in parallel for all z of length at least n. Among all such strings, let �(x) be equal
to the one that is found first.

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.6 (1-14)

6 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
The strictly monotonic function � has a recursive range and can be inverted on its range effectively, hence for all x the
values of H(x) and of H(�(x)) differ only by a constant c. Since the Solovay function g is exact, we have for all x

∀x (H(�(x)) ≤ g(x) + c) and ∃∞x (g(x) ≤ H(�(x)) + c). (5)

By an argument very similar to the one in Remark 4, restricted to strings of the form �(x), we can assume that (5) holds
for c = 0 and all x. Let

E�(x) = {p : U (p) = �(x) and |p| ≤ g(x)}.
There are infinitely many x such that g(x) is equal to H(�(x)) and almost literally as in Theorem 10 we can argue that the
limit inferior of the size of the set E�(x) over all such x is a constant d. Fix n0 such that E� has size at least d for all such x
of length at least n0.

For all y not in the range of � or of length strictly less than n0, let f (y) be any program for y. For all other y, that is,
for y of the form �(x) of length at least n0, enumerate E�(x) until at least d arbitrary strings or at least one string of length
strictly less than g(x) have been enumerated, and then let f (�(x)) be equal to the length-lexicographically least string that
has been enumerated so far. This way f is a recursive coding function for U . Furthermore, for the infinitely many x where

n0 ≤ |x|, H(�(x)) = g(x), and |E�(x)| = d,

the string f (�(x)) is indeed the least program for �(x) and H(�(x)) is at most h(�(x)) by construction of �. �
6. Time-complexity of coding functions

Theorem 12. Let t be a recursive function. There is a plain as well as a prefix-free universal machine U such that

(i) the machine U is universal by adjunction and has unique shortest programs,
(ii) there is a recursive coding function for U that maps infinitely many strings to their least programs,

(iii) for every partial recursive coding function g for U , every machine that computes g will run for at least t(|x|) steps on almost all
inputs x that g maps to their least programs.

Proof. We give the proof for the prefix-free case and omit the proof of the plain case. Both proofs are literally the same
except that the choice of the machine V has to be adapted in the natural way.

By Theorem 11 fix a recursive coding function f for some prefix-free universal machine V such that V is universal by
adjunction and f maps infinitely many strings to their least programs. Let p0, p1, . . . be an enumeration of the domain
of V .

Let X = { f (x) : x ∈ �∗} ∪ {ps : |ps| �= | f (V (ps))| and for all s′ < s, [|ps| �= |p′
s| or V (ps) �= V (ps′)]}.

Note that for each program p, there is exactly one program q of length |p| in X such that V (p) = V (q).
For all s let U (111ps) = V (ps) and for all ps ∈ X , for some as in {0, 1} to be determined later, let U (0 as ps) = V (ps).

On all other inputs, U does not halt. In this way only programs of form 0as ps are the shortest for any x, and the shortest
programs are least programs. This way U inherits from V the property of being universal by adjunction for prefix-free
machines. Furthermore, whenever f (x) = ps is a shortest program of some string x for V , the program 0as ps is a unique
shortest program of x for U . The bit as will be computable from s, hence x �→ 0 as f (x) is a recursive coding function for U
that maps infinitely many strings to their least programs.

Let xs = V (ps) for all s. Let M0, M1, . . . be an enumeration of all Turing machines. The construction proceeds in stages s =
0, 1, . . . and as is determined during stage s. Initially, no index e is diagonalised. Say an index e requires attention at stage s
in case e < s and

Me(xs) outputs 0 b ps for some b in {0,1} in at most t(|xs|) steps.

In case there are indices that require attention and are not yet diagonalised, consider the least such index e, let as = 1 − b
for the corresponding value of b, and declare this index e to be diagonalised. Otherwise, if there is no such index, let as = 0.
By construction, for all s the machine U does not halt on 0 (1 −as) ps . On the other hand, in case an index e is diagonalised
during stage s, the machine Me maps xs to 0 (1 − as) ps , hence the partial function computed by Me is not even a partial
coding function for U .

For a priority construction as above, it follows by a standard argument that every index that requires attention infinitely
often will eventually be diagonalised. In case the latter assertion were false, let index e be its least counterexample, hence
in particular all smaller indices are eventually diagonalised or require attention only at finitely many stages. We obtain the
contradiction that at some stage the least not yet diagonalised index that requires attention is e but e is not diagonalised
during that stage.

Now fix any index e such that Me maps infinitely many x in time at most t(|x|) to some shortest program q of x
for U . By construction of U , for each such x there is a unique s such that q has the form 0 b ps and x is equal to xs ,
hence e requires attention at stage s. Consequently, the index e requires attention infinitely often, and thus will eventually
be diagonalised. �

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.7 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 7
7. Finding least programs for strings in given finite sets

Beyond the question, whether for a given universal machine U there is a recursive or partial recursive coding function that
maps infinitely many strings to least programs for U , we may ask whether it can be arranged that the coding function maps
some or all strings in certain given sets to least programs. More precisely, given a plain or prefix-free universal machine U
and an effective sequence I1, I2, . . . of finite and mutually disjoint sets of binary strings, we ask whether there is a recursive
or partial recursive coding function for U

(i) that maps all strings in infinitely many sets In to their least program;
(ii) that maps some string in each set In to its least program.

