
Journal of Computer and System Sciences 77 (2011) 812–819
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Representation of left-computable ε-random reals ✩

Cristian S. Calude a,∗,1, Nicholas J. Hay a,1, Frank Stephan b,2

a Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand
b Department of Mathematics and School of Computing, National University of Singapore, Singapore 117543

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2009
Received in revised form 25 July 2010
Accepted 4 August 2010
Available online 10 August 2010

Keywords:
ε-universal prefix-free Turing machine
Halting probability
ε-random real
Peano Arithmetic

In this paper we introduce the notion of ε-universal prefix-free Turing machine (ε is a
computable real in (0,1]) and study its halting probability. The main result is the extension
of the representability theorem for left-computable random reals to the case of ε-random
reals: a real is left-computable ε-random iff it is the halting probability of an ε-universal prefix-
free Turing machine. We also show that left-computable ε-random reals are provable ε-
random in the Peano Arithmetic. The theory developed here parallels to a large extent the
classical theory, but not completely. For example, random reals are Borel normal (in any
base), but for ε ∈ (0,1), some ε-random reals do not contain even arbitrarily long runs
of 0s.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A real α is left-computable (or recursively/computably enumerable) if there is a computable increasing sequence of
rationals which converges to α. Left-computable random reals can be characterised using various tools including prefix-
complexity, Martin–Löf tests, martingales, Chaitin Omega numbers and universal probability [1,3,5,6,8,11,15].

Some left-computable reals are not random, but “partially random.” For example, inserting a 0 in between adjacent
bits of a (left-computable) random sequence produces a non-random sequence, having some weak randomness properties:
this sequence is, as intuition suggests, left-computable (because it is left-approximated by approximations of the original
sequence in which a 0 was inserted in between each adjacent bits) and 1/2-random.

The papers [4,12,16–19] have studied the degree of randomness of reals (or sequences) by measuring their “degree
of compression.” In what follows ε is a fixed computable real number with 0 < ε � 1. We study ε-randomness of reals,
both intrinsically and in relation to the classical notion of randomness (which corresponds to ε = 1, here referred to as
1-randomness or simply randomness).

Our main tool is the ε-universal prefix-free Turing machine, a machine that can simulate any other prefix-free machine:
the length of the simulating program on the ε-universal machine is bounded up to a fixed constant by the length of the
simulated program divided by ε. In case ε = 1 we get the classical notion of universal machine.

We show that the halting probability of an ε-universal prefix-free Turing machine is left-computable and ε-random. Gen-
eralising the corresponding representability theorem of left-computable random reals [1,3,8,11] we show that the converse
is also true: every left-computable ε-random real is the halting probability of an ε-universal prefix-free Turing machine.
A specific ε-universal Turing machine Vε is obtained via Eq. (1) below; the main principle is to “dilute” a universal Turing
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machine V . This machine plays an important role as its halting probability is the least with respect to H-reducibility of all
ε-random reals.

The theory developed here parallels to a large extent the classical theory, but not completely. The following two results
show interesting differences: (a) the prefix-free complexities induced by universal machines differ by at most an additive
constant, but the difference between prefix-free complexities induced by ε-universal machines may be unbounded, (b) ran-
dom reals are Borel normal (in any base), but some ε-random reals do not contain even arbitrarily long runs of 0s.

The paper is organised as follows. In Section 2 we present the necessary notation and previous results. In Section 3 we
introduce and study ε-universal machines and their halting probabilities. In Section 4 we study left-computable ε-random
reals and in Section 5 we present the representability theorem for left-computable ε-random reals. In Section 6 we discuss
the provability in the Peano Arithmetic of ε-randomness for left-computable reals. In Section 7 we disprove Stay’s conjecture
regarding the 1-randomness (with respect to U ) of the halting probability of an ε-universal machine U . We end with a few
conclusions.

2. Notation and background

Let Σ = {0,1} and denote by Σn and Σ∗ the set of all bit-strings of length n and the set of all bit-strings, respectively.
The length of σ ∈ Σ∗ is denoted by |σ |. By log n we abbreviate the function �log2(n + 1)�. Let N = {1,2, . . .} and let
bin : N → Σ∗ be the bijection which associates to every n � 1 its binary expansion without the leading 1.

