ELSEVIER

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Representation of left-computable ε -random reals $\stackrel{\text{\tiny{transpace}}}{\to}$

Cristian S. Calude^{a,*,1}, Nicholas J. Hay^{a,1}, Frank Stephan^{b,2}

^a Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand ^b Department of Mathematics and School of Computing, National University of Singapore, Singapore 117543

ARTICLE INFO

Article history: Received 5 June 2009 Received in revised form 25 July 2010 Accepted 4 August 2010 Available online 10 August 2010

Keywords: ε -universal prefix-free Turing machine Halting probability ε -random real Peano Arithmetic

ABSTRACT

In this paper we introduce the notion of ε -universal prefix-free Turing machine (ε is a computable real in (0, 1]) and study its halting probability. The main result is the extension of the representability theorem for left-computable random reals to the case of ε -random reals: *a real is left-computable* ε -random *iff it is the halting probability of an* ε -universal prefix-free Turing machine. We also show that left-computable ε -random reals are provable ε -random in the Peano Arithmetic. The theory developed here parallels to a large extent the classical theory, but not completely. For example, random reals are Borel normal (in any base), but for $\varepsilon \in (0, 1)$, some ε -random reals do not contain even arbitrarily long runs of 0s.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A real α is left-computable (or recursively/computably enumerable) if there is a computable increasing sequence of rationals which converges to α . Left-computable random reals can be characterised using various tools including prefix-complexity, Martin–Löf tests, martingales, Chaitin Omega numbers and universal probability [1,3,5,6,8,11,15].

Some left-computable reals are not random, but "partially random." For example, inserting a 0 in between adjacent bits of a (left-computable) random sequence produces a non-random sequence, having some weak randomness properties: this sequence is, as intuition suggests, left-computable (because it is left-approximated by approximations of the original sequence in which a 0 was inserted in between each adjacent bits) and 1/2-random.

The papers [4,12,16–19] have studied the degree of randomness of reals (or sequences) by measuring their "degree of compression." In what follows ε is a fixed computable real number with $0 < \varepsilon \le 1$. We study ε -randomness of reals, both intrinsically and in relation to the classical notion of randomness (which corresponds to $\varepsilon = 1$, here referred to as 1-randomness or simply randomness).

Our main tool is the ε -universal prefix-free Turing machine, a machine that can simulate any other prefix-free machine: the length of the simulating program on the ε -universal machine is bounded up to a fixed constant by the length of the simulated program divided by ε . In case $\varepsilon = 1$ we get the classical notion of universal machine.

We show that the halting probability of an ε -universal prefix-free Turing machine is left-computable and ε -random. Generalising the corresponding representability theorem of left-computable random reals [1,3,8,11] we show that the converse is also true: every left-computable ε -random real is the halting probability of an ε -universal prefix-free Turing machine. A specific ε -universal Turing machine V_{ε} is obtained via Eq. (1) below; the main principle is to "dilute" a universal Turing

A preliminary version of this paper was presented at the Joint AMS-NZMS Meeting, Wellington, NZ, December 2007.
 * Corresponding author.

E-mail addresses: cristian@cs.auckland.ac.nz (C.S. Calude), nickjhay@gmail.com (N.J. Hay), fstephan@comp.nus.edu.sg (F. Stephan).

¹ Supported in part by a Hood Fellowship.

² Supported in part by NUS grant numbers R146-000-114-112 and R252-000-308-112.

^{0022-0000/\$ –} see front matter $\,\, \odot$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcss.2010.08.001

The theory developed here parallels to a large extent the classical theory, but not completely. The following two results show interesting differences: (a) the prefix-free complexities induced by universal machines differ by at most an additive constant, but the difference between prefix-free complexities induced by ε -universal machines may be unbounded, (b) random reals are Borel normal (in any base), but some ε -random reals do not contain even arbitrarily long runs of 0s.

The paper is organised as follows. In Section 2 we present the necessary notation and previous results. In Section 3 we introduce and study ε -universal machines and their halting probabilities. In Section 4 we study left-computable ε -random reals and in Section 5 we present the representability theorem for left-computable ε -random reals. In Section 6 we discuss the provability in the Peano Arithmetic of ε -randomness for left-computable reals. In Section 7 we disprove Stay's conjecture regarding the 1-randomness (with respect to U) of the halting probability of an ε -universal machine U. We end with a few conclusions.

2. Notation and background

Let $\Sigma = \{0, 1\}$ and denote by Σ^n and Σ^* the set of all bit-strings of length n and the set of all bit-strings, respectively. The length of $\sigma \in \Sigma^*$ is denoted by $|\sigma|$. By $\log n$ we abbreviate the function $\lfloor \log_2(n+1) \rfloor$. Let $\mathbb{N} = \{1, 2, \ldots\}$ and let $\operatorname{bin}: \mathbb{N} \to \Sigma^*$ be the bijection which associates to every $n \ge 1$ its binary expansion without the leading 1.

To every infinite binary sequence $\alpha_1\alpha_2 \cdots \alpha_n \cdots$ we associate the real number $\alpha = 0.\alpha_1\alpha_2 \cdots \alpha_n \cdots$ in (0, 1]. We denote by $\alpha \upharpoonright n = \alpha_1\alpha_2 \cdots \alpha_n$ the prefix of length *n* of α 's expansion. In this way, reals are identified with infinite binary sequences. Similarly, if $\mathbf{x} = x_1x_2 \cdots x_n \cdots$ is an infinite sequence, $\mathbf{x} \upharpoonright n = x_1x_2 \cdots x_n$.