For both questions, we require that the sequence I0, I1, . . . is given effectively.

Definition 13. The canonical index of a finite set I of natural numbers is
∑

n∈I 2−n . The finite set with canonical index r is
denoted by Dr . A recursive array is a sequence I0, I1, . . . of mutually disjoint nonempty sets such that In is equal to Dr(n)

for some recursive function r.

By definition, all sets in a recursive array are finite. By the usual identification of natural numbers and binary strings, in
what follows the sets Dr will be viewed as sets of binary strings, that is, the function r �→ Dr becomes a bijection between N
and the finite sets of binary strings.

First we consider the case of mapping all strings in infinitely many sets In to their least program. The answer to Ques-
tion (i) depends on the size of the sets I j . In the special case of sets I1, I2, . . . where each set I j is a singleton that contains
the string that is identified with the natural number j, by Theorems 10 and 11 we obtain the affirmative answers that for
every plain or prefix-free universal machine there is a recursive coding function that maps all strings in infinitely many
sets In to their least program. However, for sets In of a certain minimum size, we obtain the following negative answer.

Proposition 14. Let I0, I1, . . . be a recursive array such that

lim
n→+∞(log |In| − C(n)) = +∞.

Then there is no partial recursive coding function f for a plain universal machine U such that f maps for infinitely many n all strings
in In to their least program. A similar assertion is true in the prefix-free setting, that is, with plain replaced by prefix-free and C replaced
by H.

Proof. We give the proof for the plain case and omit the almost identical considerations for the prefix-free case. Assume
for a proof by contradiction that there were a coding function f and a machine U as in the theorem. Let s be the partial
recursive function defined as follows. In case f (x) is defined for all strings x in In , let s(n) be equal to the string in In with
the length-lexicographical greatest value of f (x), while s(n) is undefined for all other n. If we let kn be equal to �log |In|�,
then there are at most 2kn − 1 < |In| programs of length strictly less than kn , hence some string in In has plain complexity
of at least kn with respect to U . By construction of s, the latter is true for the string s(n) for the infinitely many n where f
maps all strings in In to their least program for U . On the other hand, by universality of U there is a constant c such that
for all n where s(n) is defined, the complexity of s(n) with respect to U is at most C(n) + c. So there are infinitely many n
such that the complexity of s(n) with respect to U is at least kn and at most C(n) + c, which contradicts the assumption on
the size of the sets In . �
From the standard upper bounds log n + c and log n + 2 log log n for the plain and prefix-free complexity of n, the following
corollary of Proposition 14 is immediate.

Corollary 15. Let I0, I1, . . . be a recursive array.
If |In| − n goes to infinity, then there is no partial recursive coding function f for a plain universal machine such that f maps for

infinitely many j all strings in I j to their least program.
If the size of In is at least n2 then there is no partial recursive coding function f for a prefix-free universal machine such that f

maps for infinitely many j all strings in I j to their least program.

In the remainder of this section, we consider the case of mapping some string in each set In to their least program, that
is, we consider Question (ii). For a start, we note that when U is a plain universal machine, then the machine V with
V (1p) = U (p) and V (0p) = p satisfies that the mapping p �→ 0p maps in each interval In = {0, 1}n at least one string to its
least program. Now we show that we obtain a negative answer in the case of coding functions for prefix-free machines.

Proposition 16. Let I0, I1, . . . be a recursive array and let U be a prefix-free universal machine. Then there is no recursive coding
function for U that, for all n, gives the least program for some string in In.

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.8 (1-14)

8 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
By Remark 8 and the definition of prefix-free coding function, Proposition 16 is an immediate consequence of the following
proposition.

Proposition 17. Let I0, I1, . . . be a recursive array and let U be a prefix-free universal machine. Then there is no recursive exact Solovay
function for U that for all n is exact at some string in In.

Proof. For a proof by contradiction, assume that there was a Solovay function g as detailed in the proposition. For every i
let ni be equal to the least index n that satisfies∑

x∈In

2−g(x) ≤ 2−2i−1.

Such an index exists and can be found effectively because for the upper bound g of HU the sum of 2−g(x) over all strings x
is finite. By the Kraft-Chaitin Theorem, there is a prefix-free machine V such that HV (x) is at most g(x) − i for every
string x ∈ Ini . This holds because we have∑

i∈N

∑
x∈Ini

2i−g(x) ≤
∑
i∈N

2i · 2−2i−1 = 1.

Since U is universal, the machine V witnesses that HU (x) is, up to an additive constant, at most g(x) − i for every i and
every string x in Ini . Consequently, it is impossible that g is exact for some string in each interval In . �
Consider the set of strings on which a recursive exact Solovay function for a prefix-free universal machine is exact. As
an easy consequence of Proposition 17, we obtain next that the principal function of such a set is never dominated by a
recursive function.