To every infinite binary sequence α1α2 · · ·αn · · · we associate the real number α = 0.α1α2 · · ·αn · · · in (0,1]. We denote
by α � n = α1α2 · · ·αn the prefix of length n of α’s expansion. In this way, reals are identified with infinite binary sequences.
Similarly, if x = x1x2 · · · xn · · · is an infinite sequence, x � n = x1x2 · · · xn .

We assume that the reader is familiar with algorithmic information theory, cf. [1,8] and present only a few notions to
fix the notation.

If the Turing machine T is defined on σ we write T (σ ) < ∞; the domain of T is the set dom(T ) = {σ ∈ Σ∗: T (σ ) < ∞}.
A prefix-free (Turing) machine is a Turing machine whose domain is a prefix-free set of strings. The prefix complexity of
a string induced by a prefix-free machine W is HW (σ ) = inf{|p|: W (p) = σ }. From now on all Turing machines will be
prefix-free and will be referred to as machines.

We use several times the Kraft–Chaitin Theorem: given a computable enumeration of positive integers ni such that∑
i 2−ni � 1, we can effectively construct a prefix-free set of binary strings {xi} such that |xi | = ni , for all i � 1.
Throughout the whole paper ε is assumed to be a computable real in the interval (0,1]. Fix a machine W . A sequence x is

Chaitin (ε, W )-random if there is a constant c > 0 such that for every n � 1, HW (x � n) � ε · n − c; x is strictly Chaitin
(ε, W )-random if x is Chaitin (ε, W )-random, but not Chaitin (δ, W )-random for any δ with ε < δ � 1.

If W is universal (from now on called 1-universal), then we get Tadaki’s definition of weak Chaitin ε-randomness (see
[4,18]). If W is 1-universal and ε = 1, then we get Chaitin’s classical definition of randomness [5,6]. A real is Chaitin
(ε, W )-random (shortly, (ε, W )-random) if its binary expansion is Chaitin (ε, W )-random.

For any prefix-free set A ⊂ Σ∗ we define ΩA = ∑
x∈A 2−|x| . The halting probability of a machine W is ΩW =∑

x∈dom(W ) 2−|x| .
Following Tadaki [18], for any (not necessarily prefix-free) set W ⊆ Σ∗ and computable δ > 0 we write μδ(W ) =∑

w∈W 2−δ·|w| . If δ > 1 and W is prefix-free, then μδ(W ) � ΩW � 1. However, if 0 < δ < 1 then we can have μδ(W ) = ∞
even for prefix-free W (for example, for W = {1logn0bin(n): n > 0} and 0 < δ < 1/2).

3. ε-universal machines

In this section we introduce and study the notion of ε-universal machine.
In analogy with the classical case we say, following Stay [14], that a machine U is ε-universal if for every machine T

there exists a constant cU ,T such that for each program σ ∈ dom(T ) there exists a program p ∈ dom(U ) such that

U (p) = T (σ ) and ε · |p| � |σ | + cU ,T .

If ε = 1 we get the classical notion of universal machine. Every universal machine is ε-universal, but the converse is not
true (see Theorem 2).

A machine U is strictly ε-universal if U is ε-universal but not δ-universal for any δ with ε < δ � 1.

Lemma 1. The machine U is ε-universal iff there exists a 1-universal machine V and a constant cU ,V such that for all σ ∈ Σ∗ we have
ε · HU (σ ) � H V (σ ) + cU ,V .

Theorem 2. Let V be a 1-universal machine and define

Vε

(
p0�(1/ε−1)|p|�) = V (p). (1)

Then:
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(a) Vε is a machine and for all σ ∈ Σ∗ we have H Vε (σ ) = �H V (σ )/ε�,
(b) Vε is strictly ε-universal.

Proof. Clearly Vε is a machine and the equality in (a) can be directly checked. From (a) and Lemma 1 we deduce the
ε-universality of Vε . If there were a constant c such that for all σ ∈ Σ∗ , δ · H Vε (σ ) � H V (σ ) + c, for some ε < δ � 1, then
in view of (a) we would have (δ/ε − 1) · H V (σ ) � c + δ, for all σ ∈ Σ∗ , a contradiction (H V is unbounded). So, Vε is strictly
ε-universal. �
Theorem 3. Let V be a 1-universal machine. Then for every ε-universal machine U , ΩU is (ε, V )-random.

