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1. Introduction

A real o is left-computable (or recursively/computably enumerable) if there is a computable increasing sequence of
rationals which converges to «. Left-computable random reals can be characterised using various tools including prefix-
complexity, Martin-L6f tests, martingales, Chaitin Omega numbers and universal probability [1,3,5,6,8,11,15].

Some left-computable reals are not random, but “partially random.” For example, inserting a 0O in between adjacent
bits of a (left-computable) random sequence produces a non-random sequence, having some weak randomness properties:
this sequence is, as intuition suggests, left-computable (because it is left-approximated by approximations of the original
sequence in which a 0 was inserted in between each adjacent bits) and 1/2-random.

The papers [4,12,16-19] have studied the degree of randomness of reals (or sequences) by measuring their “degree
of compression.” In what follows ¢ is a fixed computable real number with 0 < & < 1. We study &-randomness of reals,
both intrinsically and in relation to the classical notion of randomness (which corresponds to € =1, here referred to as
1-randomness or simply randomness).

Our main tool is the ¢-universal prefix-free Turing machine, a machine that can simulate any other prefix-free machine:
the length of the simulating program on the e-universal machine is bounded up to a fixed constant by the length of the
simulated program divided by €. In case € =1 we get the classical notion of universal machine.

We show that the halting probability of an e-universal prefix-free Turing machine is left-computable and e-random. Gen-
eralising the corresponding representability theorem of left-computable random reals [1,3,8,11] we show that the converse
is also true: every left-computable e-random real is the halting probability of an e-universal prefix-free Turing machine.
A specific e-universal Turing machine V, is obtained via Eq. (1) below; the main principle is to “dilute” a universal Turing
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machine V. This machine plays an important role as its halting probability is the least with respect to H-reducibility of all
g-random reals.

The theory developed here parallels to a large extent the classical theory, but not completely. The following two results
show interesting differences: (a) the prefix-free complexities induced by universal machines differ by at most an additive
constant, but the difference between prefix-free complexities induced by e-universal machines may be unbounded, (b) ran-
dom reals are Borel normal (in any base), but some ¢-random reals do not contain even arbitrarily long runs of Os.

The paper is organised as follows. In Section 2 we present the necessary notation and previous results. In Section 3 we
introduce and study e-universal machines and their halting probabilities. In Section 4 we study left-computable &-random
reals and in Section 5 we present the representability theorem for left-computable €-random reals. In Section 6 we discuss
the provability in the Peano Arithmetic of e-randomness for left-computable reals. In Section 7 we disprove Stay’s conjecture
regarding the 1-randomness (with respect to U) of the halting probability of an e-universal machine U. We end with a few
conclusions.

2. Notation and background

Let X ={0, 1} and denote by X" and X* the set of all bit-strings of length n and the set of all bit-strings, respectively.
The length of 0 € X* is denoted by |o|. By logn we abbreviate the function [log,(n + 1)]. Let N={1,2,...} and let
bin:N — X* be the bijection which associates to every n > 1 its binary expansion without the leading 1.

To every infinite binary sequence a1y --- o - -~ we associate the real number o = 0.«¢j¢t - - o - - - in (0, 1]. We denote
by o [n =03 - - - oy the prefix of length n of «’s expansion. In this way, reals are identified with infinite binary sequences.
Similarly, if X =Xx1x2---X,--- is an infinite sequence, X [ n =X1Xx2 - - - Xp.

We assume that the reader is familiar with algorithmic information theory, cf. [1,8] and present only a few notions to
fix the notation.

If the Turing machine T is defined on o we write T (o) < co; the domain of T is the set dom(T) = {0 € X*: T(0) < o0}.
A prefix-free (Turing) machine is a Turing machine whose domain is a prefix-free set of strings. The prefix complexity of
a string induced by a prefix-free machine W is Hy (o) = inf{|p|: W(p) = o}. From now on all Turing machines will be
prefix-free and will be referred to as machines.

