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Abstract. Automata are simple mathematical objects with unexpected computa-
tional, mathematical, modelling and explanatory capabilities. This paper examines
some relations between automata and physics. Automata will be used to model
quantum uncertainty and quantum computation. Finally, mathematical proofs will
be discussed from the perspective of quantum automata.

1 Modelling Quantum Uncertainty with Automata

1.1 Moore Automata

All automata we are going to consider are finite in the sense that they have a finite number
of states, a finite number of input symbols, and a finite number of output symbols. The
deterministic or non-deterministic behaviour of such a machine will be contextually
clear.

First we will look at deterministic automata each of which consists of a finite set SA
of states, an input alphabetΣ, and a transition function δA : SA×Σ → SA. Sometimes
a fixed state, say 1, is considered to be the initial state, and a subset of SA denotes the
final states. A Moore automaton is a deterministic automaton having an output function
FA : SA → O, where O is a finite set of output symbols. At each time the automaton is
in a given state q and is continuously emitting the output FA(q). The automaton remains
in state q until it receives an input signal σ, when it assumes the state δ(q, σ) and starts
emitting FA(δA(q, σ)). In what follows Σ = {0, 1} having O = Σ, so, from now on, a
Moore automaton will be just a triple A = (SA, δA, FA).

Let Σ∗ be the set of all finite sequences (words) over the alphabet Σ, includ-
ing the empty word e. The transition function δ can be extended to a function
δA : SA × Σ∗ → SA, as follows: δA(q, e) = q, for all q ∈ SA, δA(q, σw) =
δA(δA(q, σ), w), for all q ∈ SA, σ ∈ Σ,w ∈ Σ∗.

The output produced by an experiment started in state q with input w ∈ Σ∗ is de-
scribed by the total response of the automatonA, given by the functionRA : SA×Σ∗ →
Σ∗ defined by RA(q, e) = f(q), RA(q, σw) = f(q)RA(δ(q, σ), w), q ∈ SA, σ ∈
Σ,w ∈ Σ∗, and the output function f .
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1.2 Moore’s Uncertainty Revisited

Moore [38] has studied some experiments on deterministic automata trying to understand
what kind of conclusions about the internal conditions of a machine it is possible to draw
from input-output experiments. To emphasize the conceptual nature of his experiments,
Moore has borrowed from physics the word “Gedanken".

A (simple) Moore experiment can be described as follows: a copy of a determin-
istic machine will be experimentally observed, i.e. the experimenter will input a finite
sequence of input symbols to the machine and will observe the sequence of output sym-
bols. The correspondence between input and output symbols depends on the particular
chosen machine and on its initial state. The experimenter will study sequences of input
and output symbols and will try to conclude that “the machine being experimented on
was in state q at the beginning of the experiment".1 Moore’s experiments have been
studied from a mathematical point of view by various researchers, notably by Ginsburg
[27], Gill [26], Chaitin [17], Conway [20], Brauer [6], Salomaa [42].

Following Moore [38] we shall say that a state q is “indistinguishable" from a state q′

(with respect to Moore’s automaton A = (SA, δA, FA)) if every experiment performed
on A starting in state q produces the same outcome as it would starting in state q′.
Formally, RA(q, x) = RA(q′, x), for all words x ∈ Σ+. An equivalent way to express
the indistinguishability of the states q and q′ is to require, following Conway [20], that
for all w ∈ Σ∗, FA(δA(q, w)) = FA(δA(q′, w)).

A pair of states will be said to be “distinguishable" if they are not “indistinguishable",
i.e. if there exists a string x ∈ Σ+, such that RA(q, x) �= RA(q′, x).
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Fig. 1.

Moore [38] has proven the following important theorem: There exists a Moore au-
tomaton A such that any pair of its distinct states are distinguishable, but there is no

1 This is often referred to as a state identification experiment.



Automata: From Uncertainty to Quantum 3

experiment which can determine what state the machine was in at the beginning of the
experiment. He used the automaton displayed in Figure 1 and the argument is simple.
Indeed, each pair of distinct states can be distinguished by an experiment; however, there
is no (unique) experiment capable to distinguish between every pair of arbitrary distinct
states. If the experiment starts with 1, then x cannot distinguish between the states 1, 2
and if the experiment starts with 0, then x cannot distinguish between the states 1, 3.