We assume that the reader is familiar with algorithmic information theory, cf. [1,8] and present only a few notions to fix the notation.

If the Turing machine *T* is defined on σ we write $T(\sigma) < \infty$; the domain of *T* is the set dom $(T) = \{\sigma \in \Sigma^*: T(\sigma) < \infty\}$. A prefix-free (Turing) machine is a Turing machine whose domain is a prefix-free set of strings. The prefix complexity of a string induced by a prefix-free machine *W* is $H_W(\sigma) = \inf\{|p|: W(p) = \sigma\}$. From now on all Turing machines will be prefix-free and will be referred to as machines.

We use several times the Kraft–Chaitin Theorem: given a computable enumeration of positive integers n_i such that $\sum_i 2^{-n_i} \leq 1$, we can effectively construct a prefix-free set of binary strings $\{x_i\}$ such that $|x_i| = n_i$, for all $i \geq 1$.

Throughout the whole paper ε is assumed to be a computable real in the interval (0, 1]. Fix a machine W. A sequence **x** is Chaitin (ε, W) -random if there is a constant c > 0 such that for every $n \ge 1$, $H_W(\mathbf{x} \upharpoonright n) \ge \varepsilon \cdot n - c$; **x** is strictly Chaitin (ε, W) -random if **x** is Chaitin (ε, W) -random, but not Chaitin (δ, W) -random for any δ with $\varepsilon < \delta \le 1$.

If *W* is universal (from now on called 1-universal), then we get Tadaki's definition of weak Chaitin ε -randomness (see [4,18]). If *W* is 1-universal and $\varepsilon = 1$, then we get Chaitin's classical definition of randomness [5,6]. A real is Chaitin (ε , *W*)-random (shortly, (ε , *W*)-random) if its binary expansion is Chaitin (ε , *W*)-random.

For any prefix-free set $A \subset \Sigma^*$ we define $\Omega_A = \sum_{x \in A} 2^{-|x|}$. The halting probability of a machine W is $\Omega_W = \sum_{x \in \text{dom}(W)} 2^{-|x|}$.

Following Tadaki [18], for any (not necessarily prefix-free) set $W \subseteq \Sigma^*$ and computable $\delta > 0$ we write $\mu^{\delta}(W) = \sum_{W \in W} 2^{-\delta \cdot |W|}$. If $\delta > 1$ and W is prefix-free, then $\mu^{\delta}(W) \leq \Omega_W \leq 1$. However, if $0 < \delta < 1$ then we can have $\mu^{\delta}(W) = \infty$ even for prefix-free W (for example, for $W = \{1^{\log n} 0 \text{bin}(n): n > 0\}$ and $0 < \delta < 1/2$).

3. *e*-universal machines

In this section we introduce and study the notion of ε -universal machine.

In analogy with the classical case we say, following Stay [14], that a machine U is ε -universal if for every machine T there exists a constant $c_{U,T}$ such that for each program $\sigma \in \text{dom}(T)$ there exists a program $p \in \text{dom}(U)$ such that

$$U(p) = T(\sigma)$$
 and $\varepsilon \cdot |p| \leq |\sigma| + c_{U,T}$.

If $\varepsilon = 1$ we get the classical notion of universal machine. Every universal machine is ε -universal, but the converse is not true (see Theorem 2).

A machine U is strictly ε -universal if U is ε -universal but not δ -universal for any δ with $\varepsilon < \delta \leq 1$.

Lemma 1. The machine U is ε -universal iff there exists a 1-universal machine V and a constant $c_{U,V}$ such that for all $\sigma \in \Sigma^*$ we have $\varepsilon \cdot H_U(\sigma) \leq H_V(\sigma) + c_{U,V}$.

Theorem 2. Let V be a 1-universal machine and define

$$V_{\varepsilon}(p0^{\lfloor (1/\varepsilon-1)|p|\rfloor}) = V(p).$$
⁽¹⁾

Then:

- (a) V_{ε} is a machine and for all $\sigma \in \Sigma^*$ we have $H_{V_{\varepsilon}}(\sigma) = \lfloor H_V(\sigma)/\varepsilon \rfloor$,
- (b) V_{ε} is strictly ε -universal.

Proof. Clearly V_{ε} is a machine and the equality in (a) can be directly checked. From (a) and Lemma 1 we deduce the ε -universality of V_{ε} . If there were a constant c such that for all $\sigma \in \Sigma^*$, $\delta \cdot H_{V_{\varepsilon}}(\sigma) \leq H_V(\sigma) + c$, for some $\varepsilon < \delta \leq 1$, then in view of (a) we would have $(\delta/\varepsilon - 1) \cdot H_V(\sigma) \leq c + \delta$, for all $\sigma \in \Sigma^*$, a contradiction (H_V is unbounded). So, V_{ε} is strictly ε -universal. \Box

Theorem 3. Let V be a 1-universal machine. Then for every ε -universal machine U, Ω_U is (ε, V) -random.

Proof. Let *f* be a computable one-to-one function which enumerates dom(*U*). Let $\omega_k = \sum_{j=1}^k 2^{-|f(j)|}$. Clearly, (ω_k) is a computable, increasing sequence of rationals converging to Ω_U . Consider the binary expansion of $\Omega_U = 0.\Omega_1 \Omega_2 \cdots$.

