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Abstract 

Calude, C., Relativized topological size of sets of partial recursive functions (Note), Theoretical 
Computer Science 87 (1991) 347-352. 

In [ 11, a recursive topology on the set of unary partial recursive functions was introduced and 
recursive variants of Baire topological notions of nowhere dense and meagre sets were defined. 
These tools were used to measure the size of some classes of partial recursive (p.r.) functions. 
Thus, for example, it was proved that measured sets or complexity classes are recursively meagre 
in contrast with the sets of all p.r. functions or recursive functions, which are sets of recursively 
second Baire category. In this paper we measure the size of sets of p.r. functions using the above 
Baire notions relativized to the topological spaces induced by these sets. In this way we strengthen, 
in a uniform way, most results of [4, 5,6,3,2], and we also obtain new results. For many sets of 
p.r. functions, strong differences between “local” and “global” topological size are established. 

1. Introduction 

Let N = (0,  1,2,. . .} be the set of naturals and let ((P~)~~,, be an acceptable 
gijdelization of P, the set of unary partial (p.r.) recursive functions. For cp E P, we 
put dom(cp) = {x E N 1 p(x) is defined}, range(q) = {q(x) 1 x E dom(cp)}, and the sup- 
port of cp, supp(cp) = {x E dam(q) 1 p(x) f 0). A recursively enumerable (r.e.) set is 
the domain of a p.r. function. By p we denote the minimization operator and by 
K, L the (primitive) recursive components of the inverse of Cantor’s pairing function. 
See [2] for more details. 
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By R and F we denote, respectively, the sets of unary recursive functions and 
unary recursive functions of finite support. The set F is r.e., i.e. F = {qPhCnj 1 h 2 0} 
for some h E R. The function h will be fixed throughout the paper as well as the 
recursive function Z(n) = card(supp( phCnj)). 

For cp, f3 in P we put cp c 8 in case supp(cp) c supp(8) and p(x) = 0(x), for every 
x in supp(cp). If, in addition, cp f 8 then we write cp c 13. 

For t E F and Xc P we define the following sets: 

U={cpEPIt%+, U;Y=Xn u,, 

F(X)={tEFIU;Y#PJ}. 

The sequence ( Uf),tFCXj y’ telds a system of basic neighborhoods in X, thus defining 
a topology r(X) on X. For example, in [4] one studies the space (R, T(R)), while 
in [2] one works in (P, T(P)). 

Definition 1. (a) We say that a set X c P has property (F) if two recursive functions 
h(X) and 1(X) exist, satisfying the following two conditions: 

(1) F(X) = {(PMXJC~) InsO), 
(2) for every natural n, l(X)(n) = card(supp(cp,(,,(,,)). 

(b) A set X = P with property (F) is called an F,-space iff 
(3) there exists a recursive function s(X) = s such that for every natural 

% (Ph(X)(n) c (Ph(XMn)P 

The set X={fi:I i 2 0}, where J(i) = 1 and h(x) = 0, for x # i, has property (F), 
but does not satisfy (3). In contrast, P is an F,-space with respect to h(P) = h, l(P) = 1 
(defined above) and s(P) = s coming from the equation 

(Ph(ndX) if x E wP((Ph(d 

(Ph(s(n))(X) = 1 if x = 1 + max{ i 6 supp((ph(n))}, 
0 otherwise. 

The fact that the following sets are F, -spaces is a routine verification: R, X,, = 
{qEPlrange(cp) is finite}, Mk={(PEPlrange(cp)c{O,l,...,k}}, X,={cpEPlk& 
range(q)} (for ke N, k>O}, P”={cp~ Pldom(cp)# N}. 

Starting from the definition of recursively meagre sets in (P, T(P)) (see [ 1,2]) 
and (R, T(R)) (see [4]) we obtain the following relativized Baire notions. 

Definition 2. Let X c P be a set with property (F). 
(a) A set Yc X is recursively nowhere dense with respect to 7(X) (r.n.d. in T(X)) 
if f, g E R exist, satisfying the following four conditions: 

(4) for every natural n, (POE F(X), 
(5) for all natural m, n, if m > g(n), then cprc,,(m) = 0, 
(6) for every natural n, (Ph(X)(n) c qfcn), 

(7) there exists a natural i such that UgCV,, = Y n U&,, = 0, whenever Z(X)(n) > i. 
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(b) A set Yc X is recursively meagre with respect to T(X) (r.m. in T(X)) if there 
exists a sequence ( Yn)nao of subsets of X and two r.e. sequences of recursive 
functions (fn)n30, (g,)n30 such that 

(8) Y=U&l Yf?, 
(9) for every natural n, Y,, is r.m. in r(X) under fn and g,. 