Moore’s theorem can be thought of as being a discrete analogue of the Heisenberg
uncertainty principle. The state of an electronE is considered specified if both its velocity
and its position are known. Experiments can be performed with the aim of answering
either of the following:

1. What was the position of E at the beginning of the experiment?
2. What was the velocity of E at the beginning of the experiment?

For a Moore automaton, experiments can be performed with the aim of answering
either of the following:

1. Was the automaton in state 1 at the beginning of the experiment?
2. Was the automaton in state 2 at the beginning of the experiment?

In either case, performing the experiment to answer question 1 changes the state of
the system, so that the answer to question 2 cannot be obtained. This means that it is
only possible to gain partial information about the previous history of the system, since
performing experiments causes the system to “forget" about its past.

An exact quantum mechanical analogue has been given by Foulis and Randall [24,
Example III]: Consider a device which, from time to time, emits a particle and projects
it along a linear scale. We perform two experiments. In experiment α, the observer
determines if there is a particle present. If there is not, the observer records the outcome
of α as the outcome {4}. If there is, the observer measures its position coordinate x.
If x ≥ 1, the observer records the outcome {2}, otherwise {3}. A similar procedure
applies for experiment β: If there is no particle, the observer records the outcome of β as
{4}. If there is, the observer measures the x-component px of the particle’s momentum.
If px ≥ 1, the observer records the outcome {1, 2}, otherwise the outcome {1, 3}. Still
another quantum mechanical analogue has been proposed by Giuntini [28]. A pseudo-
classical analogue has been proposed by Cohen [19] and by Wright [44].

Moore’s automaton is a simple model featuring an “uncertainty principle” (cf. Con-
way [20]), later termed “computational complementarity” by Finkelstein and Finkelstein
[23].

It would be misleading to assume that any automaton state corresponds to a bona
fide element of physical reality (though, perhaps, hidden). Because, whereas in models
of automaton complementarity it might still be possible to pretend that initially the
automaton actually is in a single automaton state, which we just do not know (such
a state can be seen if the automaton is “screwed open”), quantum mechanically this
assumption leads to a Kochen-Specker contradiction [32,43].

Two non-equivalent concepts of computational complementarity based on automata
have been proposed and studied in Calude, Calude, Svozil and Yu [15]. Informally, they
can be expressed as follows. Consider the class of all elements of reality (or “properties",
and “observables") and consider the following properties.



4 C.S. Calude and E. Calude

A Any two distinct elements of reality can be mutually distinguished by a suitably
chosen measurement procedure, Bridgman [7].

B For any element of reality, there exists a measurement which distinguishes between
this element and all the others. That is, a distinction between any one of them and
all the others is operational.

C There exists a measurement which distinguishes between any two elements of reality.
That is, a single pre-defined experiment operationally exists to distinguish between
an arbitrary pair of elements of reality. (Classical case.)

It is easy to see that there exist automata with property C. More interestingly, there
exist automata which have CI that is A but not B (and therefore not C) as well as
automata with CII , i.e. B but not C. Properties CI, CII are called complementarity
principles. Moore’s automaton in Figure 1 has indeed CI . To get CII we can use again
Moore’s automaton but with different output functions, for example those in Figure 2:
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According to the philosophical view called realism, reality exists and has definite
properties irrespective whether they are observed by some agent. Motivated by this view
point, Einstein, Podolsky and Rosen [22] suggested a classical argument showing that
quantum mechanics is incomplete. EPR assumed a) the non-existence of action-at-a-
distance, b) that some of the statistical predictions of quantum mechanics are correct,
and c) a reasonable criterion defining the existence of an element of physical reality.
They considered a system of two spatially separated but quantum mechanically corre-
lated particles. A “mysterious” feature appears: By counterfactual reasoning, quantum
mechanical experiments yield outcomes which cannot be predicted by quantum theory;
hence the quantum mechanical description of the system is incomplete!