Proof. Let f be a computable one-to-one function which enumerates dom(U ). Let ωk = ∑k
j=1 2−| f ( j)| . Clearly, (ωk) is a

computable, increasing sequence of rationals converging to ΩU . Consider the binary expansion of ΩU = 0.Ω1Ω2 · · · .
We define a machine T as follows: on input σ ∈ Σ∗, T first “tries to compute” the smallest number t with ωt � 0.σ . If

successful, T (σ ) is the first (in quasi-lexicographical order) string not belonging to the set {U ( f (1)), U ( f (2)), . . . , U ( f (t))};
if no such t exists then T (σ ) = ∞.

Fix a number m � 1 and note that T is defined on ΩU � m. Let t be the smallest number (computed in the first step of
the computation of T ) with ωt � 0.ΩU � m. We have

0.ΩU � m � ωt < ωt +
∞∑

s=t+1

2−| f (s)| = ΩU � 0.ΩU � m + 2−m .

Hence,
∑∞

s=t+1 2−| f (s)| � 2−m , which implies | f (s)| � m, for every s � t + 1. From the construction of T we conclude that

HU
(
T (ΩU � m)

)
� m. (2)

Since T is a partially computable function, we get a constant c′ such that for all σ ∈ Σ∗ for which T (σ ) < ∞ we have:

H V
(
T (σ )

)
� H V (σ ) + c′. (3)

Using (2), the ε-universality of U , and (3) we obtain

ε · m � ε · HU
(
T (ΩU � m)

)
� H V

(
T (ΩU � m)

) + c

� H V (ΩU � m) + c + c′,

which proves that ΩU is (ε, V )-random. �
Corollary 4. If V be a 1-universal machine, then ΩVε is (ε, V )-random and (1, Vε)-random.

Proof. The halting probability ΩVε is (ε, V )-random because of Theorem 2(b) and Theorem 3. Using this fact and Theo-
rem 2(a) we deduce that ΩVε is (1, Vε)-random. �

Next we present a mechanism for producing examples of ε-universal machines.
Let A, B be infinite, prefix-free (recursively/computably) enumerable sets. Generalising the strong simulation in [3], we

say that the set A ε-strongly simulates the set B (write B �ε A) if there is a constant c > 0 and a partial computable function

f : Σ∗ o→ Σ∗ satisfying the following three conditions:

(a) A = dom( f ),
(b) B = f (A) and
(c) ε · |σ | � | f (σ )| + c, for all σ ∈ A.

The function f is called an ε-strong simulation of A onto B .

Proposition 5. If V is a 1-universal machine and f is an ε-strong simulation of dom(V ) onto a prefix-free computably enumerable
set A, then V ◦ f is an ε-universal machine with domain A.

Proof. Recall that (V ◦ f )(p) = V ( f (p)) for all p ∈ Σ∗ . Fix a machine T . Since V is 1-universal there exists a constant
cT such that for each p ∈ dom(T ) there exists a σ ∈ dom(V ) satisfying |σ | � |p| + cT and V (σ ) = T (p). Since f is onto
there exists τ ∈ A such that f (τ ) = σ . Since f is an ε-strong simulation we have ε · |τ | � | f (τ )| + c = |σ | + c. Combining
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the previous two equations we deduce that for every p ∈ dom(T ) there exists a τ ∈ A such that ε · |τ | � |p| + cT + c and
V ( f (τ )) = T (p), so V ◦ f is ε-universal. �

It may seem that the difference between the cases ε = 1 and 0 < ε < 1 is just technical. Here is a deeper difference. If V
and V ′ are 1-universal machines, then their complexities H V and H V ′ differ by at most an additive constant [1]. This result
is not true for ε-universal machines. To prove the claim we construct the following sequence of machines Vε,k by means of a
fixed 1-universal machine V . We let

fε,k(p) =
{

p0�(1/ε−1)|p|−k·log(|p|)�, if (1/ε − 1)|p| − k · log |p| � 1,

p1, otherwise,
(4)

Vε,k ◦ fε,k = V . (5)

Note that only for finitely many strings p the value fε,k(p) is defined by the otherwise-case. Furthermore, Eq. (5) means
that Vε,k( fε,k(p)) = V (p) for all p ∈ dom(V ) and Vε,k(q) is undefined for all q /∈ { fε,k(p): p ∈ dom(V )}.