We define a machine *T* as follows: on input $\sigma \in \Sigma^*$, *T* first "tries to compute" the smallest number *t* with $\omega_t \ge 0.\sigma$. If successful, $T(\sigma)$ is the first (in quasi-lexicographical order) string not belonging to the set $\{U(f(1)), U(f(2)), \ldots, U(f(t))\}$; if no such *t* exists then $T(\sigma) = \infty$.

Fix a number $m \ge 1$ and note that *T* is defined on $\Omega_U \upharpoonright m$. Let *t* be the smallest number (computed in the first step of the computation of *T*) with $\omega_t \ge 0.\Omega_U \upharpoonright m$. We have

$$0.\Omega_U \upharpoonright m \leq \omega_t < \omega_t + \sum_{s=t+1}^{\infty} 2^{-|f(s)|} = \Omega_U \leq 0.\Omega_U \upharpoonright m + 2^{-m}.$$

Hence, $\sum_{s=t+1}^{\infty} 2^{-|f(s)|} \leq 2^{-m}$, which implies $|f(s)| \ge m$, for every $s \ge t+1$. From the construction of *T* we conclude that

$$H_U(T(\Omega_U \upharpoonright m)) \ge m. \tag{2}$$

Since *T* is a partially computable function, we get a constant c' such that for all $\sigma \in \Sigma^*$ for which $T(\sigma) < \infty$ we have:

$$H_V(T(\sigma)) \leqslant H_V(\sigma) + c'.$$
(3)

Using (2), the ε -universality of *U*, and (3) we obtain

$$\varepsilon \cdot m \leq \varepsilon \cdot H_U (T(\Omega_U \upharpoonright m))$$
$$\leq H_V (T(\Omega_U \upharpoonright m)) + c$$
$$\leq H_V (\Omega_U \upharpoonright m) + c + c$$

which proves that Ω_U is (ε, V) -random. \Box

Corollary 4. If V be a 1-universal machine, then $\Omega_{V_{\varepsilon}}$ is (ε, V) -random and $(1, V_{\varepsilon})$ -random.

Proof. The halting probability $\Omega_{V_{\varepsilon}}$ is (ε, V) -random because of Theorem 2(b) and Theorem 3. Using this fact and Theorem 2(a) we deduce that $\Omega_{V_{\varepsilon}}$ is $(1, V_{\varepsilon})$ -random. \Box

Next we present a mechanism for producing examples of ε -universal machines.

Let *A*, *B* be infinite, prefix-free (recursively/computably) enumerable sets. Generalising the strong simulation in [3], we say that the set *A* ε -strongly simulates the set *B* (write $B \leq_{\varepsilon} A$) if there is a constant c > 0 and a partial computable function $f : \Sigma^* \xrightarrow{o} \Sigma^*$ satisfying the following three conditions:

(a) A = dom(f), (b) B = f(A) and (c) $\varepsilon \cdot |\sigma| \leq |f(\sigma)| + c$, for all $\sigma \in A$.

The function f is called an ε -strong simulation of A onto B.

Proposition 5. If *V* is a 1-universal machine and *f* is an ε -strong simulation of dom(*V*) onto a prefix-free computably enumerable set *A*, then $V \circ f$ is an ε -universal machine with domain *A*.

Proof. Recall that $(V \circ f)(p) = V(f(p))$ for all $p \in \Sigma^*$. Fix a machine *T*. Since *V* is 1-universal there exists a constant c_T such that for each $p \in \text{dom}(T)$ there exists a $\sigma \in \text{dom}(V)$ satisfying $|\sigma| \le |p| + c_T$ and $V(\sigma) = T(p)$. Since *f* is onto there exists $\tau \in A$ such that $f(\tau) = \sigma$. Since *f* is an ε -strong simulation we have $\varepsilon \cdot |\tau| \le |f(\tau)| + c = |\sigma| + c$. Combining

the previous two equations we deduce that for every $p \in \text{dom}(T)$ there exists a $\tau \in A$ such that $\varepsilon \cdot |\tau| \leq |p| + c_T + c$ and $V(f(\tau)) = T(p)$, so $V \circ f$ is ε -universal. \Box

It may seem that the difference between the cases $\varepsilon = 1$ and $0 < \varepsilon < 1$ is just technical. Here is a deeper difference. If *V* and *V'* are 1-universal machines, then their complexities H_V and $H_{V'}$ differ by at most an additive constant [1]. This result is not true for ε -universal machines. To prove the claim we construct the following sequence of machines $V_{\varepsilon,k}$ by means of a fixed 1-universal machine *V*. We let

$$f_{\varepsilon,k}(p) = \begin{cases} p0^{\lfloor (1/\varepsilon - 1)|p| - k \cdot \log(|p|) \rfloor}, & \text{if } (1/\varepsilon - 1)|p| - k \cdot \log|p| \ge 1, \\ p1, & \text{otherwise}, \end{cases}$$

$$V_{\varepsilon,k} \circ f_{\varepsilon,k} = V.$$
(4)

Note that only for finitely many strings p the value $f_{\varepsilon,k}(p)$ is defined by the otherwise-case. Furthermore, Eq. (5) means that $V_{\varepsilon,k}(f_{\varepsilon,k}(p)) = V(p)$ for all $p \in \text{dom}(V)$ and $V_{\varepsilon,k}(q)$ is undefined for all $q \notin \{f_{\varepsilon,k}(p): p \in \text{dom}(V)\}$.