One possibility to complete the quantum mechanical description is to postulate addi-
tional “hidden-variables" in the hope that completeness, determinism and causality will
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be thus restored. But then, another conundrum occurs: Using basically the same pos-
tulates as those of EPR, Bell [4,5] showed that no deterministic local hidden-variables
theory can reproduce all statistical predictions of quantum mechanics. Essentially, the
particles on either side appear to be “more correlated” than can be expected by a clas-
sical analysis assuming locality (i.e., the impossibility of any kind of information or
correlation transfer faster than light).

The complementarity CII mimics, in a sense, the state of quantum entanglement
and may be conceived as a toy model for the EPR effect, cf. Greenberger, Horne and
Zeilinger [29]. Being experimentally testable, CII falls into the class of puzzle mysteries
(see Penrose [40]). For a probabilistic approach see [14,11]; for complementarity for
Mealy automata see [16].

2 Simulation, Bisimulation, Minimization

The complementarity principles discussed above suggest that the classical theory of fi-
nite automata–which considers automata with initial states–is not adequate for modeling
physical phenomena, hence the need to look at automata without initial states. We will
first study deterministic automata, then nondeterministic automata, and finally a compar-
ison between these two types of automata will be presented. Various types of simulations
will play a central role. This section is based on Calude, Calude and Khoussainov [12,
13] and [10].

We have already discussed the total response of an automaton A. The final response
of A is the function fA : SA × Σ� → Σ defined, for all s ∈ SA and w ∈ Σ�, by
fA(s, w) = FA(δA(s, w)). The initial response ofA is the function iA : SA×Σ� → Σ
defined, for all s ∈ SA and w ∈ Σ�, by iA(s, w) = FA(s).

Informally, an automaton A is strongly simulated by B if B can perform all compu-
tations ofB exactly in the same way. We say thatA andB are strongly equivalent if they
strongly simulate each other. Intuitively, a strong simulation has to take into account the
“internal machinery" of the automaton, not only the outputs. LetA = (SA, δA, FA) and
B = (SB , δB , FB) be automata. We say that

1. A is strongly simulated by B, if there is a mapping h : SA → SB such that (a) for
all s ∈ SA and σ ∈ Σ, h(δA(s, σ)) = δB(h(s), σ), and (b) for all s ∈ SA and
w ∈ Σ�, RA(s, w) = RB(h(s), w).

2. A is strongly f -simulated (i–simulated) by B, or, equivalently, B strongly f -
simulates (i–simulates) A if there is a mapping h : SA → SB such that (a) for
all s ∈ SA and σ ∈ Σ, h(δA(s, σ)) = δB(h(s), σ), and (b) for all s ∈ SA and
w ∈ Σ�, fA(s, w) = fB(h(s), w) (iA(s, w) = iB(h(s), w)).

Clearly, the strong simulation implies both strong f as well as strong i–simulations.
In fact, all these three notions are equivalent.

From an algebraic point of view, strong simulations are morphisms between au-
tomata; they make essential use of the internal machinery of automata. The behavioral
simulation, which is weaker than strong simulation (it makes use only of outputs pro-
duced by automata) turns to be more important.
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Let A = (SA, δA, FA) and B = (SB , δB , FB) be two automata. We say that A is
simulated byB if there is a mapping h : SA → SB such that for all s ∈ SA andw ∈ Σ�,
RA(s, w) = RB(h(s), w). We say thatA is f -simulated (i–simulated) byB if there is a
mapping h : SA → SB such that for all s ∈ SA and w ∈ Σ�, fA(s, w) = fB(h(s), w)
(iA(s, w) = iB(h(s), w)). An automaton A is simulated by B iff A can be f–simulated
by B. A counter-example showing that i–simulation is not equivalent to simulation can
be found easily as iA(s, w) = FA(s), for all s ∈ SA and w ∈ Σ∗.

