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Chaitin and Schwartz [4] have proved that Solovay and Strassen [12], Miller [ 9 ] ,  
and Rabin [lo] probabilistic algorithms for testing primality are error-free in case the 
input sequence of coin tosses has maximal information content. 

In this paper we shall describe conditions under which a probabilistic algorithm 
gives the correct output. We shall work with algorithms having the ability to make 
"random" decisions not necessarily binary (Zimand [13]). We shall prove that if a 
probabilistic algorithm is sufficiently "correct", then it is error-free on all sufficiently 
!ong inputs which are random in Kolmogorov and Martin-Lofs sense. Our result, as 
well as Chaitin and Schwartz's one, is only of theoretical interest, since the set of all 
random strings is immune (Calude and Chitescu [2]). 

KEY WORDS: Kolmogorov complexity, Martin-Lofs test, probabilistic algorithm. 

C.R. CATEGORY: F.l.l, F.1.2. 

1. BASIC NOTIONS 

Throughout the paper N will be the set of all natural numbers, i.e. N 
={0,1,2 ,... }. 

If A is a finite set, then card A will be the number of elements in 
A. 

For every non-empty sets A and B, and for every function 
f :A1-+ B (where A' c A) we shall write f :A% B; we shall say that f is 
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48 C. CALUDE AND M. ZIMAND 

a partial function from A to B. We shall assume that f (x)= co in 
case f is not defined in the point x. I f f  :A%B is a partial function, 
then d o m ( f ) = { x ~ ~ /  f(x)#co) and range ( f )={ f (x ) lx~dom(f ) ) .  
In case we write f : A+B it fol!ows that dom ( f )  =A. 

Let X={a,,a,,. . .,a,), p 2 2  be a finite alphabet. Denote by X* 
the free monoid generated by X under concatenation (with ;1 the null 
string). For every x in X* denote by l(x) the length of x. 

We shall consider partial recursive functions (p.r. functions in the 
sequel) cp:X* x N %X*, f : N x X*% N or g: N %N (for Recursive 
Function Theory see [I 11, [7], [I]). 

For every p.r. function cp :X* x N %X*, the Kolmogorov complexity 
induced by cp is a function K,:X* x N+Nu{m),  defined by 
K,(x I m) = min {l(y) I y EX*, cp(y, m) = x) in case x = cp(y, m) for some y 
in X*, and K,(xlm) = co, otherwise. A p.r, function $:X* x N %X* 
having the property that for each p.r. function cp:X* x N%X* there 
exists a natural c (depending upon $ and cp) such that 
~ + ( x l m )  5 ~ , ( x l m )  +c, for all x in X* and m z  1, is called a 
Kolmogorov universal algorithm; for the existence see Kolmogorov's 
Theorem [6] or [3]. Denote by K = K@ the complexity induced by a 
fixed Kolmogorov universal algorithm. A string x in X* is called 
random string (with respect to $) if ~ ( x l l ( x ) )  zl(x) .  Random strings 
do exist (for every $ and every length). 

For every set W c X *  x N and for every natural m 2  1 we shall 
write Wm = {x EX*  I (x, m) E W). A non-empty recursively enumerable 
set V c X* x (N - (0)) will be called Martin-Lof test (see [8] and [3]) 
if it possesses the following two properties: 

1) For every natural m 2 1, V, +, c Vm, 
2) For every natural numbers m and n, m z  1, 

card { x ~ ~ * I l ( x ) = n , x ~  vm) < ~ " - ~ / ( p -  1). 

We agree upon the fact that the empty set is a Martin-Lof test. 
The critical level induced by a Martin-Lof' test V is a function 

m, :X* -+ N, given by mv(x) = max {m 2 1 / x E Vm), if such m exists, and 
mv(x)=O, in the opposite case. In view of a theorem of Martin-Lof 
(see [8] or [3]) there exists a Martin-Lof test U (called universal) 
such that for every Martin-Lof test V we can find a natural number 
i (depending upon U and V) such that Vm + i  c Urn, for every m 2 1. 
The last inclusion can be written as mv(x) 5 m,(x) + i, for all x in X*. 
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PROBABILISTIC ALGORITHMS 49 

We shall fix a universal Martin-Lof test U and we shall write m(x) 
instead of m,(x). A basic result of Martin-Lof asserts the existence of 
a natural q (depending upon \CI and U) such that 

for every x in X* (see [8] or 131). 
A p.r. function f :  N x X*%N is a probabilistic algorithm that E- 

computes ( E  is a recursive real in [O,1/2]) the p.r. function g :  N S N  if 
the following two conditions hold: 

a) Iff (n, x) =g(n) f. co, for some n in N and x in X*, then f (n, xy) = 
g(n), for all y in X*. 

b) For every n in dom(g), there exists a natural number t,,, 
(which depends upon E and n) such that 

card { x ~ ~ * j l ( x )  = t,, ,, f (n, x)  =g(n)} > (1 - )P'&,~. 

(Remember that p=card X.) 