Theorem 6. The following properties are true:

(a) V_{ε,k} is a machine and H<sub>V_{ε,k}(σ) = [H_V(σ)/ε - k · log H_V(σ)], for almost all strings σ,
(b) V_{ε,k} is strictly ε-universal,
(c) we have H<sub>V_{ε,k}(σ) - H<sub>V_{ε,k+1}(σ) ≥ log H_V(σ) - 1 → ∞ whenever |σ| → ∞,
(d) Ω<sub>V_{ε,k} is (ε, V)-random.
</sub></sub></sub></sub>

Proof. Properties (a)–(c) follow from (4) and (5) using the technique presented in the proof of Theorem 2. In detail, the equality in (a) can be directly checked; ε -universality follows from (a) and Lemma 1. To show that $V_{\varepsilon,k}$ is strictly ε -universal we suppose, by absurdity, that there exist two constants c, δ such that c > 0, $1 > \delta > \varepsilon$ and $\delta \cdot H_{V_{\varepsilon,k}}(\sigma) \leq H_V(\sigma) + c$ for all $\sigma \in \Sigma^*$. Then given the equality (a) we would have $(\delta/\varepsilon - 1) \leq H_V(\sigma) \leq \delta \cdot k \cdot \log H_V(\sigma) + c + \delta$, for almost all strings σ , a contradiction since H_V is unbounded. Property (c) follows from (a) and property (d) follows from (b) and Theorem 3.

4. Left-computable (ε , *V*)-random reals

We now study (ε, V) -random reals with the following reducibility relation: a real α is *H*-reducible to a real β , written $\alpha \leq_H \beta$, if there exists a 1-universal machine V and a constant c > 0 such that for all $n \geq 1$, we have $H_V(\alpha \upharpoonright n) \leq H_V(\beta \upharpoonright n) + c$. Of course, the choice of the 1-universal machine V is irrelevant. Two reals α, β are *H*-equivalent if $\alpha \leq_H \beta$ and $\beta \leq_H \alpha$.

Recall that a real γ is ε -convergent [18] if there exists an increasing computable sequence of rationals $\{a_n\}$ converging to γ such that $\sum_{n=1}^{\infty} (a_{n+1} - a_n)^{\varepsilon} < \infty$.

Theorem 7. Let V be a 1-universal machine. For every left-computable (ε, V) -random real α , $\Omega_{V_{\varepsilon}} \leq_H \alpha$.

Proof. Tadaki [19, Theorem 4.6(i) and (iv)] shows the following equivalence: a left-computable real α is (ε, V) -random iff for every left-computable ε -convergent real β there exists a constant c such that for all n, $H_V(\beta \upharpoonright n) \leq H_V(\alpha \upharpoonright n) + c$.

Now start with left-computable (ε, V) -random real α . Because $\Omega_{V_{\varepsilon}}$ is left-computable and ε -convergent we can apply the above mentioned equivalence to deduce the existence of a constant c such that $H_V(\Omega_{V_{\varepsilon}} \upharpoonright n) \leq H_V(\alpha \upharpoonright n) + c$, i.e. $\Omega_{V_{\varepsilon}} \leq_H \alpha$. \Box

Comment 8. Theorem 7 shows that $\Omega_{V_{\varepsilon}}$ is up to *H*-equivalence the least of all (ε, V) -random reals. In fact, there is one left-computable real below all other left-computable (ε, V) -random reals.

Proposition 9. Let V be a 1-universal machine. Assume that $\varepsilon \in (0, 1)$ is computable. Then, for almost all constants c, and for every string x there exist two strings y, z of length c such that

1. $H_V(xy) \ge H_V(x) + \varepsilon \cdot c + 1$, 2. $H_V(x) - \varepsilon \cdot c + 1 \le H_V(xz) \le H_V(x) + \varepsilon \cdot c - 1$.

Furthermore, z can be chosen as 0^c .

Proof. The proof follows mainly along the lines of Lemma 1 in [12] (with $\rho(x) = 2^{-\varepsilon |x|}$).

For item 1, given *x* and *c* we find *y* of length *c* such that $H_V(y|(x, H_V(x))) \ge c$; such an *y* exists by the pigeon hole principle. Then $H_V((x, y)) \ge H_V(x) + c - d$ and $H_V(xy) \ge H_V(x) + c - H_V(c) - d$, for some constant *d* independent of *c*. The first inequality follows from Theorem 2.3.6 in [8] and the second inequality follows from the first one by noting that (x, y)

can be computed from xy and c; the constant d is taken such that it satisfies both inequalities. Now all sufficiently large c satisfy $c - H_V(c) - d \ge \varepsilon \cdot c + 1$.

For item 2, note that $H_V(x)$ and $H_V(x0^c)$ differ at most by $H_V(c) + d'$ from each other, where d' is again a constant independent of c. The function $c \mapsto H_V(c) + d'$ is dominated by the function $c \mapsto \varepsilon \cdot c - 1$, hence the given inequalities hold. \Box

Theorem 10. Let *V* be a 1-universal machine. Assume that ε is a computable real in (0, 1). There exists a left-computable α and a constant *C* such that for all $n \ge 1$, $|H_V(\alpha \upharpoonright n) - n \cdot \varepsilon| \le C$.