Proposition 18. Let a recursive exact Solovay function for a prefix-free universal machine be given. Then there is no recursive function r
such that for all n, the Solovay function is exact on at least n strings among the first r(n) strings.

Proof. Assume the proposition were false and this would be witnessed by an exact Solovay function g and a recursive
function r, where we can assume that r is strictly monotonic. We define inductively a partition of the set of all strings
into consecutive nonempty finite intervals I0, I1, . . ., that is, there is a strictly increasing sequence n0, n1, . . . such that the
union of the intervals I0 through I j contains the least n j strings in length-lexicographical order. Let n0 be equal to r(1) and
let n j+1 be equal to r(n j + 1). By construction, the Solovay function g is exact on some string in each set of the recursive
array I0, I1, . . ., which contradicts Proposition 17. �
Remark 19. Given a coding function f for some machine M , let

L(M, f) = {x ∈ {0,1}∗ : f (x) is the least program of x for M} (6)

be the set of strings x that f maps to the least program of x with respect to M . If now f is recursive, the set L(M, f) is
co-r.e., that is, has a recursively enumerable complement. For a proof, it suffices to observe that for all x, the string f (x) is
a program of x for M , hence the complement of L(M, f) contains exactly the strings x such that there is a program of x
for M that is length-lexicographically strictly smaller than f (x).

The following lemma extends by virtually the same proof to prefix-free universal machines; however, a stronger form of the
corresponding assertion has already been obtained as Proposition 17.

Lemma 20. Let I0, I1, . . . be a recursive array and let f be a recursive coding function for some plain universal machine U . Then the
limit inferior of the function

r : n �→ |In ∩ L(U , f)| ,
where L(U , f) is the set in (6), is either 0 or +∞.

Proof. Assume for a contradiction that the limit inferior of r was a nonzero natural number d. Fix some natural number n0

such that r(n) ≥ d for all n ≥ n0. Consider a machine M that on an input of the form 1k works as follows. The machine M
enumerates the complement of the set L(M, f) until some index n ≥ n0 is found such that all but d strings in In have
already been enumerated and among these d strings there is some string x such that | f (x)| > 2k. Letting xk be the least
string with the latter property among these d strings, the machine M outputs xk . By construction and universality of U ,
there is a constant c such that for all k, we have

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.9 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 9
2k < | f (x)| = CU (xk) ≤ CM(xk) + c ≤ k + c,

which is a contradiction for all k ≥ c. Here the equation holds since the set of d strings from which xk is chosen is of the
form In ∩ L(M, f) for some n ≥ n0, hence f (xk) is the least program of xk for M . �
By Lemma 20, given a recursive array I0, I1, . . . and a recursive coding function f for some plain universal machine, the
number of strings per set I j which f maps to their least program either is equal to 0 for infinitely many indices j or goes
to infinity. Whether the latter can be achieved may depend on the sizes of the sets in the recursive array and may further
require to use an appropriate universal machine, as is asserted next in Theorems 21 and 22.

Theorem 21. Let I0, I1, . . . be a recursive array such that the set I j has size of at least 2 j . Then there are a plain universal machine
U and a recursive coding function f for U that maps at least one string in each set I j to its least program. In addition, the coding
function f can be chosen such that whenever the string f (x) is a shortest program, it is already the least program.

Proof. Let f0 be a recursive coding function for some plain universal machine U0. For all p in the domain of U0, let the
machine U output U0(p) on both of the inputs 10p and 110p. Furthermore, for all n, let U (0 pn

i) = xn
i where pn

i and xn
i

are the i-th string of length n and in In , respectively, for i = 1, . . . , 2n . On all other inputs, let U be undefined. Then the
function f defined by

f (x) =
{

0 pn
i , if x = xn

i for some i,n with i < 2n and n ≤ | f0(x)| + 5,

110 f0(x), otherwise,

with associated universal machine U is a coding function as required. For each n, there are at most 2n − 1 strings of length
strictly less than n, hence for some i the shortest program of xn

i for U0 has LENGTH at least n and thus 0 pn
i is the least

program of xn
i for U . Furthermore, a program f (x) of the form 110p cannot be a shortest program for U because 10p

is a program for the same string. Consequently, in case f (x) is a shortest program of x for U , it follows that f (x) is the
unique program of x for U of the form 0p and is indeed the least program of U . Finally, in order to ensure that f (x) is the
least program whenever it is a shortest program, it suffices to choose U0 such that whenever a string x is in In , the least
program p of x for U0 does not have length n − 1, hence the only possible least programs 0pn

i and 10p of x for U differ in
length. �
Theorem 22. Let I0, I1, . . . be a recursive array. Then there is a plain universal machine U such that every partial recursive coding
function for U , for some j, fails to map every string in I j to a shortest program. A similar assertion is true in the prefix-free setting, that
is, with plain replaced by prefix-free.