Suppose that we have a finite class C containing pairs (Ai, qi) of automata Ai =
(Si, δi, Fi) and initial states qi ∈ Si, i = 1, . . . , n. An automaton A = (SA, δA, FA)
is universal for the class C if (a) for any 1 ≤ i ≤ n there is a state s ∈ SA such that
RA(s, w) = RAi(qi, w), for all w ∈ Σ�, and (b) for any s ∈ SA there is an i such that
RA(s, w) = RAi(qi, w), for all w ∈ Σ�. Every finite class which possesses a universal
automaton is said to be complete. Not every finite class of automata with initial states
has a universal automaton. However, for every finite class of pairs of automata and
initial states C′, there is a complete class C containing C′. More, the automata A and B
simulate each other iff A and B are universal for the same class.

Two states p and q are RA–equivalent if for all w ∈ Σ�, RA(p, w) = RA(q, w); by
[s] we denote the equivalence class of s. To an automatonA we associate the automaton
M(A) as follows:

(a) The set of states of M(A) is SM(A) = {[s]|s ∈ SA}.
(b) For all [s] and σ ∈ Σ, put δM(A)([s], σ) = [δA(s, σ)].
(c) For all [s], put FM(A)([s]) = FA(s).

The automata M(A) and M(M(A)) are isomorphic and they simulate each other.
Furthermore, M(A) is minimal and if B and A simulate each other and B is minimal,
then M(A) and B are isomorphic. Hence, any complete class has a minimal universal
automaton which is unique up to an isomorphism, and any two minimal automata which
simulate each other are isomorphic.

We note that (i) a minimal automaton can be characterized by Moore’s condition A,
(ii) from M(A) one can immediately deduce the classical minimal automaton (but the
converse is not true), (iii) for strongly connected automata indistinguishability coincides
with simulation and the resulting minimal automata are isomorphic.2

A nondeterministic automaton over Σ is a triple A = (SA,∇A, FA), where SA
and FA are as in the definition of a deterministic automaton, but∇A is a function from
SA × Σ to the set 2SA of all subsets of SA. Again, there are several ways to introduce
the notion of “response" ofA to an input sequence of signals. Takew = σ1 . . . σn ∈ Σ�

and s0 ∈ SA. A trajectory of A on s0 and w is a sequence s0, s1, . . . , sn of states such
that si+1 ∈ ∇A(si, σi+1) for all 0 ≤ i ≤ n − 1. A trajectory s0, s1, . . . , sn emits the
output FA(s0)FA(s1) · · ·FA(sn).

The total response, denoted by RA, is a function which to any (s, w) ∈ SA × Σ�

assigns the set RA(s, w) of all outputs emitted by all trajectories of A on s and w. The
final response of A is a function fA which to any pair (s, w) ∈ SA × Σ� assigns the
subset of all last symbols occurring in words in RA(s, w).

2 However, Moore’s procedure cannot be used to construct a minimal automaton indistinguishable
from a given not strongly connected automaton.
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LetA andB be two, not necessarily distinct, nondeterministic automata. Take states
p ∈ SA and q ∈ SB , and fix a positive integer n ≥ 1. We define a game Γ (p, q, n)
between two players: Player 0 and Player 1. Player 0 tries to prove that outputs emitted by
trajectories which begin in p are different from outputs emitted by trajectories originated
in q. Player 1 tries to show the opposite. Note that Player 0 (Player 1) is not restricted
to consider computations which begin from p (q) only. Player 0 (Player 1) is allowed to
pick up any instance of a computation which begins from q (p) as well.

Here is a description of a play. Every play has at most n stages. Each stage begins
with a move of Player 0 and ends with a response of Player 1.

Stage 0. Player 0 picks up either p or q. Player 1 responds by picking up the other
state.

Stage k + 1 ≤ n. At the end of stage k we have two sequences

p0p1 . . . pk and q0q1 . . . qk

where p0 = p and q0 = q. Now Player 0 chooses a state either from
⋃
σ∈Σ ∇A(pk, σ)

or from
⋃
σ∈Σ ∇B(qk, σ). If Player 0 chooses a pk+1 from

⋃
σ∈Σ ∇A(pk, σ), then

Player 1 responds by choosing a state qk+1 from
⋃
σ∈Σ ∇B(qk, σ). If Player 0 chooses

a qk+1 from
⋃
σ∈Σ ∇A(qk, σ), then Player 1 responds by choosing a state pk+1 from⋃

σ∈Σ ∇B(pk, σ). This ends a description of stage k + 1 of a play.
Let

p0p1 . . . pt, and q0q1 . . . qt

be sequences produced during a play. We say that Player 1 wins the play if for all 0 <
i ≤ t, σ ∈ Σ, we have pi ∈ ∇A(pi−1, σ) iff qi ∈ ∇B(qi−1, σ) and FA(pi) = FB(qi).