We use several times the Kraft-Chaitin Theorem: given a computable enumeration of positive integers n; such that
Y127 < 1, we can effectively construct a prefix-free set of binary strings {x;} such that |x;| =n;, for all i > 1.

Throughout the whole paper € is assumed to be a computable real in the interval (0, 1]. Fix a machine W. A sequence X is
Chaitin (e, W)-random if there is a constant ¢ > 0 such that for every n > 1, Hyw (X [n) > € -n — c¢; x is strictly Chaitin
(¢, W)-random if x is Chaitin (¢, W)-random, but not Chaitin (§, W)-random for any § with & <§ < 1.

If W is universal (from now on called 1-universal), then we get Tadaki's definition of weak Chaitin e-randomness (see
[4,18]). If W is 1-universal and ¢ = 1, then we get Chaitin’s classical definition of randomness [5,6]. A real is Chaitin
(¢, W)-random (shortly, (¢, W)-random) if its binary expansion is Chaitin (g, W)-random.

For any prefix-free set A C ¥* we define 24 =), ., 27Kl The halting probability of a machine W is Q2w =
erdom(W) 27‘,("

Following Tadaki [18], for any (not necessarily prefix-free) set W € X* and computable § > 0 we write u’(W) =
Y wew 275WLIf 8 > 1 and W is prefix-free, then u®(W) < 2w < 1. However, if 0 <§ < 1 then we can have (W) = oo
even for prefix-free W (for example, for W = {1'°8"0bin(n): n> 0} and 0 <8 < 1/2).

3. e-universal machines

In this section we introduce and study the notion of e-universal machine.
In analogy with the classical case we say, following Stay [14], that a machine U is ¢-universal if for every machine T
there exists a constant cy r such that for each program o € dom(T) there exists a program p € dom(U) such that

U(p)=T(o)ande - |p|<|o|+cu,r-

If e =1 we get the classical notion of universal machine. Every universal machine is e-universal, but the converse is not
true (see Theorem 2).
A machine U is strictly e-universal if U is e-universal but not §-universal for any § with ¢ <& <1.

Lemma 1. The machine U is e-universal iff there exists a 1-universal machine V and a constant cy, v such that for all 0 € X* we have
€-Hy(o)<Hy(o)+cy,v.

Theorem 2. Let V be a 1-universal machine and define

Vg(p()LU/E—])lle) =V(p). (1)
Then:
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(a) V¢ is amachine and for allo € X* we have Hy, (o) = |[Hv (0) /€],
(b) Vg is strictly e-universal.

Proof. Clearly V. is a machine and the equality in (a) can be directly checked. From (a) and Lemma 1 we deduce the
e-universality of V. If there were a constant ¢ such that for all 0 € ¥*, § - Hy,(0) < Hy(0) +¢, for some ¢ <§ <1, then
in view of (a) we would have (§/e —1)-Hy (o) < c+3, for all o € X¥*, a contradiction (Hy is unbounded). So, V is strictly
g-universal. O

Theorem 3. Let V be a 1-universal machine. Then for every €-universal machine U, 2y is (&, V)-random.

Proof. Let f be a computable one-to-one function which enumerates dom(U). Let wy = Z’;‘:1 271FDI, Clearly, (wy) is a
computable, increasing sequence of rationals converging to £2y. Consider the binary expansion of 2y =0.£21£2;---.

We define a machine T as follows: on input o € X*, T first “tries to compute” the smallest number t with w; > 0.0. If
successful, T(o) is the first (in quasi-lexicographical order) string not belonging to the set {U(f(1)),U(f(2)),...,U(f(®))};
if no such t exists then T (o) = oc.