Proof. We give the proof for the plain case and omit the very similar argument for the prefix-free case. Let ϕ0, ϕ1, . . . be
an acceptable numbering of all partial recursive functions. We construct a plain universal machine U such that for all e
the partial function ϕe maps no string in Ie to a least program. Fix some plain universal machine V . For all strings p in
the domain of V , let U (10p) = V (p). For all such p, let U (0p) = V (p) in case V (p) is in Ie and ϕe(V (p)) = 10p; let U be
undefined on all other strings.

In order to verify the construction, fix an arbitrary index e and assume that ϕe is a partial coding function for U that is
defined on some string x in Ie . Then ϕe(x) is equal to up for some string u in {0, 10}, where U (up) = x, hence V (p) = x.
In case u = 10, we have U (0p) = x, hence up is not a shortest program for x. In case u = 0, the machine U is undefined
on up, hence ϕe is not a partial coding function for U . �
8. Least programs for prefixes of a set

Recall that a set A can be identified with its characteristic sequence. This way it makes sense to speak of the pre-
fixes A(0)A(1) . . . A(n − 1) of the set A. We investigate the question whether there are partial recursive or recursive coding
functions that map all or at least infinitely many prefixes of some set to least programs. By the next two theorems, the
latter question about mapping infinitely many prefixes to least programs is answered in the affirmative in the plain as well
as in the prefix-free setting. More precisely, in both settings this can be achieved for all sets by some fixed partial recursive
coding function and for exactly the sets that are Bennett shallow by recursive coding functions.

Theorem 23. There exist a prefix-free universal machine U and partial recursive coding function f for U such that for every set A, f
maps infinitely many prefixes of A to their least program. A similar assertion is true for the plain case.

Proof. The proof is given for the prefix-free case, the similar proof for the plain case is omitted. In the prefix-free case,
one starts with a prefix-free universal machine V from which a coding function f as required and its associated universal

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.10 (1-14)

10 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
machine U are constructed. Let c be a constant that is so large that for every string x and every bit a it holds that
HV (xa) ≥ HV (x) + 3 − 2c. For all n, let

In = {x ∈ {0,1}∗ : 2n ≤ |x| < 2n+1}
and for x in In , for the unique m such that

|x| = 2n + m, let J x = {4m − c, . . . ,4m + c}.
Fix some enumeration p0, p1, . . . of the domain of V and let xs = V (ps). For the scope of this proof, call the string ps a
special program if the length of ps is in J xs , and call x a special string if the least program of x for V is a special program,
(that is, if the prefix-free complexity of x with respect to V is in J x).

Now one constructs a new prefix-free universal machine U by doing the following, successively for s = 0, 1, . . .:

– let U (ps) = V (ps) in case ps is not a special program;
– let U (ps0ks) = V (ps) for the unique natural number ks such that ps0ks has length max J xs in case ps is the first special

program of xs , that is, in case ps is a special program but for all j < s, the program p j is not special or is not a program
of xs;

however U remains undefined on all other inputs. By construction, for every special string x its least program for U is the
unique program of x for U of length max J x . Therefore the partial recursive function coding function f for U defined as
follows maps all special strings to a least program. On input x, if an effective search for a program of x for U of length max J x

terminates successfully, then f (x) = p for the first such program p that has been found, else f (x) remains undefined.
We conclude by showing that among the prefixes of any given set A there are infinitely many special strings. So fix a

set A and an index n and let z0 ≺ . . . ≺ z2n−1 be the prefixes of A in the set In . For all sufficiently large n, the assertion

HV (zi) ≤ max J zi (7)

is false in case i = 0 and true in case i = 2n − 1, because max J zi is equal to the constant c in the former case and is equal
to 2|zi | + c − 2 in the latter case. Consequently, for such n there is a least index r such that 1 < r ≤ 2n − 1 and (7) is true
with i replaced by r. In order to show that in this situation zr is special, by definition it suffices to show that HV (zi) is at
least min J zr . The latter follows by a sort of discrete continuity argument. More precisely, we have

HV (zr) ≥ HV (zr−1) + 3 − 2c ≥ max J zr−1 + 4 − 2c

= max J zr − 4 + 4 − 2c = min J zr ,

where the relations hold by choice of c, by minimality of r and by using two times the definition of the intervals J x . �
Remark 24. The partial recursive prefix-free coding function constructed in the proof of Theorem 23 could be changed at
finitely many arguments in order to map at least one string in each of the sets I j to its least program, where I0, I1, . . .
is the recursive partition of {0, 1}∗ defined in the proof above. Recall that by Proposition 17, this cannot be achieved by a
recursive prefix-free coding function.

Theorem 23 suggests to ask for which sets there is not just a partial recursive but actually a recursive coding function for
some plain or prefix-free universal machine that maps infinitely many prefixes of the set to a least program. Theorem 27,
proven below, shows that such recursive coding functions exist exactly for the sets that are Bennett shallow, that is, are not
Bennett deep.

The notion of Bennett depth was introduced by Bennett [2] and has been further investigated recently by Moser and
Stephan [28,29] as well as by Downey, MacInerney and Ng [17], who provide various examples of deep and non-deep
sets in a recursion-theoretic setting. Similar investigations were also carried out in a complexity-theoretic setting [1,21,27],
though often with a somewhat different approach to define the notion of depth. In the case of sets, Bennet’s notion of depth
can be defined as follows.