Proof. In view of Proposition 9 there is a constant *c* such that for all $\sigma \in \Sigma^*$:

1. σ has an extension τ of length $|\sigma| + c$ such that $H_V(\tau) > H_V(\sigma) + \varepsilon \cdot c + 1$,

2. $H_V(\sigma) - c < H_V(\sigma 0^c) < H_V(\sigma) + \varepsilon \cdot c - 1$.

Let *T* be the tree of all strings $\sigma \in \Sigma^*$ whose prefixes η with $|\eta|$ are a multiple of *c* have the property $H_V(\eta) \ge \varepsilon \cdot |\eta|$. Note that whenever σ is a node of length $n \cdot c$, by the first condition, there is an extension of σ in *T* of length $n \cdot c + c$.

Let α be the left-most infinite branch of T, hence left-computable. If $H_V(\alpha \upharpoonright (n \cdot c)) > n \cdot c \cdot \varepsilon + 2c + 1$, then $\alpha \upharpoonright (n \cdot c)0^c$ is in T as

$$H_V(\alpha \upharpoonright (n \cdot c)0^c) > n \cdot c \cdot \varepsilon + c + 1 > (n \cdot c + c) \cdot \varepsilon.$$

As α is the leftmost infinite branch, $\alpha \upharpoonright (n \cdot c + c) = \alpha \upharpoonright (n \cdot c)0^c$. Consequently, by the second condition,

$$H_V(\alpha \upharpoonright (n \cdot c + c)) < H_V(\alpha \upharpoonright (n \cdot c)) + \varepsilon \cdot c - 1,$$

hence $H_V(\alpha \upharpoonright (n \cdot c + c))$ is at least by 1 less than the target $H_V(\alpha \upharpoonright (n \cdot c))$. From this it follows that $|H_V(\alpha \upharpoonright (n \cdot c)) - n \cdot c \cdot \varepsilon|$ is bounded by a constant.

The tree *T* is the intersection of trees $T_0, T_1, T_2, ...$ where each T_s contains an infinite branch β iff the initial segments σ of β of length $0 \cdot c, 1 \cdot c, ..., s \cdot c$ satisfy the inequality $H_{V,s}(\sigma) \ge \varepsilon \cdot |\sigma|$. The left-most branches α_s of T_s are uniformly computable and approximate α from the left, hence α is left-computable. \Box

Comment 11. Note that in [12] an essentially similar construction for the real α in Theorem 10 was given; the new fact in Theorem 10 is the property of α to be left-computable. If one does not need the left-computable part of the result, one can construct α by a simple induction: append the corresponding strings previously obtained and keep the complexity of $\alpha(0)\alpha(1)...\alpha(n)$ to be $\varepsilon \cdot n$ up to an additive constant. This method does not work with $\varepsilon = 1$ as it is known that whenever $H_V(\alpha(0)\alpha(1)...\alpha(n)) \ge n - c$ for all n then

$$\forall d \,\forall^{\infty} n \left[H_V \left(\alpha(0) \alpha(1) \dots \alpha(n) \right) \ge n + d \right]$$

Hence the existence of α in Theorem 10 holds only $0 < \varepsilon < 1$, another difference between 1-randomness and ε -randomness.

Corollary 12. Assume that ε is computable in (0, 1) and V is a 1-universal machine.

- a) There is a constant C such that for all n, $|H_V(\Omega_{V_{\varepsilon}} \upharpoonright n) \varepsilon \cdot n| \leq C$.
- b) The real $\Omega_{V_{\varepsilon}}$ is strictly (ε, V) -random.

Proof. From Corollary 4, $\Omega_{V_{\varepsilon}}$ is (ε, V) -random. In view of Theorem 10 there exists a left-computable real α and a constant *C* such that for all n, $|H_V(\alpha \upharpoonright n) - \varepsilon \cdot n| \leq C$. In particular, α is left-computable and (ε, V) -random, so by Theorem 7 there exists a constant *c* such that for all *n*:

$$H_V(\Omega_{V_c} \upharpoonright n) \leqslant H_V(\alpha \upharpoonright n) + c \leqslant \varepsilon \cdot n + c + C.$$
(6)

The converse inequality comes from Corollary 4.

Finally, b) is a consequence of (6). \Box

It is well known that Ω_V is Borel absolutely normal³ [1]. If $\alpha = 0.\alpha_1\alpha_2\cdots$ is (1, V)-random then the real $\beta = 0.\alpha_10\alpha_20\cdots$ is (1/2, V)-random and not Borel normal (because in its binary expansion, in the limit, the frequency of 0s is three times larger than the frequency of 1s).

We show now that $\Omega_{V_{\varepsilon}}$ is more than not Borel normal:

³ A real is absolutely Borel normal if its digits, in every base, follow the uniform distribution: all digits are equally likely, all pairs of digits are equally likely, all triplets of digits are equally likely, etc.

Proposition 13. Let *V* be a 1-universal machine. Assume that ε is computable in (0, 1) and α is a left-computable real such that there is a constant *C* such that for all n, $|H_V(\alpha \upharpoonright n) - \varepsilon \cdot n| \leq C$. Then, for every binary string τ there is a constant *c* such that τ^c is not an infix of α .