Fix a number m > 1 and note that T is defined on 2y [ m. Let t be the smallest number (computed in the first step of
the computation of T) with w; > 0.2y | m. We have

o
0.2u Im<w <o+ Y 27V =gy<02y m+27".
s=t+1

Hence, 3%, 1 27/l <27™ which implies | f(s)| >m, for every s >t + 1. From the construction of T we conclude that

Hy(T(2y [m)) >m. (2)

Since T is a partially computable function, we get a constant ¢’ such that for all o € X* for which T(0) < co we have:

Hy(T(0)) <Hy(o)+c. 3)

Using (2), the e-universality of U, and (3) we obtain

e-m<e-Hy(T(Qy | m))
<Hy(T(Qu [m)) +c
<Hy(Qu [m)+c+c,

which proves that 2y is (¢, V)-random. O
Corollary 4. If V be a 1-universal machine, then 2y, is (¢, V)-random and (1, V¢)-random.

Proof. The halting probability 2y, is (¢, V)-random because of Theorem 2(b) and Theorem 3. Using this fact and Theo-
rem 2(a) we deduce that L2y, is (1, V¢)-random. O

Next we present a mechanism for producing examples of ¢-universal machines.
Let A, B be infinite, prefix-free (recursively/computably) enumerable sets. Generalising the strong simulation in [3], we
say that the set A e-strongly simulates the set B (write B <, A) if there is a constant ¢ > 0 and a partial computable function

f.x* A i satisfying the following three conditions:

(a) A=dom(f),
(b) B= f(A) and
(c) e-lo| < |f(o)| +c, forall o € A.

The function f is called an e-strong simulation of A onto B.

Proposition 5. If V is a 1-universal machine and f is an e-strong simulation of dom(V') onto a prefix-free computably enumerable
set A, then V o f is an e-universal machine with domain A.

Proof. Recall that (V o f)(p) = V(f(p)) for all p € X*. Fix a machine T. Since V is 1-universal there exists a constant
cr such that for each p € dom(T) there exists a 0 € dom(V) satisfying |o| < |p| +cr and V(o) = T(p). Since f is onto
there exists T € A such that f(r) =o. Since f is an ¢-strong simulation we have ¢ - |t| < |f(7)| + ¢ = |o| + c. Combining
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the previous two equations we deduce that for every p € dom(T) there exists a T € A such that € - |7| < |p| + c¢r + ¢ and
V(f(t))=T(p), so Vo f is e-universal. O

It may seem that the difference between the cases € =1 and 0 < & < 1 is just technical. Here is a deeper difference. If V
and V’ are 1-universal machines, then their complexities Hy and Hy differ by at most an additive constant [1]. This result
is not true for e-universal machines. To prove the claim we construct the following sequence of machines V, ; by means of a
fixed 1-universal machine V. We let

_ [ poL/e=Dlpl=klos(pDl i (1/¢ — 1)|p] —k - log|p| > 1, 4
fek(p) {p], otherwise, ?
Va,k o fa,k =V. ®)

Note that only for finitely many strings p the value f x(p) is defined by the otherwise-case. Furthermore, Eq. (5) means
that V¢ x(fe x(p)) =V (p) for all p e dom(V) and V, ((q) is undefined for all q ¢ {fz x(p): p € dom(V)}.

Theorem 6. The following properties are true:

(@) Vg isamachineand Hy, (o) = |[Hy(0)/¢ —k-log Hy ()], for almost all strings o,
(b) Vg i is strictly e-universal,

(c) we have Hy,, (0) — Hy,,,,(0) 2 logHy (o) — 1 — oo whenever |o| — oo,

(d) v, is (e, V)-random.

Proof. Properties (a)-(c) follow from (4) and (5) using the technique presented in the proof of Theorem 2. In detail, the
equality in (a) can be directly checked; ¢-universality follows from (a) and Lemma 1. To show that V, y is strictly ¢-universal
we suppose, by absurdity, that there exist two constants ¢, such that c>0,1>8§>¢ and - Hy, ,(0) < Hy (o) +c for all
o € X*. Then given the equality (a) we would have (§/¢ —1) < Hy (o) <é-k-logHy (o) +c+ 8, for almost all strings o,
a contradiction since Hy is unbounded. Property (c) follows from (a) and property (d) follows from (b) and Theorem 3. O

4. Left-computable (&, V)-random reals

We now study (¢, V)-random reals with the following reducibility relation: a real o is H-reducible to a real 8, writ-
ten o <y B, if there exists a 1-universal machine V and a constant ¢ > 0 such that for all n > 1, we have Hy(x [ n) <
Hy (B [ n) + c. Of course, the choice of the 1-universal machine V is irrelevant. Two reals «, 8 are H-equivalent if @ <y 8
and g <y «.