Theorem 6. The following properties are true:

(a) Vε,k is a machine and H Vε,k (σ ) = �H V (σ )/ε − k · log H V (σ )�, for almost all strings σ ,
(b) Vε,k is strictly ε-universal,
(c) we have H Vε,k (σ ) − H Vε,k+1(σ ) � log H V (σ ) − 1 → ∞ whenever |σ | → ∞,
(d) ΩVε,k is (ε, V )-random.

Proof. Properties (a)–(c) follow from (4) and (5) using the technique presented in the proof of Theorem 2. In detail, the
equality in (a) can be directly checked; ε-universality follows from (a) and Lemma 1. To show that Vε,k is strictly ε-universal
we suppose, by absurdity, that there exist two constants c, δ such that c > 0, 1 > δ > ε and δ · H Vε,k (σ ) � H V (σ ) + c for all
σ ∈ Σ∗ . Then given the equality (a) we would have (δ/ε − 1) � H V (σ ) � δ · k · log H V (σ ) + c + δ, for almost all strings σ ,
a contradiction since H V is unbounded. Property (c) follows from (a) and property (d) follows from (b) and Theorem 3. �
4. Left-computable (ε, V )-random reals

We now study (ε, V )-random reals with the following reducibility relation: a real α is H-reducible to a real β , writ-
ten α �H β , if there exists a 1-universal machine V and a constant c > 0 such that for all n � 1, we have H V (α � n) �
H V (β � n) + c. Of course, the choice of the 1-universal machine V is irrelevant. Two reals α,β are H-equivalent if α �H β

and β �H α.
Recall that a real γ is ε-convergent [18] if there exists an increasing computable sequence of rationals {an} converging to

γ such that
∑∞

n=1(an+1 − an)ε < ∞.

Theorem 7. Let V be a 1-universal machine. For every left-computable (ε, V )-random real α, ΩVε �H α.

Proof. Tadaki [19, Theorem 4.6(i) and (iv)] shows the following equivalence: a left-computable real α is (ε, V )-random iff
for every left-computable ε-convergent real β there exists a constant c such that for all n, H V (β � n) � H V (α � n) + c.

Now start with left-computable (ε, V )-random real α. Because ΩVε is left-computable and ε-convergent we can apply
the above mentioned equivalence to deduce the existence of a constant c such that H V (ΩVε � n) � H V (α � n) + c, i.e.
ΩVε �H α. �
Comment 8. Theorem 7 shows that ΩVε is up to H-equivalence the least of all (ε, V )-random reals. In fact, there is one
left-computable real below all other left-computable (ε, V )-random reals.

Proposition 9. Let V be a 1-universal machine. Assume that ε ∈ (0,1) is computable. Then, for almost all constants c, and for every
string x there exist two strings y, z of length c such that

1. H V (xy) � H V (x) + ε · c + 1,
2. H V (x) − ε · c + 1 � H V (xz) � H V (x) + ε · c − 1.

Furthermore, z can be chosen as 0c .

Proof. The proof follows mainly along the lines of Lemma 1 in [12] (with ρ(x) = 2−ε|x|).
For item 1, given x and c we find y of length c such that H V (y|(x, H V (x))) � c; such an y exists by the pigeon hole

principle. Then H V ((x, y)) � H V (x)+ c − d and H V (xy) � H V (x)+ c − H V (c)− d, for some constant d independent of c. The
first inequality follows from Theorem 2.3.6 in [8] and the second inequality follows from the first one by noting that (x, y)
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can be computed from xy and c; the constant d is taken such that it satisfies both inequalities. Now all sufficiently large c
satisfy c − H V (c) − d � ε · c + 1.

For item 2, note that H V (x) and H V (x0c) differ at most by H V (c) + d′ from each other, where d′ is again a constant
independent of c. The function c �→ H V (c) + d′ is dominated by the function c �→ ε · c − 1, hence the given inequalities
hold. �
Theorem 10. Let V be a 1-universal machine. Assume that ε is a computable real in (0,1). There exists a left-computable α and a
constant C such that for all n � 1, |H V (α � n) − n · ε| � C.

Proof. In view of Proposition 9 there is a constant c such that for all σ ∈ Σ∗:

1. σ has an extension τ of length |σ | + c such that H V (τ ) > H V (σ ) + ε · c + 1,
2. H V (σ ) − c < H V (σ0c) < H V (σ ) + ε · c − 1.

Let T be the tree of all strings σ ∈ Σ∗ whose prefixes η with |η| are a multiple of c have the property H V (η) � ε · |η|. Note
that whenever σ is a node of length n · c, by the first condition, there is an extension of σ in T of length n · c + c.

