
Reflections on Quantum Computing
Quantum Computing Based on Fixed Point Dynamics

WHEN ARE QUANTUM SPEEDUPS POSSIBLE?

T his section discusses the possibility that speedups in quantum computing can
be achieved only for problems that have a few or even unique solutions [1]. For
instance, this includes the computational complexity class UP [2]. Typical

examples are Shor’s quantum algorithm for prime factoring [3] and Grover’s data-
base search algorithm [4] for a single item satisfying a given condition in an unsorted
database (see also Gruska [5]).

In quantum complexity, one popular class of problems is BQP, which is the set
of decision problems that can be solved in polynomial time (on a quantum com-
puter) so that the correct answer is obtained with probability at least 1

2
on all in-

stances. Both Shor’s and Grover’s problems are in BQP. The classical complexity of
the primality problem is in NP ∩ co-NP and the unsorted database search problem
is in P. However, Grover’s quantum algorithm runs in time proportional to √n for
databases of size n, which is somewhat surprising because the classical lower bound
is V(n) (for inputs of size n the algorithm runs in time at least proportional to n).

Problems that can be efficiently solved by utilizing quantum parallelism may
belong to a complexity class that we might call “quasi-UP.” This class is character-
ized by a solution space that is small (say, polynomial) with respect to the dimension
of the Hilbert space (the exponent of the number of qubits) involved. Formally,
quasi-UP is the set of languages decided by a polynomial-time quantum algorithm
A that uses at most f(n) qubits,1 where any input of length n has at most O(f (n))
solutions (accepting computations). The class quasi-UP is very similar to the com-

CHRISTIAN S. CALUDE,
MICHAEL J. DINNEEN, AND
KARL SVOZIL

C.S. Calude and M.J. Dinneen are in
the Computer Science Department, The
University of Auckland, Private Bag
92109, Auckland, New Zealand. e-mail:
cristian@cs.auckland.ac.nz and
mjd@cs.auckland.ac.nz, respectively. K.
Svozil is in the Institut für Theoretische
Physik, University of Technology
Vienna, Wiedner Hauptstrabe 8-10/136,
A-1040 Vienna, Austria. e-mail:
svozil@tph.tuwien.ac.at.

In this rather speculative note three problems pertaining to the power
and limits of quantum computing are posed and partially answered: (a)

when are quantum speedups possible? (b) is fixed-point computing a
better model for quantum computing? (c) can quantum computing

trespass the Turing barrier?

1Note that if A runs in polynomial-time, then f(n) is bounded by a polynomial.

© 2001 John Wiley & Sons, Inc., Vol. 6, No. 1 C O M P L E X I T Y 35

plexity class fewP ⊆ NP that classifies
problems with a fixed polynomial num-
ber of solutions per input size [2], so
one can conjecture the following Quasi-
UP-thesis:

The class fewP is a subset of the class
BQP, which is a subset of quasi-UP.

We also suspect that neither NP nor
BQP is a subset of the other. Here, BQP
contains all of the bounded-error
probabilistic polynomial-time prob-
lems (the class BPP), which potentially
contains some co-NP problems not in
NP. Also, most problems belonging to
the class nondeterministic polynominal
time NP are typically in another, dual
regime: there, the number of conceiv-
able solutions is large with respect to
the number of bits involved to define
the problem. Most NP-complete prob-
lems fall into this category, which is the
primary reason we believe NP Ü BQP.

We now give one simple example of
how the quasi-UP-thesis can be ap-
plied. Suppose we are interested in the
intensively studied traveling salesman
problem (TSP) of finding the cheapest
trip in cost through all of the nodes of a
map. Suppose we know (as naturally
suspected) that our problem instances
(i.e., in the “real-world”) have a unique
best solution (or, at worst, a few equal
optimal solutions). For these types of
inputs, our restricted TSP problem is in
fewP,2 and thus we can expect to have
an efficient quantum search algorithm.

Although we cannot give a direct
proof of this quasi-UP-thesis, some in-
formal arguments can be brought for-
ward in its support. Efficient algorithms
in quantum computing make use of the
quantum parallelism. Yet in order to be
able to extract a classically useful solu-
tion from the resulting quantum state,
one has to extract the information by
proper phase transformations and in-
terference. And it is interference—the
buildup of phases at points that indi-
cate the problem solutions—we are
mostly concerned about. Interference
guarantees that the result of the quan-

tum calculation can be effectively read
out of the superposition of states.

A problem allowing only a single so-
lution therefore has a better chance to
be solvable by a quantum algorithm. In
particular, in the interference phase the
single solution could allow for a higher
contrast3 and thus a better detection ef-
ficiency than a situation that would al-
low for many solutions. Thus, for ex-
ample, suppose we apply a quantum al-
gorithm to an unsorted database
problem that allows up to a fixed con-
stant number of matches. Then our suc-
cess with a quantum algorithm will
probably deteriorate even though the
probability of randomly findings a
match increases. (Note this may be
counter-intuitive from a classical per-
spective.)