Finally, we say that that p is≡–equivalent to q if Player 1 wins the game Γ (p, q, n),
for all positive integers n.

The automatonA is simulated by the automatonB if there is a mappingh : SA → SB
such that for all s ∈ SA, the states s and h(s) are ≡–equivalent. We denote this fact
by A ≤ B. The simulation relation defined above coincides with the simulations of
deterministic automata, in case A and B are deterministic.

LetA be a nondeterministic automaton. We define the automatonM(A) as follows:

1. The set of states SM(A) ofM(A) is {[s] | s ∈ SA}, where [s] = {q ∈ SA | s ≡ q}.
2. For all [q], [s] ∈ SM(A) and σ ∈ Σ, [q] ∈ ∇M(A)([s], σ) iff q ∈ ∇A(s, σ).
3. FM(A)([s]) = FA(s).

An analogue result holds true for nondeterministic automata: The automata A and
M(A) simulate each other, the automaton M(A) is minimal and unique up to an iso-
morphism.

The equivalence used for M(A) is constructed in terms of a special game. The
minimal automaton can be equally constructed using a specific bisimulation (see [10]),
i.e. a non-empty relation �⊂ SA × SB satisfying the following two conditions for all
p � q (p ∈ SA, q ∈ SB):

1. ∇A(p, σ) � ∇B(q, σ), for all σ ∈ Σ,
2. FA(p) = FB(q).
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More precisely, for A we consider the greatest bisimulation �A of Ξ(A,A), the set
of all bisimulations from SA × SA.

The subset construction shows that from the point of view of recognized languages,
deterministic automata are as powerful as the nondeterministic ones (see [31,42,34]).
It is not difficult to see that if A and B are bisimilar automata, then the deterministic
automata obtained fromA andB by the subset construction are also bisimilar. However,
there exist infinitely many nondeterministic (strongly connected) automata each of which
is not bisimilar with any deterministic automaton.

The compatibility between the bisimulation approach and the simulation approach for
deterministic automata follows from the following result: Let A and B be deterministic
automata and h : SA → SB a function. Then, the following statements are equivalent:
the function h is a morphism iff the graph of h is a bisimulation iff the automaton A is
strongly simulated by the automaton B via h.

3 Quantum Automata

There are three basic theoretical models designed to study the power and limitations of
quantum computing: quantum finite automata (QFA), quantum Turing machines and
quantum cellular automata. All these quantum models are obtained from their classical
probabilistic counterparts by applying the following changes:

� probabilities of transitions are substituted by probabilities amplitudes,
� each computation takes place in the inner-product space over the set of finite config-

urations;
� each computation is unitary.

Like classical automata,QFA have a finite set of states, a finite input alphabet and a
transition function that specifies how the automaton’s state changes. QFA are different
from their classical counterparts in that they can be in a superposition of states that are
required to have unit norm. On reading an input, a quantum finite automaton changes its
superposition of states preserving the unit norm. Measurements, given by an observable,
can be applied in order to determine the automaton’s current state. When an observable
is applied to a state, that state changes probabilistically to its projection onto one of the
subspaces. The probability depends on the amplitudes.

In what follows we will discuss three models ofQFA: measure-onceQFA (MO−
QFA), measure-many QFA (MM −QFA) and ancilla QFA.

3.1 Measure-Once Quantum Automata

TheMO−QFA, introduced by Moore and Crutchfield [37], were inspired by stochastic
automata of Rabin [41] and real-time dynamical recognizers, see Moore [35]. We will
use the equivalent definition given in Brodsky and Pippenger [8].