Definition 25. A set A is Bennett deep for plain complexity in case for every recursive upper bound g for plain complex-
ity C, we have

lim
n→∞(g(A(0) . . . A(n − 1)) − C(A(0) . . . A(n − 1))) = ∞.

The notion of a set that is Bennett deep for prefix-free complexity is defined likewise, and in both settings a set is Bennett
shallow if it is not Bennett deep.

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.11 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 11
Proposition 26. A set A is Bennett shallow for plain complexity if and only if there is a recursive Solovay function g for plain complexity
that up to an additive constant c is tight on infinitely many prefixes x of A in the sense that g(x) − C(x) ≤ c. A similar equivalence
holds in the prefix-free case.

Proof. We show the equivalence in the plain setting, as the proof for the prefix-free case is essentially the same. If the
set A is Bennett shallow for plain complexity, then any function g that witnesses the latter fact according to Definition 25
is already a Solovay function as required. Conversely, given such a Solovay function g where d is the supremum of the
values C(x) − g(x), then d is finite and the function g + d is a recursive upper bound for C that witnesses that A is not
Bennett deep. �
If there exists a recursive coding function f for some plain universal machine that maps infinitely many prefixes of A to
their least program, then the function g : x �→ | f (x)| is a Solovay function that is tight on infinitely many prefixes of A,
hence A is Bennett shallow according to Proposition 26. By the following theorem, this implication can be reversed.

Theorem 27. A set A is Bennett shallow with respect to plain complexity if and only if there exists a recursive coding function for some
plain universal machine that maps infinitely many prefixes of A to their least program.

A similar assertion holds in the prefix-free setting, that is, with plain replaced by prefix-free on both sides of the equivalence.

Proof. The proof is given for the prefix-free setting; the similar proof for the plain setting is omitted. The direction from
right to left follows by the discussion preceding the theorem.

Concerning the reverse implication, let A be any set that is Bennett shallow with respect to prefix-free complexity. Fix
some prefix-free universal machine V that is universal by adjunction and recall that HV is the prefix-free complexity with
respect to V . By shallowness of A and replicating the constructions in Remarks 3 and 4, one obtains a recursive Solovay
function g for HV such that HV (x) ≤ g(x) for all x and such that for some natural numbers c1 and c there are infinitely
many prefixes x of A such that

g(x) ≤ H(x) + c1 < HV (x) + c, (8)

where the first inequality follows by Proposition 26 and the second by universality of V . For these infinitely many prefixes x
of A, consider the remainders modulo c of the values HV (x) and fix some remainder c′ that is attained for infinitely many
such x. For every natural number �, let

I� = {c� + c′, c� + c′ + 1, . . . , c(� + 1) + c′ − 1}
and observe that the sets I� partition the set N \ {0, . . . , c′ − 1}. By choice of c′ and (8), there are then infinitely many
prefixes x of A such that for some � it holds that

min I� = H V (x) ≤ g(x) ≤ max I�.

Furthermore, fix a recursive one-to-one enumeration p0, p1, . . . of the domain of V and a string r of length greater than c
such that r is incompatible with all the pi , that is, none of the prefixes or extensions of r, including r itself, is in the domain
of V . Next define the recursive equivalence relation ∼ on the natural numbers by

s ∼ t if and only if V (ps) = V (pt) and |pt |, |ps| ∈ I�, for some �.

That is, for all indices i in the same equivalence class of the relation ∼, the strings pi are programs for V of the same
string x and of similar lengths, more precisely, all these lengths fall into the same interval I� . The goal is to carry over from
V to U only one program from each equivalence class. In order to make U universal by adjunction, however, new programs
are added that are so long that none of them will be a shortest program for some string with respect to U .

We construct a prefix-free universal machine U and a coding function f for U as required. For each s and for x = V (ps),

let U (rps) = x and if there is no t < s with t ∼ s then let U (ps) = x.

Let f (x) be the first program p for U found by some effective search such that U (p) = x, r � p and |p| ≤ max I� for the �

with g(x) ∈ I� . Observe that such a p exists for almost all x by the construction of U and the fact that H(x) ≤ g(x). So f is
a recursive coding function for U . For the infinitely many prefixes x of A, where HV (x) is minimum in some interval I� , the
latter interval contains g(x) and is the least interval that contains the length of a program p with U (p) = x; the function f
maps all these strings x to least programs of U . �
In the remainder of this section we ask whether there is a set such that all its prefixes are effectively mapped to their least
programs by a coding function, for some plain or prefix-free universal machine. For both settings, the answer is affirmative
in the case of partial recursive coding functions. Before we state the latter in Theorem 29, we show in Remark 28 that

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.12 (1-14)

12 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
for certain universal machines there cannot be such a partial recursive coding function and we observe that all such sets
have positive Hausdorff dimension in Theorem 30. This implies that such sets are also complex, as defined by Kjos-Hanssen,
Merkle and Stephan [22]. We then conclude the section by observing that for recursive coding functions the answer is
negative in the prefix-free setting and is unknown in the plain setting.