It therefore appears to be not totally
unreasonable to speculate that detec-
tion efficiency might drop linearly with
the number of solutions, as for a prob-
lem with n items the contrast drops like
O(1/en). This could make most NP
problems effectively intractable for
quantum algorithms. Thus, the ability
to enhance contrast and detector effi-
ciency for problems in NP appears to be
one of the most crucial steps a quantum
algorithm has to cope with. The task
here is formidable—to single out the
most favorable solution out of a sea of
possible but nonoptimal ones.

FIXED-POINT QUANTUM COMPUTATIONS
One radically new possibility for quan-
tum computing would be an approach
based on fixed-point computations.
Stated differently, a quantum computa-
tion may arrive at results that are fixed-
points of a unitary operator or, more
precisely, eigenstates of unitary or Her-
mitian operators with eigenvalue 1.

One task that is impossible within

the domain of classical computation
but almost trivial for quantum algo-
rithms is the solution of diagonalization
problems, at least for small dimensions.
Diagonalization is based on bit switches
from true to false and vice versa. In or-
der to solve this problem for a single
qubit, it can be implemented by a uni-
tary and self-adjoint not-operator

D̂ = not = S0 1

1 0D.

The cigenstates of D̂ are

|I &, |I1& =
1

=2
FS1

0D ± S0

1DG, (1)

with the eigenvalues +1 and 11, respec-
tively. The solution of the diagonaliza-
tion problem is the eigenvector |I | as-
sociated with the eigenvalue 1. This is a
mixture or superposition of the classical
bit states true and false.

Other, more general problems may
be solvable by applying the fixed-point
theorem of computability theory to
quantum computations. The strategy is
to assume a normal operator A, which,
because of some yet unknown proce-
dure, encodes an algorithm wA .
Thereby, we seek an unknown eigen-
state a1 of A with eigenvalue 1. Let us
assume that we start with a totally “un-
biased” state 1, which, in matrix nota-
tion, is just represented by the unit ma-
trix. Indeed, if we have information
about the solution we may prepare the
state in such a way that the outcome of
the fixed-point is more likely. (In the ex-
treme case we know the solution before
the measurement and prepare the ini-
tial state to be exactly the fixed-point
state. The outcome of the fixed-point
state is thus certain.) As A is measured,
a1 is obtained if we observe the eigen-
value 1. We may now identify the fixed-
point solution a1 with the algorithm wA.

COMPUTING THE UNCOMPUTABLE?
One fundamental result of theoretical
computer science is Turning’s proof (in
Ref. 6) that it is undecidable to deter-
mine whether a general computer pro-
gram will halt or not. This is formally2Our problem is probably not NP-hard.

3The number of solutions seem to influ-
ence the relative minimal and maximal
particle intensities and the width
thereof, because they are observed in an
interference pattern depicting the aver-
age number of clicks in a detector mea-
suring the output of a quantum com-
puter.

36 C O M P L E X I T Y © 2001 John Wiley & Sons, Inc.

known as the halting problem. We can

restrict our attention to Turing ma-

chines, because they are equivalent in

computational power to any “conven-

tional” computer [7,8]. In what follows

we present an attempt to trespass the

Turing barrier. The method discussed

might in principle allow us to “solve”

the halting problem (for another pro-

posal, see Mitchison and Josza, [9]).

Thereby we are well aware of the fact

that for all practical purposes [10] this

goal will remain unreachable, at least

within quantum computing.

Assume that it is possible to design a

halting qubit, which indicates whether a

computation has actually reached a

state associated with a halting condi-

tion. Assume further that the halting

qubit starts in its nonhalting state and,

because the evolution is unitary, the

buildup of the amplitude is continuous

in time.

In such a case, the halting qubit ac-

quires a halting component that is non-

zero even in finite time. Therefore, a de-

tection of a halting computation at

small time scales is conceivable even if

the associated classical computation

lasts “very” long. The price to be paid is

the “very small” amplitude and, associ-

ated with it, a correspondingly small

chance of detection.

To be a little bit more precise, we

need some rudiments of algorithmic in-

formation theory (see Chaitin [11,12],

Calude [13,14]). We will work with pro-

grams with no input, which produce bi-

nary strings as outputs. For any n we

denote by Pn a program of length n that

halts and produces the longest string

among all outputs produced by all pro-

grams of length n that eventually stop.

We denote by ∑(n) the length of the

output produced by Pn. Here ∑ is the

busy beaver function [15,16]: it grows

faster than every computable function

of n. Let H be the program-size com-

plexity, which is the length of the small-
est universal program generating a par-
ticular binary string.