An MO −QFA is a 5-tuple M = (S,Σ, δ, q0, F ) where Q is a finite set of states,
Σ is the finite input alphabet with an end-marker symbol $, δ : S × Σ × Q → C (C
is the set of complex numbers and α is the conjugate of α) is the transition function
(δ(q, σ, q′) represents the probability density amplitude that flows from state q to state
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q′ upon reading symbol σ), the state q0 is the initial configuration of the system, and F
is the set of accepting states. For all states q1, q2 ∈ Q and symbol σ ∈ Σ the function δ
must be unitary, thus satisfying the condition:

∑
q′∈S

δ(q1, σ, q′)δ(q2, σ, q
′) =

{
1, if q1 = q2,
0, otherwise.

The end-marker $ is assumed to be the last symbol of each input and is the last
symbol read before the computation terminates.At the end of a computationM measures
its configuration; if it is in an accepting state then it accepts the input, otherwise it
rejects. The configuration of M is a superposition of states and it is represented by
an n-dimensional complex unit vector, where n is the number of states. This vector is
denoted by |ψ〉 = Σn

i=1 αi|qi〉, where {|qi〉} is an orthonormal basis corresponding to
the states of M . The coefficient αi is the probability density amplitude of M being in
state qi. Since |ψ〉 is a unit vector, it follows thatΣn

i=1|αi|2 = 1. The transition function
δ is represented by a set of unitary matrices Uσ, σ ∈ Σ, where Uσ represents the unitary
transitions of M upon reading σ. If M is in configuration |ψ〉 and reads symbol σ, then
the new configuration of M is

|ψ′〉 = Uσ|ψ〉 =
∑
qi,qj∈Sαiδ(qi, σ, qj)|qj〉.

A measurement is represented by a diagonal zero-one projection matrix P where pii
is 1 or 0 depending whether qi ∈ F . The probability of M accepting string x is

pM (x) = 〈ψx|P |ψx〉 = ||P |ψx〉||2,
where |ψx〉 = U(x)|q0〉 = UxnUxn−1 . . . Ux1 |q0〉.

Physically, this can be interpreted as follows. We have a quantum system prepared in
a superposition of initial states. We expose it over time to a sequence of input symbols,
one time-step per symbol. At the end of this process, we perform a measurement on the
system and pM (x) is the probability of this measurement having an accepting outcome.
Note that pM is the probability of a particular event, not a general measure (on a space
coded by strings).

The power of MO − QFA depends on the type of acceptance, i.e. accept with
bounded/unbounded-error probability. A language L is accepted with bounded-error
probability by an MO − QFA if there exists an ε > 0 such that every string in L
is accepted with probability at least 1

2 + ε and every string not in L is rejected with
probability at least 1

2 + ε. The language L is accepted with unbounded-error probability
by an MO−QFA if every string in L is accepted with probability at least 1

2 and every
string not in L is rejected with probability at least 1

2 .
The main results are due to Brodsky and Pippenger [8]:

1. The class of languages accepted by MO − QFA with bounded-error probability
coincides with the class of group languages, a proper subset of regular languages.3

3 A group automaton (GFA) is a DFA such that for every state q and input symbol σ, there
exists exactly one state q′ such that δ(q′, σ) = q. Equivalently, aDFA is reversible if for every
σ ∈ Σ there exists a string x ∈ Σ∗ such that for every state q, δ(q, σx) = q; see Bavel and
Muller [3].



10 C.S. Calude and E. Calude

2. Any language accepted by an MO − QFA with bounded-error probability can
also be accepted by a deterministic probabilistic automaton with bounded-error
probability.

3. SomeMO−QFAwith unbounded-error probability accept non-regular languages,
for example, the language {x ∈ {0, 1}∗ | x has an equal number of 0’s and 1’s}.

3.2 Measure-Many Quantum Automata

For bounded-error acceptance, the power of MO − QFA is too limited. One way of
adding power to QFA is by introducing intermediate measurements. However, doing a
measurement that causes the superposition to collapse to a single state would turn the
QFA into a probabilistic automaton. A possible solution is to partition the set of states in
three subsets–the accepting, rejecting and non-halting states–and use the spans of these
sets as observables. A measurement is performed after every transition.

Inspired by the classical one-tape deterministic automata two types ofMM−QFA,
namely 1-way QFA (1QFA) and 2-way QFA (2QFA), have been introduced by
Kondacs and Watrous [33].