Let α be the left-most infinite branch of T , hence left-computable. If H V (α � (n · c)) > n · c · ε + 2c + 1, then α � (n · c)0c

is in T as

H V
(
α � (n · c)0c) > n · c · ε + c + 1 > (n · c + c) · ε.

As α is the leftmost infinite branch, α � (n · c + c) = α � (n · c)0c . Consequently, by the second condition,

H V
(
α � (n · c + c)

)
< H V

(
α � (n · c)

) + ε · c − 1,

hence H V (α � (n · c + c)) is at least by 1 less than the target H V (α � (n · c)). From this it follows that |H V (α � (n · c))−n · c ·ε|
is bounded by a constant.

The tree T is the intersection of trees T0, T1, T2, . . . where each Ts contains an infinite branch β iff the initial segments
σ of β of length 0 · c,1 · c, . . . , s · c satisfy the inequality H V ,s(σ ) � ε · |σ |. The left-most branches αs of Ts are uniformly
computable and approximate α from the left, hence α is left-computable. �
Comment 11. Note that in [12] an essentially similar construction for the real α in Theorem 10 was given; the new fact
in Theorem 10 is the property of α to be left-computable. If one does not need the left-computable part of the result, one
can construct α by a simple induction: append the corresponding strings previously obtained and keep the complexity of
α(0)α(1) . . . α(n) to be ε ·n up to an additive constant. This method does not work with ε = 1 as it is known that whenever
H V (α(0)α(1) . . . α(n)) � n − c for all n then

∀d ∀∞n
[

H V
(
α(0)α(1) . . . α(n)

)
� n + d

]
.

Hence the existence of α in Theorem 10 holds only 0 < ε < 1, another difference between 1-randomness and ε-randomness.

Corollary 12. Assume that ε is computable in (0,1) and V is a 1-universal machine.

a) There is a constant C such that for all n, |H V (ΩVε � n) − ε · n| � C.
b) The real ΩVε is strictly (ε, V )-random.

Proof. From Corollary 4, ΩVε is (ε, V )-random. In view of Theorem 10 there exists a left-computable real α and a constant
C such that for all n, |H V (α � n) − ε · n| � C . In particular, α is left-computable and (ε, V )-random, so by Theorem 7 there
exists a constant c such that for all n:

H V (ΩVε � n) � H V (α � n) + c � ε · n + c + C . (6)

The converse inequality comes from Corollary 4.
Finally, b) is a consequence of (6). �
It is well known that ΩV is Borel absolutely normal3 [1]. If α = 0.α1α2 · · · is (1, V )-random then the real β =

0.α10α20 · · · is (1/2, V )-random and not Borel normal (because in its binary expansion, in the limit, the frequency of
0s is three times larger than the frequency of 1s).

We show now that ΩVε is more than not Borel normal:

3 A real is absolutely Borel normal if its digits, in every base, follow the uniform distribution: all digits are equally likely, all pairs of digits are equally
likely, all triplets of digits are equally likely, etc.
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Proposition 13. Let V be a 1-universal machine. Assume that ε is computable in (0,1) and α is a left-computable real such that there
is a constant C such that for all n, |H V (α � n) − ε · n| � C. Then, for every binary string τ there is a constant c such that τ c is not an
infix of α.

Proof. The proof follows along the lines of the proof of Proposition 9. To see this, note that for every strings σ ,τ and
positive integer c we have

H V
(
στ c) � H V (σ ) + H V (τ ) + H V (c) + d,

for some constant d independent of σ , τ , c. Hence, if all prefixes σ of α satisfy the inequality

|σ | · ε − c′ � H V (σ ) � |σ | · ε + c′,

then for every τ there is a value for c such that

H V (τ ) + H V (c) + d < ε · c − 2c′,

and thus whenever H V (σ ) � |σ | · ε + c′ we have H V (στ c) < |στ c| · ε − c′ and στ c is not a prefix of α. �
Corollary 14. For every binary string τ there is a constant c such that τ c does not occur in ΩVε as a substring.

Proof. Use Corollary 12(a) and Proposition 13. �
Comment 15. If α = 0.α1α2 · · · is (1, V )-random then the real β = 0.α1α1α2α2 · · · is (1/2, V )-random but does not satisfy
the hypothesis of Proposition 13.