Recall that a real y is e-convergent [18] if there exists an increasing computable sequence of rationals {a,} converging to
y such that > 22 (an+1 — ap)® < oco.

Theorem 7. Let V be a 1-universal machine. For every left-computable (¢, V)-random real o, 2y, <y c.

Proof. Tadaki [19, Theorem 4.6(i) and (iv)] shows the following equivalence: a left-computable real « is (¢, V)-random iff
for every left-computable £-convergent real § there exists a constant ¢ such that for all n, Hy (8 [n) < Hy(x [ n) +c.

Now start with left-computable (¢, V)-random real «. Because £2v, is left-computable and ¢-convergent we can apply
the above mentioned equivalence to deduce the existence of a constant ¢ such that Hy(2y, [ n) < Hy(a [ n) +c, ie.
st <ya. O

Comment 8. Theorem 7 shows that £y, is up to H-equivalence the least of all (¢, V)-random reals. In fact, there is one
left-computable real below all other left-computable (g, V)-random reals.

Proposition 9. Let V be a 1-universal machine. Assume that € € (0, 1) is computable. Then, for almost all constants c, and for every
string x there exist two strings y, z of length c such that

1. Hy(xy) > Hy(X)+¢-c+1,
2. Hy(x) —e¢-c+1<Hy(xz)<Hy(Xx)+¢-c—1.

Furthermore, z can be chosen as 0°.

Proof. The proof follows mainly along the lines of Lemma 1 in [12] (with p(x) =27¢K),

For item 1, given x and ¢ we find y of length ¢ such that Hy (y|(x, Hy (x))) > c; such an y exists by the pigeon hole
principle. Then Hy ((x, y)) > Hy (x) +c—d and Hy (xy) > Hy (x) + ¢ — Hy (c) —d, for some constant d independent of c. The
first inequality follows from Theorem 2.3.6 in [8] and the second inequality follows from the first one by noting that (x, y)
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can be computed from xy and c; the constant d is taken such that it satisfies both inequalities. Now all sufficiently large c
satisfy c — Hy(c) —d>¢€-c+1.

For item 2, note that Hy (x) and Hy (x0°) differ at most by Hy (c) + d’ from each other, where d’ is again a constant
independent of c. The function ¢ — Hy(c) +d’ is dominated by the function ¢ — & - ¢ — 1, hence the given inequalities
hold. O

Theorem 10. Let V be a 1-universal machine. Assume that ¢ is a computable real in (0, 1). There exists a left-computable o and a
constant C such that foralln > 1, |Hy (o [n) —n-&| < C.

Proof. In view of Proposition 9 there is a constant c such that for all o € X¥*:

1. o has an extension 7 of length |o| + ¢ such that Hy(t) > Hy (o) +¢€-c+1,
2. Hy(o0) —c<Hy (00 <Hy(o)+e-c—1.

Let T be the tree of all strings o € X* whose prefixes n with |n| are a multiple of ¢ have the property Hy (1) > ¢ - |n|. Note
that whenever o is a node of length n - ¢, by the first condition, there is an extension of ¢ in T of length n-c+c.

Let « be the left-most infinite branch of T, hence left-computable. If Hy (@ [ (n-¢)) >n-c-&+2c+ 1, then « | (n - ¢)0¢
isin T as

Hy(a (- 0)0)>n-c-e+c+1>m-c+c)-¢.