The above definition comes from [ 5 ]  and [13]. A short motivation 
will be helpful. When writing f (n,x) we denote by n the input value 
and by x the encoding of the "random" factor influencing the 

. computation. Condition (a) says that if the algorithm reaches an 
accepting state, then further random experiments are superflous. , 

Condition (b) asserts that in case of sufficiently long experiments the 
probability that f computes g is greater than 1-8. Choosing E in the 
interval [O, 1/21 we assure the uniqueness of the function evaluated 
by f: 

2. RESULTS 

LEMMA 1 Let f : N x X*%N be a probabilistic algorithm that E- 

computes a p.r. function g :  N 4 N, for some E in [O, 1/22. If n is in 
dom (g) and 

card (x E X* Il(x) = t, f (n, X) = g(n)} > (1 - e)pr, 

then for every r 2 t we have 
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C. CALUDE AND M. ZIMAND 

c a r d { x ~ ~ * I l ( x ) = r ,  f (n ,x )=g(n) )>( l - -&)pr .  

Proof W e  proceed by induction upon s = r - t. C] 

Now !et f :N x X * 4 N  be a probabilistic algorithm that E-  

computes the recursive function g :N-+N,  for some E in [0,1/2]. T o  
each recursive function h : N -+ N we associate the set 

L E M M A  2 The set W ( h )  is a Martin-Lof test. 

Proof Clearly, W ( h )  is a recursive set. Condition ( 1 )  follows from 
the construction o f  W(h) .  Finally, 

card { x  E X *  Il(x) =j, (x ,  m)  E W ( h ) )  5 card { x  E X* / l (x)  

THEOREM 3 Let f : N x X*+ N and g, h :  N + N be three recursive 
functions. Assume that: 

a) The probabilistic algorithm f &-computes g. 

b )  For every natural n there exist a natural t, and a recursive real 
p, in [O, 2- '1 such thut 

i) limn p, = 0, 

ii) card { x  E X *  I l (x)  = t,, f (n,  x )  =g(n))  >=(I  -p,)ptn. 

Then there exists a natural no such that for every n>=no satisfying the 
condition 

iii) n= h(l(y))  and l(y) Lt, ,  for some y in X* ,  

jbr. every random string x with n = h(l(x)) .  
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PROBABILISTIC ALGORITHMS 5 1 

Proof In view of Lemma 2 one gets a natural i2 1 such that 

for every z in X*. 

Let q be the constant furnished by the asymptotic relation 
between the complexity K and the critical level m, and put 

In view of (i), there exists a natural no such that a, >O, for every 
n 2 no. Let a = a,,. We shall prove that for each n 2 no, if we can find 
a string y with h(l(y)) =n  and l(y) 2 t,, then f (n, x) =g(n), for all 
random strings x such that h(l(x)) = n. 

We proceed by reductio ad absurdum. Suppose x is a random 
string with n= h(l(x)) and f (n,x) #g(n). In view of Lemma 1 and (ii) 
we have 

card {z E X* 11(z) = 1(x), f (n, Z) =g(n)) 2 (1 - , ~ , ) p ' ( ~ ) .  

From the construction of the critical level we conclude that 
(x, mw(h)(x) + 1) # Wh). Hence 

card {z~X*I l (z )  =1(x), f (n,z)=g(n)) 

Combining the last two inequalities we obtain the relation 

or equivalently, 

It follows that 
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52 C. CALUDE AND M. ZIMAND 

Finally, again the asymptotic formula between the complexity K 
and the critical level m enables us to write 

because a, > 0. We contradict the randomness of x. CI 

Remark The consistency of Theorem 3 follows from the fact that 
Solovay and Strassen, and Miller and Rabin primality tests satisfy 
the required conditions. To be more precise, we recall the common 
constructions of these probabilistic algorithms (see also [4]). For 
every natural n we take k naturals b uniformly distributed in the set 
{1,2,.. . ,n- 1). For each such b we check whether some fixed 
predicate w(b, n) holds. If so, n is composite; if not, n is prime (with 
the probability greater than 1-2-k). 

The encoding of the "random" experiment which consists of the 
selection of the b's in the set {1,2,. . . , n- 1) is binary. For every 
I c (1,2, . . . , n - 1) we consider the binary string x = x1 x,. . . x, -, , 
where x i = l  in case i ~ l ,  and xi=O, in the opposite situation. 
Condition (a) in the definition of a probabilistic algorithm is 
obviously fulfilled. Condition (b) (for 8 = 2- l) holds too, because in 
case n is prime 

card {x EX* (I(x) = n - 1, f (n, X) =g(n)) 

and in case n is composite at least half of the b's between 1 and n- 1 
satisfy the predicate w(b, n), i.e. 
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PROBABILISTIC ALGORITHMS 

and w(b, n) holds for some b in 

for n 2 4. 

Finally we consider the recursive function h :  N +N, h(n) = n + 1, 
and we set for every natural n, ,un = 2-["13], tn  = n - 1. Consequently, 
for almost all natural n and all random strings x with l(x) = n- 1, the 
primality tests of Solovay and Strassen, and Miller and Rabin are 
error-free. 
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