Remark 28. There is a universal plain machine U such that for every partial recursive function f there is a length such
that f maps no string of this length to its least program for U . A similar assertion holds in the prefix-free setting, that is,
with universal replaced by universal for prefix-free machines.

In order to obtain a machine U as above, in both, the plain and the prefix-free setting, it suffices to construct U such
that for all e and all strings x of length e where ϕe(x) is defined, the length of the latter string is odd if and only if the
length of the least program of x for U is even.

Theorem 29. There is partial recursive coding function f for some plain universal machine that is universal by adjunction such that f
maps all prefixes of some set to their least program. A similar assertion holds in the prefix-free setting.

Proof. The proof is given for the prefix-free case, the similar proof for the plain case is omitted. Let V be any prefix-free
universal machine. There are a set A and a constant c such that, if we let for all strings x

Jx = {�|x|/2� − c, . . . , �|x|/2� + c},
then for every prefix x of A, the prefix-free complexity of x with respect to V is in J x [11,33]. Fix some enumera-
tion p0, p1, . . . of the domain of V and let xs = V (ps). For the scope of this proof, call the string ps a special program
if the length of ps is in J xs , and call x a special string if the least program of x for V is a special program. Note that all
prefixes of A are special strings.

Now one constructs a new prefix-free universal machine U by doing the following, successively for s = 0, 1, . . .,

– let U (ps) = V (ps) in case the program ps is not special;
– let U (ps0ks) = V (ps) for the unique natural number ks such that ps0ks has length max J xs in case ps is the first special

program for xs (that is, in case ps is a special program but p j is not a special program for all j < s where x j = xs);

while U remains undefined on all other inputs. By construction, for every special string x its least program for U is the
unique program of x for U of length max J x . Therefore the partial recursive coding function f for U defined as follows
maps all special strings and, in particular, all prefixes of A to their least program. On input x, if an effective search for a
program of x for U of length max J x terminates successfully by finding p, then f (x) = p else f (x) remains undefined.

We conclude by extending the domain of U in order to obtain a prefix-free machine U ′ that is universal by adjunction
and where its coding function f maps every special string to its least program for U ′ . Fix some prefix-free machine W that
is universal by adjunction and a constant d such that for every string its prefix-free complexity with respect to U and with
respect to W differ by at most d. Let r be a string that has neither a prefix nor an extension in the domain of U and let

U ′(p) = U (p) for all p ∈ dom(U) and U ′(r0dq) = W (q) for all q ∈ dom(W).

By construction, every program of U is a program of U ′ with the same output and every least program for U is a least
program for U ′ . Hence f is a coding function for U ′ that maps every special string to its least program for U ′ . In the case of
plain complexity, the last part of the proof becomes slightly less elegant: for p and q as above, the corresponding programs
for U ′ are 0p and 1d+2q, where then x �→ 0 f (x) is a coding function as required. �
Theorem 30. If there is a partial recursive plain or prefix-free coding function that maps all prefixes of some set A to a shortest program
then A has positive constructive Hausdorff dimension. More precisely, there is a rational constant q > 0 such that the Kolmogorov
complexity of A � n is at least qn for almost all n.

Proof. The proof is done for the plain case and the prefix-free case is similar. Fix any universal machine U . Assume that
there is a partial-recursive coding function f which provides a shortest program for all prefixes of A. Let g(x) be the
shortest prefix of x such that | f (g(x))| ≥ | f (y)| for all y � x. Intuitively, g(x) denotes the prefix of x with the largest code
(as given by f). For any d ∈ N , let Sd = {x : |{y : g(y) = x}| ≥ 22d+4}. Note that for x ∈ Sd , there are at least 22d+4 y such
that | f (x)| ≥ | f (y)| ≥ CU (y). Thus, for any length n, there are at most 2n−2d−3 x’s such that | f (x)| = n, and x ∈ Sd . For
each x ∈ Sd , assign a unique string ux of length | f (x)| − d − 1, and let V (1d0ux) = x (note that there are enough such u’s
available by the argument above, and V is well defined). By universality of U , there exists a constant c such that for all x,
all V -programs for x have length larger than CU (x) − c.

Now consider x with x = g(x) and x being a prefix of A. By hypothesis f (x) is a U -shortest program for x. Thus, V does
not have a program of length | f (x)| − c or smaller for these x. Now, one of the strings A � (|x| + 1), . . ., A � (|x| + 22c+4)

must have Kolmogorov complexity (with respect to U) at least | f (x)| + 1: otherwise there would be at least 22c+4 strings

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.13 (1-14)

C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–••• 13
y with g(y) = x, and thus V has a program 1c0ux for x of length | f (x)| − c, contradicting the above established fact that V
cannot have programs for such x of length | f (x)| − c or shorter.