As « is the leftmost infinite branch, & [ (n-c+c¢) =« | (n-¢)0°. Consequently, by the second condition,

Hy(al(-c+0))<Hy(xlm-0)+e-c—1,

hence Hy (o [ (n-c+c)) is at least by 1 less than the target Hy (« | (n-c)). From this it follows that |[Hy (@ [ (n-c)) —n-c-¢&|
is bounded by a constant.

The tree T is the intersection of trees Tg, T1, T2, ... where each T contains an infinite branch g iff the initial segments
o of B oflength 0-c,1-¢,...,s-c satisfy the inequality Hy s(0) > ¢ - |o|. The left-most branches «; of Ts are uniformly
computable and approximate o« from the left, hence « is left-computable. O

Comment 11. Note that in [12] an essentially similar construction for the real o in Theorem 10 was given; the new fact
in Theorem 10 is the property of « to be left-computable. If one does not need the left-computable part of the result, one
can construct o by a simple induction: append the corresponding strings previously obtained and keep the complexity of
a(0)x(1)...(n) to be € -n up to an additive constant. This method does not work with ¢ =1 as it is known that whenever
Hy (@(0)ax(1)...a()) =>n—c for all n then

vd V°n [Hy ((0)x(1)...a(n)) >n+d].

Hence the existence of « in Theorem 10 holds only 0 < ¢ < 1, another difference between 1-randomness and &-randomness.
Corollary 12. Assume that ¢ is computable in (0, 1) and V is a 1-universal machine.

a) There is a constant C such that for alln, |Hy (2y, [n) — ¢ -n| < C.
b) The real 2y, is strictly (¢, V)-random.

Proof. From Corollary 4, 2y, is (¢, V)-random. In view of Theorem 10 there exists a left-computable real o and a constant
C such that for all n, |[Hy (a [n) — ¢ -n| < C. In particular, « is left-computable and (g, V)-random, so by Theorem 7 there
exists a constant ¢ such that for all n:

Hy(Q2y, [n) <Hy(a[n)+c<e-n+c+C. (6)

The converse inequality comes from Corollary 4.
Finally, b) is a consequence of (6). O

It is well known that 2y is Borel absolutely normal? [1]. If ¢ = 0.¢tqap--- is (1, V)-random then the real g =
0.0¢100t0--- is (1/2,V)-random and not Borel normal (because in its binary expansion, in the limit, the frequency of
Os is three times larger than the frequency of 1s).

We show now that £y, is more than not Borel normal:

3 A real is absolutely Borel normal if its digits, in every base, follow the uniform distribution: all digits are equally likely, all pairs of digits are equally
likely, all triplets of digits are equally likely, etc.
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Proposition 13. Let V be a 1-universal machine. Assume that € is computable in (0, 1) and « is a left-computable real such that there
is a constant C such that for alln, |Hy (o | n) — & - n| < C. Then, for every binary string t there is a constant ¢ such that t°€ is not an
infix of «.

Proof. The proof follows along the lines of the proof of Proposition 9. To see this, note that for every strings o, 7 and
positive integer ¢ we have

Hy(0t°) <Hy(o)+Hy(t) + Hy(c) +d,

for some constant d independent of o, 7, c. Hence, if all prefixes o of « satisfy the inequality
lo]-& —c' <Hy(0)<lo| &+,

then for every t there is a value for ¢ such that
Hy(t)+ Hy()+d<ege-c—2c,

and thus whenever Hy (o) < |o|-&+c¢ we have Hy (0 t°) < |ot¢|-& — ¢ and 0 7€ is not a prefix of . O
Corollary 14. For every binary string T there is a constant ¢ such that T¢ does not occur in §2y, as a substring.
Proof. Use Corollary 12(a) and Proposition 13. O

Comment 15. If « = 0.1z -+ is (1, V)-random then the real 8 = 0.2z - -+ is (1/2, V)-random but does not satisfy
the hypothesis of Proposition 13.