5. Representability of left-computable (ε, V )-random reals

In this section we generalise the representability of left-computable random reals [3,11] for the case of left-computable
(ε, V )-random reals.

Theorem 16. Let V be a 1-universal machine. Every left-computable (ε, V )-random number in (0,1] is the halting probability of an
ε-universal machine.

Proof. Given V and ε we consider the machine Vε defined by (1). Recall that dom(Vε) is the set of all strings p0�(1/ε−1)|p|�
with p ∈ dom(V ). Now ΩVε can be represented by the sum

∑
q∈dom(Vε) 2−|q| . This sum is ε-convergent, as∑

q∈dom(Vε)

(
2−|q|)ε �

∑
p∈dom(V )

(
21−|p|/ε)ε �

∑
p∈dom(V )

2ε−|p| � 2ε · ΩV < ∞.

Hence ΩVε is ε-convergent.
By Theorem 4.6 (i,v) in [19], given a left-computable and (ε, V )-random real α we can construct a left-computable real

β � 0 and a rational q > 0 (in fact, we can take q to be 2−m , for some m > 0) such that α = β + 2−m · ΩVε , hence

α = β + 2−m ·
∑

p∈dom(Vε)

2−|p|

= 2 ·
∑

r∈dom(T )

2−|r|−1 +
∑

p∈dom(Vε)

2−|p|−m

where the machine T is constructed from the left-computable real β using the Kraft–Chaitin Theorem.
Define now the ε-universal machine W by the formula:

W (s) =
{0, if s = 1r and r ∈ dom(T ),

Vε(s), if s = 0m p and p ∈ dom(Vε),

∞, otherwise,

and notice that its domain is the disjoint union of the sets {1r: r ∈ dom T } ∪ {0m p: p ∈ dom(Vε)}, hence

α =
∑

s∈dom(W )

2−|s| = ΩW . �
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6. Provability of left-computable (ε, V )-random reals

Peano Arithmetic (see [10], shortly, PA) is the first-order theory given by a set of 15 axioms defining discretely or-
dered rings, together with induction axioms for each formula ϕ(x, y1, . . . , yn): ∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(x + 1, y)) →
∀x(ϕ(x, y))).

The proof in [2] can be adapted to show that every left-computable (ε, V )-random real is provable (ε, V )-random in PA.
This means the following: if PA is given an algorithm for computing the computable real ε, an algorithm for a machine U ,
a proof that U is prefix-free and ε-universal, then it can prove that ΩU is left-computable and (ε, V )-random. This proof
requires ε to be defined in terms of primitive recursive functions, which is always possible by a result in [13].4

Another representation which can be used to prove (ε, V )-randomness is the following: if PA is given an algorithm for
computing the computable real ε, an algorithm for a machine V , a proof that V is prefix-free and ε-universal, a positive
integer c, and a computable increasing sequence of rationals converging to a real γ > 0, then PA can prove that α =
2−c · ΩV + γ is (ε, V )-random.

Is any “representation” of an (ε, V )-random real enough to guarantee PA provability of (ε, V )-randomness? To answer
this question we fix an effective enumeration of all left-computable reals in (0,1), {γi}. Such an enumeration can be based
on an enumeration of all increasing primitive recursive sequences of rationals in (0,1). Our question becomes: based solely
on the index i can we always prove in PA that “γi is (ε, V )-random real” in case γi is (ε, V )-random real? We answer this
question in the negative. To this aim we define the following sets:

Rlc = {
γ ∈ (0,1): γ is left-computable

} = {γi},
Rlc(ε, V ) = {

γ ∈ Rlc: γ is (ε, V )-random
}
,

RPA
lc (ε, V ) = {

γ ∈ Rlc: γ is provable (ε, V )-random in PA
}
.

By enumerating proofs in PA we deduce that the set RPA
lc (ε, V ) is computably enumerable.5 Is Rlc(ε, V ) computably

enumerable?
We use Lemma 26 from [2]:

Lemma 17. If A ⊆ Rlc is computably enumerable, then for every left-computable reals α,β ∈ A such that β > α, we have β ∈ A.

Theorem 18. The set Rlc(ε, V ) is not computably enumerable, so there exists α ∈ Rlc(ε, V ) \ RPA
lc (ε, V ).