Inductively, using the above argument, in every interval [22c+4 · n, . . . , 22c+4 · (n + 1) − 1] of natural numbers there is an
m such that CU (A � m) ≥ n. For the other m in this interval, CU (A � m) ≥ n − c′ for some constant c′ (as all prefixes of A of
length in the above interval can be obtained from each other by adding/deleting a suffix bounded by length 22c+4). Thus
there is a rational number q (any q with 0 < q < 2−2c−4 would do) such that CU (A � m) ≥ qm for almost all m. This implies
that A has at least constructive Hausdorff dimension q, in short, A has positive constructive Hausdorff dimension. �
Note that the above result gives some motivation for the construction of the witness set in Theorem 29. Furthermore, it
suggests to ask whether Theorem 29 can be strengthened by replacing the partial recursive coding functions by recursive
ones. In the setting of prefix-free complexity the answer is negative, that is, there is no recursive coding function for some
prefix-free universal machine that maps all prefixes of some set to their least program. Such a coding function would
contradict Proposition 17, by an easy argument similar to the one in Remark 24. In the setting of plain complexity, we state
this question as an open problem.

Open Problem 31. Is there a recursive coding function for some plain universal machine that maps all prefixes of some set
to their least program?

Declaration of competing interest

I declare that there is no conflict of interest. Cristian Calude on behalf of all authors.

Acknowledgement

We thank the anonymous referees for comments that improved the presentation.

References

[1] Luis Filipe Coelho Antunes, Lance Fortnow, Dieter van Melkebeek, N. Variyam Vinodchandran, Computational depth: concept and applications, Theor.
Comput. Sci. 354 (2006) 391–404.

[2] Charles H. Bennett, Logical depth and physical complexity, in: The Universal Turing Machine, a Half-Century Survey, 1988, pp. 227–257.
[3] Laurent Bienvenu, Rodney G. Downey, Wolfgang Merkle, André Nies, Solovay functions and K -triviality, J. Comput. Syst. Sci. 81 (2015) 1575–1591.
[4] Bruno Bauwens, Anton Makhlin, Nikolay Vereshchagin, Marius Zimand, Short lists with short programs in short time, Comput. Complex. 27 (1) (2018)

31–61.
[5] Bruno Bauwens, Alexander Shen, Complexity of complexity and strings with maximal plain and prefix Kolmogorov complexity, J. Symb. Log. 79 (2)

(June 2014) 620–632.
[6] Bruno Bauwens, Marius Zimand, Linear list-approximation for short programs (or the power of a few random bits), in: IEEE 29th Conference on

Computational Complexity (CCC), 2014, pp. 241–247.
[7] Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan, Leen Torenvliet, Enumera-

tions of the Kolmogorov function, J. Symb. Log. 71 (2) (2006) 501–528.
[8] Manuel Blum, On the size of machines, Inf. Control 11 (1967) 257–265.
[9] Cristian S. Calude, Information and Randomness - An Algorithmic Perspective, second edition, Springer, Heidelberg, 2002.

[10] Cristian S. Calude, Michael J. Dinneen, Chi-Kou Shu, Computing a glimpse of randomness, Exp. Math. 11 (3) (2002) 361–370.
[11] Cristian S. Calude, Nicholas J. Hay, Frank Stephan, Representation of left-computable ε-random reals, J. Comput. Syst. Sci. 77 (4) (2011) 812–819.
[12] Cristian S. Calude, Hajime Ishihara, Takeshi Yamaguchi, Coding with minimal programs, Int. J. Found. Comput. Sci. 12 (4) (2001) 479–489.
[13] Cristian S. Calude, André Nies, Ludwig Staiger, Frank Stephan, Universal recursively enumerable sets of strings, Theor. Comput. Sci. 412 (22) (2011)

2253–2261.
[14] Gregory J. Chaitin, Information-theoretic characterizations of recursive infinite strings, Theor. Comput. Sci. 2 (1) (1976) 45–48.
[15] Rodney G. Downey, Denis R. Hirschfeldt, Algorithmic Randomness and Complexity. Theory and Applications of Computability, Springer, New York, 2010.
[16] Rodney G. Downey, Denis R. Hirschfeldt, André Nies, Frank Stephan, Trivial reals, in: Proceedings of the 7th and 8th Asian Logic Conferences (7th

Conference: Hsi-Tou, Taiwan 6 – 10 June 1999, 8th Conference: Chongqing, China 29 August – 2 September 2002), World Scientific, 2003, pp. 103–131.
[17] Rod G. Downey, Michael MacInerney, Keng Meng Ng, Lowness and logical depth, Theor. Comput. Sci. 702 (2017) 23–33.
[18] Santiago Figueira, Frank Stephan, Guohua Wu, Randomness and universal machines, J. Complex. 22 (2006) 738–751.
[19] Rupert Hölzl, Thorsten Kräling, Wolfgang Merkle, Time-bounded Kolmogorov complexity and Solovay functions, Theory Comput. Syst. 52 (2013) 80–94.
[20] Sanjay Jain, Jason Teutsch, Enumerations including laconic enumerators, Theor. Comput. Sci. 700 (2017) 89–95.
[21] David W. Juedes, James I. Lathrop, Jack H. Lutz, Computational depth and reducibility, Theor. Comput. Sci. 132 (1994) 37–70.
[22] Bjørn Kjos-Hanssen, Wolfgang Merkle, Frank Stephan, Kolmogorov complexity and the recursion theorem, Trans. Am. Math. Soc. 263 (2011) 5465–5480.
[23] Andrey N. Kolmogorov, Three approaches to the quantitative definition of information, Int. J. Comput. Math. 2 (1968) 157–168.
[24] Ming Li, Paul Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Texts in Computer Science, third edition, Springer, New York,