(c) A non-r.m. set in r(X) is called a set of recursively second Baire category in 
r(X) (s.r.s. Baire c., in T(X)). 

2. Results 

First we show that the concepts in Definition 2 do not depend upon the recursive 
functions h(X) and Z(X) satisfying (1) and (2). 

Lemma 3. Let X c P and suppose that both pairs of recursive functions (h(X), Z(X)) 
and (h’, I’) satisfy (1) and (2). If Y c X is r.n.d. in T(X) with respect to thejirst pair 
of functions, then Y keeps this property under the second pair. 

Proof. The p.r. function r(x) = pj[cph~x~~j~ = (P,,,(~J is recursive and (P~(~)(~(,,)) = 
(Pi,, Z’(n) = Z(X)(r(n)). If Y satisfies (4)-(7) under h(X), Z(X),& g, then Y will 
satisfy these properties under h’, Z’, f 0 r and g 0 r. 0 

Remark. Let X c P satisfy (F). Then the family of r.m. subsets in T(X) is closed 
under subset and union, and the family of s.r.s. Baire c. is closed under superset. 

Proposition 4. Let X c Z c P satisfy (F). Assume that F(X) is a recursive subset of 
F(Z), i.e. the predicate “there exists a natural m such that (Pi = (P~~~~~,,,~” is 
recursive. If Yc X is r.n.d. (r.m.) set in T(X), then Y is r.n.d. (r.m.) set in T(Z). 

Proof. It is sufficient to deal with r.n.d. sets Y c X in T(X). Clearly, F(X) c F(Z) 
and the recursive function r(m) = pn[cphCx,(,) = (P,,(~)(,,J satisfies the relation 
(P h(X)(m) =  (P h(Z)(r(m)). 

If Y satisfies the properties (4)-(7) under the recursive functions f and g, in 
T(X), then Y is r.n.d. set in T(Z) under the recursive functions f * and g* defined 
as follows: 

if (P h(Z)(n) E  F (X) a n d ‘P p y n, =  (P h(X)(m)r 

max{i E supp(~p,,~~~~,~)} otherwise.  

Remark. One can easily check the validity of the following equalities: F(R) = 
F(P) = F(X,,) = F(P”) = F, F(X,) = F n X,, F(M,) = F n Mk. For various combi- 
nations of the sets P, R, X,,, P, X, and Mk, Proposition 4 applies: it asserts that 
“small” sets remain “small” when passing to supersets. 
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Lemma 5. Let X c P be an F,-space and let Y c X be r.n.d. set in T(X). Then we can 
efictively find two recursive functions f ‘, g’ satisfying (4), (5), (7) and 

(6’) for every natural n, (Ph(X)(n) c ‘pr,~~). 

Proof. Assume x g E R satisfy (4)-(7). There exists a recursive function p such that 

‘PrCn, = (Ph(X)(p(n)) = (Ph(XMp(n))) 3 by (3). Put f’(n)=h(X)(s(p(n)) and g’(n)= 
m&i E supp(~(,,)). 0 

Remark. Obviously, Lemma fails to be true for sets with property 

Theorem 6. Let X c P be an F,-space with F(X) infinite and let Y c X be r.m. in 
T(X). Then, for every t E F(X) we can eflectively construct a function f E Up\ Y. 

Proof. Suppose, by Definition 2(b), that Y =UnaO Y,, where Y,, is r.m. in r(X) 
under fn and g,. Assume, by Lemma 5, that @,(X)(n) = ‘p/(,,, , for every natural n. Let 
t E F(X), i.e. t = (Ph(X)(y), for some natural q. The predicate Q(i,j, n) = 1 iff (of, = 
p,,(X)(j), is recursive. The p.r. function r defined by 

r(O) = 9. r(x+ I) =pJO(K(x),j, r(x)) = 11, 
is recursive because for all naturals i and n, there existsj E N such that Q( i, j, n) = 1. 

Next we construct the sequence ( tm)mzO, t, E F(X) as follows: 

t,(x) = t(k), tm+l(x) = (P,~(,,,,(~(~))(x), m 2 0. 

Clearly, tm c tm+l, for all m E IV. Accordingly, the function f: N + N given by 
f(x) = t,,,(x), if XG g,(,,(r(m)) is well defined and f E R n U,. To show that f & Y, 
assume, to the contrary, that f E Yi, for some natural i. For every n with Z(X)(n) > i, 

Yin Uc,,~]=O* 

Taking m such that l(X)(r(m)) > n, and K(m) = i, we have a contradiction. 0 

Remark. The above result generalizes Theorem 1 in [l] (see also Theorem 9.12 in 
[2]). It can be used to strengthen the basic results in [2,5,6,4] (in particular, the 
recursive variant of Baire Category Theorem). 