An one-way measure-many quantum automaton (1QFA) is a 6 tuple M =
(S,Σ, q0, Sa, Sr, δ), where Σ is the finite alphabet with two end-marker symbols #,
$, S is the finite set of states, q0 is the initial state, Sa ⊆ S is the set of accepting states,
Sr ⊆ S is the set of rejecting states, Sa ∩ Sr = ∅. The transition function δ is given by:
δ : S ×Σ × S → C.

The computation of M is performed in the inner-product space l2(S), i.e. with the
basis {|q〉 | q ∈ S}, using the unary linear operators Vσ, σ ∈ Σ, defined by Vσ(|q〉) =∑
q′∈S δ(q, σ, q

′)|q′〉.

1. Any language recognized by an 1QFA with bounded-error probability is regular,
cf. Kondacs and Watrous [33].

2. All group languages (i.e., languages recognized by group automata) are recognized
by 1QFA (cf. Brodsky and Pippenger [8]), but not all regular languages are recog-
nized by 1QFA; for example, the language {ab}∗a cannot be recognized by 1QFA
with bounded-error probability, cf. Kondacs and Watrous [33].

3. An 1QFA can accept a language with probability higher than 7
9 iff the language is

accepted by a deterministic reversible automata,4

The definition of two-way measure-many quantum automata (2QFA) is more com-
plex, because of the effort to make their evolution unitary. The price paid is in the “size of
quantum memory” which can grow proportional to the size of the input. 2QFA accept
with bounded-error probability all regular languages in linear time.Their capability goes
beyond regular languages; for example, the non-context-free language {anbncn|n ≥ 0}
is recognized by a 2QFA, cf. Kondacs and Watrous [33].

4 According to Brodsky and Pippenger [8], a DFA is reversible if for every state q and input
symbolσ, there exists at most one state q′ such that δ(q′, σ) = q, and if there exist distinct states
q1, q2 such that δ(q1, σ) = q = δ(q2, σ), then δ(q,Σ) = {q}. This notion of reversibility is
equivalent to the one used by Ambainis and Freivalds [1]. Group automata are reversible in the
above sense, but the converse is false.
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Ambainis and Watrous [2] have introduced a model of two-way measure-many quan-
tum automata in which both quantum and classical states are used, but the tape head
position is classical. These automata have better computational capabilities than 2QFA.
For example, the language {anbn|n ≥ 0} can be recognized by a two-way automata
with quantum and classical states in polynomial time (a classical probabilistic automaton
recognizes it in exponential time).

3.3 AncillaQFA

To avoid the restriction to unitary transitions (which is quite strong) ancilla qubits have
been added: with them, each transition can be unitary. Formally, this is done by adding
an output tape to the QFA, cf. Paschen [39].

An ancillaQFA is a 6-tupleM = (S,Σ,Ω, δ, q0, F ), whereS,Σ, q0 andF are as for
MO−QFA,Ω is the output alphabet and the transition function δ : S×Σ×S×Ω → C
verifies the following condition: for all states q1, q2 ∈ S and σ ∈ Σ

∑
q∈S,ω∈Ω

δ(q1, σ, q, ω), δ(q2, σ, q, ω) =
{

1, if q1 = q2,
0, otherwise.

The main result in Paschen [39] is: For every regular language L, there is a non-
negative integer k such that an ancilla QFA using k ancilla qubits can recognize L
exactly. These quantum automata can recognize with one-sided unbounded error some
non-regular languages.5

3.4 More Comments

Several types of quantum automata (QFA) have been proposed in the literature (see more
in Gruska [30]). Some of them are more powerful than their classical counterpart. Others,
as we have seen, are less powerful. This is the first problem: in principle, any quantum
computational system is a generalization of a classical counterpart, so its computational
power should not be less than that of the classical system. What is the explanation of
this anomalie?

According to Moore [36], “The only case in which quantum automata are weaker than
classical ones is when they are required to be unitary throughout their evolution, i.e. when
measurements are only allowed at the end. This imposes a strict kind of reversibility, and
(for instance) prevents languages like {w ∈ (a + b)∗ | w contains no aa} from being
recognized by a finite-state quantum machine. If you allow measurements during the
computation as well as at the end (which seems reasonable) they include all classical
automata."