2008.
[25] Wolfgang Merkle, Frank Stephan, On C-degrees, H-degrees and T-degrees, in: Twenty-Second Annual IEEE Conference on Computational Complexity

(CCC 2007), San Diego, USA, 12 - 16 June 2007, 2007, pp. 60–69.
[26] Albert R. Meyer, Program size in restricted programming languages, Inf. Control 21 (1972) 382–394.
[27] Philippe Moser, On the polynomial depth of various sets of random strings, Theor. Comput. Sci. 477 (2013) 96–108.
[28] Philippe Moser, Frank Stephan, Depth, highness and DNR degrees, Discret. Math. Theor. Comput. Sci. 19 (4–2) (2017) 1–15.
[29] Philippe Moser, Frank Stephan, Limit-depth and DNR degrees, Inf. Process. Lett. 135 (2018) 36–40.
[30] André Nies, Computability and Randomness, Oxford Science Publications, 2009.
[31] Piergiorgio Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.

http://refhub.elsevier.com/S0304-3975(19)30640-1/bib41464D563036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib41464D563036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42653838s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42444D4E3135s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib424D565A3133s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib424D565A3133s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42533134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42533134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib425A3134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib425A3134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42424646474C4D53543036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib42424646474C4D53543036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib426C753637s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib43616C3032s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4344533032s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4348533131s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4349593031s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib434E53533131s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib434E53533131s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4368613736s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib44483130s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib44484E533033s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib44484E533033s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib444D4E3136s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4653573035s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib484B4D2D3133s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4A543137s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4A4C4C3934s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4B4D533131s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4B6F6C3635s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4C563038s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4C563038s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D533037s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D533037s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D65793732s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D6F733133s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D533135s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4D533138s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4E69653039s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4F64693839s1

JID:TCS AID:12217 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:23/10/2019; 10:33] P.14 (1-14)

14 C.S. Calude et al. / Theoretical Computer Science ••• (••••) •••–•••
[32] Piergiorgio Odifreddi, Classical Recursion Theory, vol. II, Elsevier, Amsterdam, 1999.
[33] Jan Reimann, Frank Stephan, Hierarchies of randomness tests, in: Proceedings of the Ninth Asian Logic Conference, “Mathematical Logic in Asia”, World

Scientific, Singapore, 2006, pp. 215–232.
[34] Hartley Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
[35] Marcus Schaefer, A guided tour of minimal indices and shortest descriptions, Arch. Math. Log. 37 (8) (1998) 521–548.
[36] Robert I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Springer, Heidelberg,

1987.
[37] Frank Stephan, Jason Teutsch, Immunity and hyperimmunity for generalized random strings, Notre Dame J. Form. Log. 49 (2008) 107–125.
[38] Frank Stephan, Jason Teutsch, An incomplete set of shortest descriptions, J. Symb. Log. 77 (1) (March 2012) 291–307.
[39] Jason Teutsch, Short lists for shortest descriptions in short time, Comput. Complex. 23 (4) (2014) 565–583.
[40] Jason Teutsch, Marius Zimand, On approximate decidability of minimal programs, ACM Trans. Comput. Theory 7 (4) (August 2015) 17.
[41] Jason Teutsch, Marius Zimand, A brief on short descriptions, ACM SIGACT News 47 (1) (2016) 42–67.
[42] Nikolay Vereshchagin, Short lists with short programs from programs of functions and strings, Theory Comput. Syst. 61 (4) (2017) 1440–1450.
[43] Marius Zimand, Short lists with short programs in short time – a short proof, in: Proceedings of the Tenth CiE. Language, Life, Limits, Budapest,

Hungary, in: LNCS, vol. 8493, Springer, 2014, pp. 403–408.

http://refhub.elsevier.com/S0304-3975(19)30640-1/bib4F64693939s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib52533036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib52533036s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib526F3637s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib5363683938s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib536F613837s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib536F613837s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib53543038s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib53543132s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib5465753134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib545A3135s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib545A3136s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib5665723134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib5A696D3134s1
http://refhub.elsevier.com/S0304-3975(19)30640-1/bib5A696D3134s1

	Searching for shortest and least programs
	1 Introduction
	2 Notation
	3 Solovay functions
	4 Least programs and coding functions
	5 Computing least programs for arbitrary universal machines
	6 Time-complexity of coding functions
	7 Finding least programs for strings in given ﬁnite sets
	8 Least programs for preﬁxes of a set
	Acknowledgement
	References