Proof. The proof follows along the lines of the proof of Proposition 9. To see this, note that for every strings σ , τ and positive integer *c* we have

$$H_V(\sigma\tau^c) \leqslant H_V(\sigma) + H_V(\tau) + H_V(c) + d,$$

for some constant *d* independent of σ , τ , *c*. Hence, if all prefixes σ of α satisfy the inequality

 $|\sigma| \cdot \varepsilon - c' \leqslant H_V(\sigma) \leqslant |\sigma| \cdot \varepsilon + c',$

then for every τ there is a value for *c* such that

 $H_V(\tau) + H_V(c) + d < \varepsilon \cdot c - 2c',$

and thus whenever $H_V(\sigma) \leq |\sigma| \cdot \varepsilon + c'$ we have $H_V(\sigma \tau^c) < |\sigma \tau^c| \cdot \varepsilon - c'$ and $\sigma \tau^c$ is not a prefix of α . \Box

Corollary 14. For every binary string τ there is a constant c such that τ^c does not occur in Ω_{V_s} as a substring.

Proof. Use Corollary 12(a) and Proposition 13. \Box

Comment 15. If $\alpha = 0.\alpha_1\alpha_2 \cdots$ is (1, V)-random then the real $\beta = 0.\alpha_1\alpha_1\alpha_2\alpha_2 \cdots$ is (1/2, V)-random but does not satisfy the hypothesis of Proposition 13.

5. Representability of left-computable (ε , *V*)-random reals

In this section we generalise the representability of left-computable random reals [3,11] for the case of left-computable (ε , V)-random reals.

Theorem 16. Let *V* be a 1-universal machine. Every left-computable (ε, V) -random number in (0, 1] is the halting probability of an ε -universal machine.

Proof. Given *V* and ε we consider the machine V_{ε} defined by (1). Recall that dom(V_{ε}) is the set of all strings $p0^{\lfloor (1/\varepsilon - 1)|p| \rfloor}$ with $p \in \text{dom}(V)$. Now $\Omega_{V_{\varepsilon}}$ can be represented by the sum $\sum_{q \in \text{dom}(V_{\varepsilon})} 2^{-|q|}$. This sum is ε -convergent, as

$$\sum_{q \in \operatorname{dom}(V_{\varepsilon})} \left(2^{-|q|}\right)^{\varepsilon} \leq \sum_{p \in \operatorname{dom}(V)} \left(2^{1-|p|/\varepsilon}\right)^{\varepsilon} \leq \sum_{p \in \operatorname{dom}(V)} 2^{\varepsilon-|p|} \leq 2^{\varepsilon} \cdot \Omega_V < \infty$$

Hence $\Omega_{V_{\varepsilon}}$ is ε -convergent.

By Theorem 4.6 (i,v) in [19], given a left-computable and (ε, V) -random real α we can construct a left-computable real $\beta \ge 0$ and a rational q > 0 (in fact, we can take q to be 2^{-m} , for some m > 0) such that $\alpha = \beta + 2^{-m} \cdot \Omega_{V_{\varepsilon}}$, hence

$$\begin{aligned} \alpha &= \beta + 2^{-m} \cdot \sum_{\substack{p \in \operatorname{dom}(V_{\varepsilon})}} 2^{-|p|} \\ &= 2 \cdot \sum_{\substack{r \in \operatorname{dom}(T)}} 2^{-|r|-1} + \sum_{\substack{p \in \operatorname{dom}(V_{\varepsilon})}} 2^{-|p|-m} \end{aligned}$$

where the machine *T* is constructed from the left-computable real β using the Kraft–Chaitin Theorem. Define now the ε -universal machine *W* by the formula:

$$W(s) = \begin{cases} 0, & \text{if } s = 1r \text{ and } r \in \text{dom}(T), \\ V_{\varepsilon}(s), & \text{if } s = 0^m p \text{ and } p \in \text{dom}(V_{\varepsilon}), \\ \infty, & \text{otherwise,} \end{cases}$$

and notice that its domain is the disjoint union of the sets $\{1r: r \in \text{dom } T\} \cup \{0^m p: p \in \text{dom}(V_{\varepsilon})\}$, hence

$$\alpha = \sum_{s \in \operatorname{dom}(W)} 2^{-|s|} = \Omega_W. \quad \Box$$

6. Provability of left-computable (ε, V) -random reals

Peano Arithmetic (see [10], shortly, PA) is the first-order theory given by a set of 15 axioms defining discretely ordered rings, together with induction axioms for each formula $\varphi(x, y_1, \ldots, y_n)$: $\forall \overline{y}(\varphi(0, \overline{y}) \land \forall x(\varphi(x, \overline{y}) \rightarrow \varphi(x+1, \overline{y})) \rightarrow \forall x(\varphi(x, \overline{y})))$.

The proof in [2] can be adapted to show that *every left-computable* (ε, V) -random real is provable (ε, V) -random in PA. This means the following: if PA is given an algorithm for computing the computable real ε , an algorithm for a machine U, a proof that U is prefix-free and ε -universal, then it can prove that Ω_U is left-computable and (ε, V) -random. This proof requires ε to be defined in terms of primitive recursive functions, which is always possible by a result in [13].⁴

Another representation which can be used to prove (ε, V) -randomness is the following: if PA is given an algorithm for computing the computable real ε , an algorithm for a machine V, a proof that V is prefix-free and ε -universal, a positive integer c, and a computable increasing sequence of rationals converging to a real $\gamma > 0$, then PA can prove that $\alpha = 2^{-c} \cdot \Omega_V + \gamma$ is (ε, V) -random.