Ciamarra [18] suggests a different reason, namely the lack of reversibility. A quan-
tum computation is performed through a unitary operator, which is reversible, so the
computation performed by a quantum automaton should be reversible till measurement.
However, no model of quantum automata is reversible as from the final state Uw|q0〉
one cannot retrace the computation because w is unknown; one can compute backward

5 An automatonM accepts a languageLwith one-sided unbounded error ifM accepts all strings
of L with certainty and rejects strings not in L with some positive probability (or vice-versa).
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from the operator Uw, but this information is not encoded in the final state. In spite of
this, the class of languages recognized accepted by MO − QFA with bounded-error
probability coincides with the class of group languages, that is languages recognized by
reversible classical automata! Classically, reversibility can be guaranteed by introducing
the so-called garbage which can be recycled so that it grows linearly with the input size.
Quantum mechanically, recycling is forbidden as the garbage might be entangled with
the computational system. Ciamarra [18] suggests a model of quantum automaton which
is strictly reversible (modeling classical reversible automata) and has at least the power
of classical automata.

Reversibility is a very important notion in both classical and quantum computing
(see for example, Frank, Knight, Margolus [25]). It seems that to date we don’t have a
satisfactory formal definition, which may be the cause of various anomalies in quantum
computing, as the one discussed above.

4 Proofs and “Quantum" Proofs

Classically, there are two equivalent ways to look at the mathematical notion of proof:
a) as a finite sequence of sentences strictly obeying some axioms and inference rules, b)
as a specific type of computation. Indeed, from a proof given as a sequence of sentences
one can easily construct a machine producing that sequence as the result of some finite
computation and, conversely, giving a machine computing a proof we can just print all
sentences produced during the computation and arrange them in a sequence. This gives
mathematics an immense advantage over any science: any proof is an explicit sequence
of reasoning steps that can be inspected at leisure; in theory, if followed with care, such
a sequence either reveals a gap or mistake, or can convince a skeptic of its conclusion,
in which case the theorem is considered proven. We said, in theory, because the game
of mathematical proofs is ultimately a social experience, so it is contaminated to some
degree by all “social maladies".

This equivalence has stimulated the construction of programs which perform like
artificial mathematicians.6 From proving simple theorems of Euclidean geometry to the
proof of the four-color theorem, these “theorem provers" have been very successful. Of
course, this was a good reason for sparking lots of controversies (see [9]).

Artificial mathematicians are far less ingenious and subtle than human mathemati-
cians, but they surpass their human counterparts by being infinitely more patient and
diligent. What about making errors? Are human mathematicians less prone to errors?
This is a difficult question which requires more attention.

If a conventional proof is replaced by a “quantum computational proof" (or a proof
produced as a result of a molecular experiment), then the conversion from a computation
to a sequence of sentences may be impossible, e.g., due to the size of the computation.
For example, a quantum automaton could be used to create some proof that relied
on quantum interference among all the computations going on in superposition. The
quantum automaton would say “your conjecture is true", but there will be no way to
exhibit all trajectories followed by the quantum automaton in reaching that conclusion.

6 Other types of “reasoning" such as medical diagnosis or legal inference have been successfully
modeled and implemented; see, for example, the British National Act which has been encoded
in first-order logic and a machine has been used to uncover its potential logical inconsistencies.
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In other words, the quantum automaton has the ability to check a proof, but it may fail
to reveal a “trace" of the proof for the human being operating the quantum automaton.
Even worse, any attempt to watch the inner working of the quantum automaton (e.g. by
“looking" at any information concerning the state of the on going proof) may compromise
for ever the proof itself!

These facts may not affect the essence of mathematical objects and constructions
(which have an autonomous reality quite independent of the physical reality), but they
seem to have an impact of how we learn/understand mathematics (which is thorough the
physical world). Indeed, our glimpses of mathematics are revealed only through physical
objects, human brains, silicon computers, quantum automata, etc., hence, according to
Deutsch [21], they have to obey not only the axioms and the inference rules of the theory,
but the laws of physics as well.
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