Assume that any program that halts
requires a running time at least propor-
tional to the length of its output. If
an n-bit program p halts, then the time

t it takes to halt satisfies H(t) ø n + c.
So if p has run for time T without halt-
ing and T has the property that if t ù T,
then H(t) > n + c, then p will never halt.
This shows that the running times of
t h e p r o g r a m s i n t h e s e q u e n c e
P1,P2, . . . Pn, . . . grow faster than any
computable function.

We are now ready to present the ar-
gument. Let us assume the halting qubit
is represented by

|Halt〉 = ch(t)|h〉 + cn(t)|n〉,

where |h〉, |n〉 represent the halting state
and nonhalting state and ch(t), cn(t) are
time-dependent amplitudes thereof, re-
spectively.

Initially, let |ch(t)| = |cn(t)| 1 1 = 0. As
a worst-case scenario derived from the
above analysis, for a linear buildup of
the amplitude we obtain

|ch(t)|2 ~ (∑(H(n) + O(1)))11.

The setup of a detection of |Halt〉 is a
simple transmission measurement of
the halting qubit. Although the buildup
may be very slow, there is a nonvanish-
ing chance to obtain a solution of the
halting problem in finite time.4 Of
course, the solution is probabilistic (one
can argue that all mathematical proofs
or computer programs are ultimately
probabilistic, see Davis [17], De Millo,
Lipton, Perlis [18]), but goes beyond the
capability of any classical computation:
even the best probabilistic algorithms
are not able to achieve this computa-
tional power (by a classical result [19],
probabilistic algorithms are equivalent
to Turing machines).

Let us finally notice that by virtue of
the same information-theoretic argu-
ment, the possibility of time-travel (see,
Nahin [20]) would not solve the halting
problem, unless one could travel back
and forth in time at a pace exceeding
the growth of any computable function.

ACKNOWLEDGMENTS
We thank Greg Chaitin, Garry Tee,
Marius Zimand, and the anonymous ref-
eree for criticism and encouragement.

REFERENCES
1. Gottlob, G. Private communication to

K. Svozil, 1998.
2. Johnson, D.S. In Handbook of Theoret-

ical Computer Science, Vol. A; van
Leeuwen, J., Ed.; Elsevier: Amsterdam,
1990, p 69.

3. Shor, P.W. Algorithms for quantum
computation: discrete log and factor-
ing, Proceedings of the 35th IEEE An-
nual Symposium on Foundations of
Computer Science, 1994, p 124.

4. Grover, L.K. A fast quantum mechani-
cal algorithm for database search. Pro-
ceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of
Computing, 1996, p 212.

5. Gruska, J. Quantum Computing; Mc-
Graw-Hill: London, 1999.

6. Turing, A.M. Proc London Math Soc
Series 2, 1936–1937, 42, 230, 544.

7. Calude, C. Theories of Computational
Complexity; North-Holland: Amster-
dam, 1988.

8. Barrow, J.D. Impossibility—The Limits
of Science and the Science of Limits;
Oxford University Press: Oxford, 1998.

9. Mitchison, G.; Josza, R. Counterfactual
computation, quant-ph/9907007.

10. Bell, J.S. Speakable and Unspeakable in
Quantum Mechanics; Cambridge Uni-
versity Press: Cambridge, 1987.

11. Chaitin, G.J. Information, Randomness
and Incompleteness, Papers on Algo-
rithmic Information Theory; World Sci-
entific: Singapore, 1987. (2nd ed., 1990).

12. Chait in, G.J. The Unknowable;
Springer-Verlag: Singapore, 1999.

13. Calude, C. Information and Random-
ness—An Algorithmic Perspective;
Springer-Verlag: Berlin, 1994.

14. Calude, C.S.; Casti, J.; Dinneen, M.J. (eds.).
Unconventional Models of Computa-
tion; Springer-Verlag: Singapore, 1998.

15. Rado, T. Bell System Technical J 1962,
41, 877.

16. Chaitin, G.J.; Arslanov, A.; Calude, C.
EATCS Bull. 1995, 57, 198.

17. Davis, P.J. Amer. Math. Monthly 1972,
79, 252.

18. De Millo, R.; Lipton, R.; Perlis, A.
Comm. ACM 1979, 22, 271.

19. De Leeuw, K.; Moore, E.F.; Shannon,
C.E.; Shapiro, N. In Automata Studies;
Shannon, C.E.; McCarthy, J., Eds.;
Princeton University Press: Princeton,
NJ, 1956, p 183.

20. Nahin, P.J. Time Machines; Springer-
Verlag: New York, 1999.

4One referee suggested that this might be
also true for a classical probabilistic ma-
chine whose transitions are governed by
a Poisson process in continuous time.

© 2001 John Wiley & Sons, Inc. C O M P L E X I T Y 37