Is any "representation" of an (ε, V) -random real enough to guarantee PA provability of (ε, V) -randomness? To answer this question we fix an effective enumeration of all left-computable reals in (0, 1), $\{\gamma_i\}$. Such an enumeration can be based on an enumeration of all increasing primitive recursive sequences of rationals in (0, 1). Our question becomes: based solely on the index *i* can we always prove in PA that " γ_i is (ε, V) -random real" in case γ_i is (ε, V) -random real? We answer this question in the negative. To this aim we define the following sets:

 $\mathfrak{R}_{lc} = \{ \gamma \in (0, 1): \gamma \text{ is left-computable} \} = \{ \gamma_i \},\$

 $\mathfrak{R}_{lc}(\varepsilon, V) = \{ \gamma \in \mathfrak{R}_{lc} : \gamma \text{ is } (\varepsilon, V) \text{-random} \},\$

 $\mathfrak{R}_{lc}^{PA}(\varepsilon, V) = \big\{ \gamma \in \mathfrak{R}_{lc} \colon \gamma \text{ is provable } (\varepsilon, V) \text{-random in PA} \big\}.$

By enumerating proofs in PA we deduce that the set $\Re_{lc}^{PA}(\varepsilon, V)$ is computably enumerable.⁵ Is $\Re_{lc}(\varepsilon, V)$ computably enumerable?

We use Lemma 26 from [2]:

Lemma 17. If $A \subseteq \mathfrak{R}_{lc}$ is computably enumerable, then for every left-computable reals $\alpha, \beta \in A$ such that $\beta > \alpha$, we have $\beta \in A$.

Theorem 18. The set $\mathfrak{R}_{lc}(\varepsilon, V)$ is not computably enumerable, so there exists $\alpha \in \mathfrak{R}_{lc}(\varepsilon, V) \setminus \mathfrak{R}_{lc}^{PA}(\varepsilon, V)$.

Proof. Consider $\alpha \in \mathfrak{R}_{lc}(\varepsilon, V)$ and define the left-computable real β in the following way. If $\alpha \ge 1/2$, then the real $\beta = (\alpha \upharpoonright n)11\cdots 1\cdots$ (where $\alpha \upharpoonright (n+1) = 1^n 0$); if $\alpha < 1/2$ consider the left-computable real $\beta = (\alpha \upharpoonright n)11\cdots 1\cdots$ (where $\alpha \upharpoonright (n+1) = 0^m 1^{n-m} 0$). In both cases $\beta > \alpha$ and $\beta \notin \mathfrak{R}_{lc}(\varepsilon, V)$, which shows, by Lemma 17, that $\mathfrak{R}_{lc}(\varepsilon, V)$ is not computably enumerable, thus concluding the proof. \Box

In fact, a more precise result is true:

Theorem 19. For every $\alpha \in \mathfrak{R}_{lc}(\varepsilon, V)$ there exists an index *i* such that $\alpha = \gamma_i$ and PA cannot prove the statement " γ_i is (ε, V) -random."

Proof. The set $A_{\alpha} = \{\gamma_i: \alpha = \gamma_i\} \subset \Re_{lc}(\varepsilon, V) \subset \Re_{lc}$ is not computably enumerable. \Box

7. Stay's conjecture

Stay [14] studied generalisations of the statement that Ω_U is random for every 1-universal machine *U*. In particular he conjectured that Ω_U is (1, U)-random for every ε -universal machine *U*. Although our results show that Ω_U is (ε, V) -random (for a 1-universal machine *V*; Theorem 3) and the conjecture is true for V_{ε} (Corollary 4), it turns out that the conjecture itself is too general and does not hold. We provide now a strong counterexample.

Theorem 20. There exists a $\frac{1}{16}$ -universal machine U such that Ω_U is not $(\frac{1}{2}, U)$ -random, hence not (1, U)-random.

Proof. Let *V* be a 1-universal machine. From *V* and input σ we define $U(\sigma)$ using a parameter τ which satisfies the right-hand side conditions in the following definition:

⁴ The proof in [2] has been precisely formalised and mechanically proved in the interactive theorem prover Isabelle [7]. It should be straight forward to adapt this proof to the more general ε -random case.

⁵ Recall that a set $A \subseteq \mathfrak{R}_{lc}$ is computably enumerable if the set $\{i \in \mathbb{N}: \gamma_i \in A\}$ is computable enumerable (as a set of non-negative integers). In such a set we enumerate all indices for all elements in A [9].

$$U(\sigma) = \begin{cases} \tau 0^{16n}, & \text{if } \exists n > 0 \ [\sigma = 1^n 0\tau \text{ and } |\tau| = 8n], \\ V(\tau), & \text{if } \exists n, m > 0, \ \tau \in \text{dom}(V) \\ & [\sigma = 0\tau 0^n 1, \ |\sigma| = 4^{m+1} \text{ and } |\tau| \leqslant 4^m], \\ \infty, & \text{otherwise.} \end{cases}$$

Clearly, *U* is a machine. Given $\tau \in \text{dom}(V)$, let $m_{\tau} = \min\{k > 0: |\tau| \leq 4^k\}$ and $n_{\tau} = 4^{m_{\tau}+1} - |\tau| - 2$. Then $U(0\tau 0^{n_{\tau}} 1) = V(\tau)$ and $|0\tau 0^{n_{\tau}} 1| \leq 16 \cdot |\tau|$, hence *U* is $\frac{1}{16}$ -universal.