5. Representability of left-computable (¢, V)-random reals

In this section we generalise the representability of left-computable random reals [3,11] for the case of left-computable
(¢, V)-random reals.

Theorem 16. Let V be a 1-universal machine. Every left-computable (¢, V)-random number in (0, 1] is the halting probability of an
g-universal machine.

Proof. Given V and ¢ we consider the machine V, defined by (1). Recall that dom(V,) is the set of all strings pol(1/¢=DIpl]
with p € dom(V). Now €2y, can be represented by the sum >, qomv,) 2719, This sum is e-convergent, as

Z (2,|q‘)a < Z (21*\P|/8)5 < Z 2é=1pl <28.Qy <o0.
gedom(Vy) pedom(V) pedom(V)

Hence 2y, is e-convergent.
By Theorem 4.6 (i,v) in [19], given a left-computable and (¢, V)-random real o we can construct a left-computable real
B >0 and a rational g > 0 (in fact, we can take q to be 27, for some m > 0) such that @ =8 +27™. Qy,, hence

a=pg+2"". Y 27

pedom(V;)

—-2. Z 27\r|71+ Z 2~Ipl=m

redom(T) pedom(V;)

where the machine T is constructed from the left-computable real 8 using the Kraft-Chaitin Theorem.
Define now the ¢-universal machine W by the formula:

0, ifs=1rand r € dom(T),
W(s)=1 Vg(s), ifs=0Mpandpedom(V,),
0, otherwise,

and notice that its domain is the disjoint union of the sets {1r: r e domT} U {0™p: p € dom(V,)}, hence

o= Y 2F=gu o
sedom(W)
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6. Provability of left-computable (¢, V)-random reals

Peano Arithmetic (see [10], shortly, PA) is the first-order theory given by a set of 15 axioms defining discretely or-
dered rings, together with induction axioms for each formula @ (x, y1,...,yn): V¥(@(0,¥) AVX(p(X,y) —> ¢p(x+1,y)) —
Vx(@(x. 7))

The proof in [2] can be adapted to show that every left-computable (¢, V)-random real is provable (¢, V)-random in PA.
This means the following: if PA is given an algorithm for computing the computable real g, an algorithm for a machine U,
a proof that U is prefix-free and ¢-universal, then it can prove that £y is left-computable and (¢, V)-random. This proof
requires & to be defined in terms of primitive recursive functions, which is always possible by a result in [13].%

Another representation which can be used to prove (g, V)-randomness is the following: if PA is given an algorithm for
computing the computable real ¢, an algorithm for a machine V, a proof that V is prefix-free and e-universal, a positive
integer ¢, and a computable increasing sequence of rationals converging to a real y > 0, then PA can prove that o =
27¢. Qy +y is (g, V)-random.

Is any “representation” of an (g, V)-random real enough to guarantee PA provability of (e, V)-randomness? To answer
this question we fix an effective enumeration of all left-computable reals in (0, 1), {y;}. Such an enumeration can be based
on an enumeration of all increasing primitive recursive sequences of rationals in (0, 1). Our question becomes: based solely
on the index i can we always prove in PA that “y; is (¢, V)-random real” in case y; is (¢, V)-random real? We answer this
question in the negative. To this aim we define the following sets:

Ric = {y € (0,1): y is left-computable} = {y;},
Ric(e, V) ={y € Ric: v is (¢, V)-random},
R (e, V) = {y € Ric: v is provable (e, V)-random in PA}.

By enumerating proofs in PA we deduce that the set ER}’CA(S, V) is computably enumerable.’ Is (¢, V) computably
enumerable?
We use Lemma 26 from [2]:

Lemma 17. If A C R is computably enumerable, then for every left-computable reals ¢, B € A such that 8 > o, we have g € A.
Theorem 18. The set R (&, V) is not computably enumerable, so there exists « € Ric(e, V) \ ‘RFCA (e, V).