Corollary 7. Let X E {P, R, X,, Mk}, k 3 1, and let t E F(X). Then, the sets (i) X, 
(ii) X n R, (iii) UF, (iv) every non-empty open set in T(X), are s.r.s. Baire c. in T(X). 

Corollary 8. For every natural k> 1, X, and Mk are s.r.s. Baire c. in r(Xk+,), but 
they are r.n.d. in r(P’) and T(P). 

Proposition 9. (a) For every natural k> 0, Mk is r.n.d. in 7(Xfin), T(P”) and r(P). 
(b) The set X,, is r.m. in 7(Xfiin), T( P”) and T(P). 
(c) 7’he set P” is r.m. in T(P”) and T(P). 
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Proof. One has X,, = lJkz,, Mk and every Mk is r.n.d. in r(X f i n) under the functions 
f(k, n) and g(k, n) given by 

1 

G(~)(X) ifxs Z(n), 
(pr&z,(x) = k+ 1 ifx=Z(n)+l, 

0 otherwise, 

and g(k, n) = Z(n)+ 1. The last assertions in (a), (b) and (c) follow from Proposition 
4 and the proof that P‘ is r.m. in T(  P”) can be obtained mutatis mutandis from the 
proof of Theorem 2 in [5], because F(X,,) = E 0 

Remarks. (a) Proposition 4 states an intuitive fact. By contrast, some later results 
point out facts which are somewhat against the intuition. For example, Mk is s.r.s. 
Baire c. in T(X~+,) and T(  Mk), but it is r.n.d. in T( P”) and T(P). 

(b) The set R is a recursive residual in T(P), because P” = P\R is r.m. in 7(P) 
(see [5,6]). From Proposition 9(c), P” is r.m. in .(P”); this fact reinforces our 
intuition that R is a topologically “big” set. 

We recall that a measured set is a X = {m, 1 i 2 0) c P for which the predicate 
M( i, x, y) = 1 iff m,(x) = y, is recursive. In what follows we are interested in measured 
sets X such that F(X) = F. For example, the set of primitive recursive functions 
satisfies the above conditions. Clearly, measured sets for which F(X) 5 F exist. 
From [ 1,2] one knows that every measured set is r.m. in 7(P). This result can be 
strengthened for our class of measured sets as follows. 

Theorem 10. Let Xc P be Q measured set with F(X) = E Then X is r.m. in T(X). Zf 

Xc R, then X is r.m. in -r(R). 

Proof. Let X = {m, 1 i 2 0) and define the p.r. function 

i 

(Pi ifx E swp(cph~,J, 

p(i n, x) = 
1 ifx=Z(n)+l andCG:i M(i,x,y)=O, 
x+3 ifx=Z(n)+l andCJ:i M(i,x,y)>l, 

0 otherwise. 

In view of the s-m-n theorem we obtain a recursive function s such that p( i, n, x) = 

qSCi,n,(x). Putf;(n)=s(i, n) and g,(n)= Z(n)+l, X,={m,}. Each X is r.n.d. in T(X) 
under f; and gi ; properties (4)-(6) are obviously fulfilled and for (7) we note that 
foreverynaturalnwithZ(n)>O,O#cp~~,,(Z(n)+l)#m,(Z(n)+1),so~f,~n~~mi. 0 

Consider the following sets: PR = the set of primitive recursive functions; PR(f) = 
the set of primitive recursive functions in f~ R. 

Corollary 11. The following assertions are true: 

(a) The set F is r.m. in T(F), T(PR), r(PR(f)), T(R) and T(P). 

(b) the set PR is r.m. in r(PR), T(PR(~)), T(R) and T(P). 

(c) each set PR(f) is r.m. in T(PR(~)), T(R), T(P). 
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Corollary 12. Every complexity class Cc R for which F = C is r.m. in r(C), T(R) 
and 7(P). 

Proof. A complexity class C for which F c C is a measured set and F(C) = F. 0 

Corollary 13. Both sets of rational and algebraic numbers are r.m. in r(R) and T(P). 

Proof. These sets are contained in the complexity class containing F (see [2]). 0 

Some open problems naturally arise. We present some of them: 
(i) Does Proposition 4 remain true in case we delete the hypothesis “F(X) is 

a recursive subset of F(Z)“? 
(ii) Let Xc P be an arbitrary measured set; is it true that X is r.m. in r(X)? 

(iii) Let X c 2 = P, X, 2 satisfying property (F). Assume that X is a s.r.s. Baire 
c. in T(X) and Y c 2 is a set r.s. Baire in ~(2). Is it true that if X n Y # 0, then 
X n Y is a s.r.s. Baire c. in r(X)? 
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