Now consider the binary expansion of the halting probability Ω_U . The first bit after the dot is 1 as the strings starting with 1 contribute $\frac{1}{2}$ to the halting probability of U. Furthermore, the strings of length 4^{m+1} starting with a 0 in the domain of U contribute $4^{-m-1} \cdot a_m$ to the halting probability of U; here a_m is the number of strings up to the length 4^m in the domain of V. Because $a_m < 2^{4^m}$ it follows that a_m can be written with 4^m bits. So, in the binary expansion of Ω_U , the bits from the positions $4^m + 1$ until $3 \cdot 4^m$ are all 0; the bits from the positions $3 \cdot 4^{m+1} + 1$ to 4^{m+1} describe the binary value of a_m .

Let $m \ge 4$, $8n = 4^m$ and let τ be the string of the first 8n bits of Ω_U after the dot. Then $U(1^n 0\tau) = \tau 0^{16n}$ is a prefix of Ω_U of length 24*n* which is generated by the program $1^n 0\tau$ of length 9n + 1 as Ω_U has 0s on the positions $4^m + 1, \ldots, 3 \cdot 4^m$ and $24n \le 3 \cdot 4^m$. Consequently, Ω_U is not $(\frac{1}{2}, U)$ -random. \Box

8. Conclusion

In this paper we have introduced the notion of ε -universal machine and studied its halting probability. An ε -universal machine is capable of simulating every other machine, but less efficiently than a universal machine *V*. More precisely, the length of the simulating program on the universal machine is bounded up to a fixed constant by the length of the simulated program divided by ε . The halting probability of an ε -universal machine is left-computable and (ε , *V*)-random. The main result of this paper is the extension of the representability theorem for left-computable random reals to the case of ε -random reals: *a real is left-computable and* (ε , *V*)-random *iff it is the halting probability of an* ε -universal machine. Furthermore, we showed that left-computable ε -random reals are provable (ε , *V*)-random in Peano Arithmetic, for some, but not all of their representations. Finally we refuted Stay's conjecture stating that Ω_U is (1, *U*)-random provided *U* is ε -universal.

Acknowledgments

We thank Mike Stay for suggesting the definition of ε -universal machine, Kohtaro Tadaki for suggesting a simplification of the definition of V_{ε} , and both for valuable discussions. We also thank the anonymous referees for many comments and suggestions that improved the presentation.

References

- [1] Cristian S. Calude, Information and Randomness. An Algorithmic Perspective, 2nd edition, revised and extended, Springer-Verlag, Berlin, 2002.
- [2] Cristian S. Calude, Nicholas J. Hay, Every computably enumerable random real is provably computably enumerable random, Logic J. IGPL 17 (2009) 325–350.
- [3] Cristian S. Calude, Peter Hertling, Bakhadyr Khoussainov, Yongge Wang, Recursively enumerable reals and Chaitin Ω numbers, in: M. Morvan, C. Meinel, D. Krob (Eds.), Proceedings of the 15th Symposium on Theoretical Aspects of Computer Science, Paris, Springer-Verlag, Berlin, 1998, pp. 596–606, full paper in Theoret. Comput. Sci. 255 (2001) 125–149.
- [4] Cristian S. Calude, Ludwig Staiger, Sebastiaan A. Terwijn, On partial randomness, Ann. Pure Appl. Logic 138 (2006) 20-30.
- [5] Gregory J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Machinery 22 (1975) 329–340.
- [6] Gregory J. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987 (3rd printing 1990).
- [7] Nicholas J. Hay, Isabelle proof of the theorem "left-computable random reals are provable random in Peano Arithmetic", http://www.cs.auckland.ac.nz/~ nickjhay/SolovayRepresentation.thy.
- [8] André Nies, Computability and Randomness, Oxford Press, Oxford, 2009.
- [9] Piergiorgio G. Odifreddi, Classical Recursion Theory, vol. 1, Elsevier, 1997.
- [10] Richard Kaye, Models of Peano Arithmetic, Oxford Press, Oxford, 1991.
- [11] Antonin Kučera, Theodore A. Slaman, Randomness recursive enumerability, SIAM J. Comput. 31 (1) (2001) 199-211.
- [12] Jan Reimann, Frank Stephan, On hierarchies of randomness tests, in: S.S. Goncharov, H. Ono, R. Downey (Eds.), Proceedings of the 9th Asian Logic Conference, "Mathematical Logic in Asia", World Scientific, Singapore, 2006, pp. 215–232.
- [13] Dimiter Skordev, Characterization of the computable real numbers by means of primitive recursive functions, in: J. Blanck, V. Brattka, P. Hertling (Eds.), Proceedings of Computability and Complexity in Analysis 2000, in: Lecture Notes in Comput. Sci., vol. 2064, Springer-Verlag, Berlin, 2001, pp. 296–309.
 [14] Mike Stay, Personal communication to C. Calude, 7 May 2007.
- [15] Rorbert M. Solovay, Draft of a paper (or series of papers) on Chaitin's work ... done for the most part during the period of Sept.-Dec. 1974, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.
- [16] Ludwig Staiger, Kolmogorov complexity and Hausdorff dimension, Inform. and Comput. 103 (1993) 159-194.
- [17] Ludwig Staiger, A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Syst. 31 (1998) 215-229.
- [18] Kohtaro Tadaki, A generalization of Chaitin's halting probability Ω and halting self-similar sets, Hokkaido Math. J. 31 (2002) 219–253.
- [19] Kohtaro Tadaki, Equivalent characterizations of partial randomness for recursively enumerable real, arXiv:0805.2691, 2008 (also at http://ims.nju.edu. cn/conference/randomness/tadaki.pdf).