Proof. Consider o € Ri.(¢, V) and define the left-computable real 8 in the following way. If o > 1/2, then the real g =
(¢ [m)11---1--- (where @ | (n + 1) = 1"0); if @ < 1/2 consider the left-computable real 8 = (&« [ n)11---1-.. (where
o [ (n4+1)=0Mm1""™0). In both cases 8 > « and B ¢ R.(¢, V), which shows, by Lemma 17, that R.(g, V) is not computably
enumerable, thus concluding the proof. O

In fact, a more precise result is true:

Theorem 19. For every o € Ric(e, V) there exists an index i such that o = y; and PA cannot prove the statement “y; is (¢, V)-
random.”

Proof. The set Ay ={y;: o =y} CRic(e, V) C Ry is not computably enumerable. O

7. Stay’s conjecture

Stay [14] studied generalisations of the statement that §2y is random for every 1-universal machine U. In particular
he conjectured that 2y is (1, U)-random for every &-universal machine U. Although our results show that £2y is (g, V)-
random (for a 1-universal machine V; Theorem 3) and the conjecture is true for V. (Corollary 4), it turns out that the
conjecture itself is too general and does not hold. We provide now a strong counterexample.

Theorem 20. There exists a f—s—universal machine U such that 2y is not (%, U)-random, hence not (1, U)-random.

Proof. Let V be a 1-universal machine. From V and input o we define U(o) using a parameter T which satisfies the
right-hand side conditions in the following definition:

4 The proof in [2] has been precisely formalised and mechanically proved in the interactive theorem prover Isabelle [7]. It should be straight forward to
adapt this proof to the more general e-random case.

5 Recall that a set A C 9y is computably enumerable if the set {i € N: j; € A} is computable enumerable (as a set of non-negative integers). In such a
set we enumerate all indices for all elements in A [9].
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701" if3n > 0 [0 = 107 and |7| = 8n],
V(tr), ifdn,m>0, T edom(V)

[0 =0T0™"1, |o| =4™! and |T]| < 4™],
00, otherwise.

U(o) =

Clearly, U is a machine. Given 7 € dom(V), let m; = min{k > 0: |7| < 4¥} and ny = 4™+ —|7|—2. Then U(0T0™ 1) = V(1)
and |00 1| < 16-|t|, hence U is f—s-universal.

Now consider the binary expansion of the halting probability §2y. The first bit after the dot is 1 as the strings starting
with 1 contribute % to the halting probability of U. Furthermore, the strings of length 4™*1 starting with a 0 in the domain
of U contribute 4~™~1 . g, to the halting probability of U; here a,; is the number of strings up to the length 4™ in the
domain of V. Because a;, < 24" it follows that am can be written with 4™ bits. So, in the binary expansion of 2y, the bits
from the positions 4™ 4+ 1 until 3 - 4™ are all 0; the bits from the positions 3 - 4™+ + 1 to 4™t! describe the binary value
of ap,.

Let m >4, 81 =4™ and let T be the string of the first 8n bits of §2y after the dot. Then U(1"07) = 70'®" is a prefix of
2y of length 24n which is generated by the program 1707 of length 9n+1 as 2y has Os on the positions 4™ +1,...,3.4™
and 24n < 3 -4™. Consequently, 2y is not (%, U)-random. O

8. Conclusion

In this paper we have introduced the notion of &-universal machine and studied its halting probability. An e-universal
machine is capable of simulating every other machine, but less efficiently than a universal machine V. More precisely, the
length of the simulating program on the universal machine is bounded up to a fixed constant by the length of the simulated
program divided by &. The halting probability of an e-universal machine is left-computable and (¢, V)-random. The main
result of this paper is the extension of the representability theorem for left-computable random reals to the case of ¢-
random reals: a real is left-computable and (g, V)-random iff it is the halting probability of an e-universal machine. Furthermore,
we showed that left-computable e-random reals are provable (¢, V)-random in Peano Arithmetic, for some, but not all of
their representations. Finally we refuted Stay’s conjecture stating that 2y is (1, U)-random provided U is g-universal.
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