Proof. Consider α ∈ Rlc(ε, V ) and define the left-computable real β in the following way. If α � 1/2, then the real β =
(α � n)11 · · · 1 · · · (where α � (n + 1) = 1n0); if α < 1/2 consider the left-computable real β = (α � n)11 · · · 1 · · · (where
α � (n+1) = 0m1n−m0). In both cases β > α and β /∈ Rlc(ε, V ), which shows, by Lemma 17, that Rlc(ε, V ) is not computably
enumerable, thus concluding the proof. �

In fact, a more precise result is true:

Theorem 19. For every α ∈ Rlc(ε, V ) there exists an index i such that α = γi and PA cannot prove the statement “γi is (ε, V )-
random.”

Proof. The set Aα = {γi: α = γi} ⊂ Rlc(ε, V ) ⊂ Rlc is not computably enumerable. �
7. Stay’s conjecture

Stay [14] studied generalisations of the statement that ΩU is random for every 1-universal machine U . In particular
he conjectured that ΩU is (1, U )-random for every ε-universal machine U . Although our results show that ΩU is (ε, V )-
random (for a 1-universal machine V ; Theorem 3) and the conjecture is true for Vε (Corollary 4), it turns out that the
conjecture itself is too general and does not hold. We provide now a strong counterexample.

Theorem 20. There exists a 1
16 -universal machine U such that ΩU is not ( 1

2 , U )-random, hence not (1, U )-random.

Proof. Let V be a 1-universal machine. From V and input σ we define U (σ ) using a parameter τ which satisfies the
right-hand side conditions in the following definition:

4 The proof in [2] has been precisely formalised and mechanically proved in the interactive theorem prover Isabelle [7]. It should be straight forward to
adapt this proof to the more general ε-random case.

5 Recall that a set A ⊆ Rlc is computably enumerable if the set {i ∈ N: γi ∈ A} is computable enumerable (as a set of non-negative integers). In such a
set we enumerate all indices for all elements in A [9].
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U (σ ) =

⎧⎪⎨
⎪⎩

τ016n, if ∃n > 0 [σ = 1n0τ and |τ | = 8n],
V (τ ), if ∃n,m > 0, τ ∈ dom(V )

[σ = 0τ0n1, |σ | = 4m+1 and |τ | � 4m],
∞, otherwise.

Clearly, U is a machine. Given τ ∈ dom(V ), let mτ = min{k > 0: |τ | � 4k} and nτ = 4mτ +1 −|τ |− 2. Then U (0τ0nτ 1) = V (τ )

and |0τ0nτ 1| � 16 · |τ |, hence U is 1
16 -universal.

Now consider the binary expansion of the halting probability ΩU . The first bit after the dot is 1 as the strings starting
with 1 contribute 1

2 to the halting probability of U . Furthermore, the strings of length 4m+1 starting with a 0 in the domain
of U contribute 4−m−1 · am to the halting probability of U ; here am is the number of strings up to the length 4m in the
domain of V . Because am < 24m

it follows that am can be written with 4m bits. So, in the binary expansion of ΩU , the bits
from the positions 4m + 1 until 3 · 4m are all 0; the bits from the positions 3 · 4m+1 + 1 to 4m+1 describe the binary value
of am .

Let m � 4, 8n = 4m and let τ be the string of the first 8n bits of ΩU after the dot. Then U (1n0τ ) = τ016n is a prefix of
ΩU of length 24n which is generated by the program 1n0τ of length 9n + 1 as ΩU has 0s on the positions 4m + 1, . . . ,3 · 4m

and 24n � 3 · 4m . Consequently, ΩU is not ( 1
2 , U )-random. �

8. Conclusion

In this paper we have introduced the notion of ε-universal machine and studied its halting probability. An ε-universal
machine is capable of simulating every other machine, but less efficiently than a universal machine V . More precisely, the
length of the simulating program on the universal machine is bounded up to a fixed constant by the length of the simulated
program divided by ε. The halting probability of an ε-universal machine is left-computable and (ε, V )-random. The main
result of this paper is the extension of the representability theorem for left-computable random reals to the case of ε-
random reals: a real is left-computable and (ε, V )-random iff it is the halting probability of an ε-universal machine. Furthermore,
we showed that left-computable ε-random reals are provable (ε, V )-random in Peano Arithmetic, for some, but not all of
their representations. Finally we refuted Stay’s conjecture stating that ΩU is (1, U )-random provided U is ε-universal.
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